메뉴 건너뛰기




Volumn 3, Issue , 2016, Pages 1545-1554

Structured prediction energy networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BENCHMARKING; CLASSIFICATION (OF INFORMATION); ECONOMIC AND SOCIAL EFFECTS; ITERATIVE METHODS; LEARNING SYSTEMS; NETWORK ARCHITECTURE;

EID: 84998953764     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (106)

References (56)
  • 1
    • 84893108239 scopus 로고    scopus 로고
    • Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages
    • Agrawal, Rahul, Gupta, Archit, Prabhu, Yashoteja, and Varma, Manik. Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages. In International Conference on World Wide Web, 2013.
    • (2013) International Conference on World Wide Web
    • Agrawal, R.1    Gupta, A.2    Prabhu, Y.3    Varma, M.4
  • 3
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • Beck, Amir and Teboulle, Marc. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31(3), 2003.
    • (2003) Operations Research Letters , vol.31 , Issue.3
    • Beck, A.1    Teboulle, M.2
  • 4
    • 84998800506 scopus 로고    scopus 로고
    • Locally non-linear embeddings for extreme multi-label learning
    • 1507.02743
    • Bhatia, Kush, Jain, Himanshu, Kar, Purushottam, Jain, Prateek, and Varma, Manik. Locally non-linear embeddings for extreme multi-label learning. CoRR, abs/1507.02743, 2015.
    • (2015) CoRR
    • Bhatia, K.1    Jain, H.2    Kar, P.3    Jain, P.4    Varma, M.5
  • 5
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Boykov, Yuri and Kolmogorov, Vladimir. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. Pattern Analysis and Machine Intelligence, 26(9):1124-1137, 2004.
    • (2004) Pattern Analysis and Machine Intelligence , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 9
    • 85162451485 scopus 로고    scopus 로고
    • Matrix completion for multi-label image classification
    • Cabral, Ricardo S, Torre, Fernando, Costeira, Joao P, and Bernardino, Alexandre. Matrix completion for multi-label image classification. In NIPS, 2011.
    • (2011) NIPS
    • Cabral, R.S.1    Torre, F.2    Costeira, J.P.3    Bernardino, A.4
  • 12
    • 84956678436 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • Chen, Liang-Chieh, Papandreou, George, Kokkinos, Iasonas, Murphy, Kevin, and Yuille, Alan L. Semantic image segmentation with deep convolutional nets and fully connected crfs. ICCV, 2014.
    • (2014) ICCV
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 14
    • 84869036002 scopus 로고    scopus 로고
    • Generic methods for optimization-based modeling
    • Domke, Justin. Generic methods for optimization-based modeling. In AISTATS, volume 22, pp. 318-326, 2012.
    • (2012) AISTATS , vol.22 , pp. 318-326
    • Domke, J.1
  • 15
    • 84883162364 scopus 로고    scopus 로고
    • Learning graphical model parameters with approximate marginal inference
    • Domke, Justin. Learning graphical model parameters with approximate marginal inference. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(10):2454-2467, 2013.
    • (2013) Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.35 , Issue.10 , pp. 2454-2467
    • Domke, J.1
  • 16
    • 2542631648 scopus 로고    scopus 로고
    • A kernel method for multilabelled classification
    • Elisseeff, Andre and Weston, Jason. A kernel method for multilabelled classification. In NIPS, 2001.
    • (2001) NIPS
    • Elisseeff, A.1    Weston, J.2
  • 17
    • 56449113929 scopus 로고    scopus 로고
    • Training structural svms when exact inference is intractable
    • Finley, Thomas and Joachims, Thorsten. Training structural svms when exact inference is intractable. In ICML, 2008.
    • (2008) ICML
    • Finley, T.1    Joachims, T.2
  • 18
    • 84980008011 scopus 로고    scopus 로고
    • A neural algorithm of artistic style
    • 1508.06576
    • Gatys, Leon A., Ecker, Alexander S., and Bethge, Matthias. A neural algorithm of artistic style. CoRR, abs/1508.06576, 2015a.
    • (2015) CoRR
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 19
    • 84965135705 scopus 로고    scopus 로고
    • Texture synthesis using convolutional neural networks
    • Gatys, Leon A., Ecker, Alexander S., and Bethge, Matthias. Texture synthesis using convolutional neural networks. In NIPS. 2015b.
    • (2015) NIPS
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 21
    • 85162019740 scopus 로고    scopus 로고
    • Fixing maxproduct: Convergent message passing algorithms for map lprelaxations
    • Globerson, Amir and Jaakkola, Tommi S. Fixing maxproduct: Convergent message passing algorithms for map lprelaxations. In NIPS, 2008.
    • (2008) NIPS
    • Globerson, A.1    Jaakkola, T.S.2
  • 24
    • 77956531458 scopus 로고    scopus 로고
    • Large scale max-margin multi-label classification with priors
    • Hariharan, Bharath, Zelnik-Manor, Lihi, Varma, Manik, and Vishwanathan, Svn. Large scale max-margin multi-label classification with priors. In ICML, 2010.
    • (2010) ICML
    • Hariharan, B.1    Zelnik-Manor, L.2    Varma, M.3    Vishwanathan, S.4
  • 26
    • 77956528679 scopus 로고    scopus 로고
    • Multi-label prediction via compressed sensing
    • Hsu, Daniel, Kakade, Sham, Langford, John, and Zhang, Tong. Multi-label prediction via compressed sensing. In NIPS, 2009.
    • (2009) NIPS
    • Hsu, D.1    Kakade, S.2    Langford, J.3    Zhang, T.4
  • 27
    • 84992590368 scopus 로고    scopus 로고
    • Bidirectional LSTM-CRF models for sequence tagging
    • 1508.01991
    • Huang, Zhiheng, Xu, Wei, and Yu, Kai. Bidirectional LSTM-CRF models for sequence tagging. CoRR, abs/1508.01991, 2015.
    • (2015) CoRR
    • Huang, Z.1    Xu, W.2    Yu, K.3
  • 29
    • 84970003182 scopus 로고    scopus 로고
    • A fast variational approach for learning markov random field language models
    • Jernite, Yacine, Rush, Alexander M., and Sontag, David. A fast variational approach for learning markov random field language models. In ICML, 2015.
    • (2015) ICML
    • Jernite, Y.1    Rush, A.M.2    Sontag, D.3
  • 30
    • 77953179079 scopus 로고    scopus 로고
    • Linear dimensionality reduction for multi-label classification
    • Ji, Shuiwang and Ye, Jieping. Linear dimensionality reduction for multi-label classification. In IJCAI, volume 9, pp. 1077-1082, 2009.
    • (2009) IJCAI , vol.9 , pp. 1077-1082
    • Ji, S.1    Ye, J.2
  • 31
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan, Michael I, Ghahramani, Zoubin, Jaakkola, Tommi S, and Saul, Lawrence K. An introduction to variational methods for graphical models. Machine learning, 37(2):183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 32
    • 84877734258 scopus 로고    scopus 로고
    • Multilabel classification using Bayesian compressed sensing
    • Kapoor, Ashish, Viswanathan, Raajay, and Jain, Prateek. Multilabel classification using bayesian compressed sensing. In NIPS, 2012.
    • (2012) NIPS
    • Kapoor, A.1    Viswanathan, R.2    Jain, P.3
  • 34
    • 85047013878 scopus 로고    scopus 로고
    • Structured learning with approximate inference
    • Kulesza, Alex and Pereira, Fernando. Structured learning with approximate inference. In NIPS, 2007.
    • (2007) NIPS
    • Kulesza, A.1    Pereira, F.2
  • 35
    • 84879933290 scopus 로고    scopus 로고
    • A bilevel optimization approach for parameter learning in variational models
    • Kunisch, Karl and Pock, Thomas. A bilevel optimization approach for parameter learning in variational models. SIAM Journal on Imaging Sciences, 6(2):938-983, 2013.
    • (2013) SIAM Journal on Imaging Sciences , vol.6 , Issue.2 , pp. 938-983
    • Kunisch, K.1    Pock, T.2
  • 36
    • 84964551758 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Lafferty, John D, McCallum, Andrew, and Pereira, Fernando CN. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 37
    • 84919829999 scopus 로고    scopus 로고
    • Distributed representations of sentences and documents
    • Le, Quoc and Mikolov, Tomas. Distributed representations of sentences and documents. In ICML, 2014.
    • (2014) ICML
    • Le, Q.1    Mikolov, T.2
  • 38
    • 84862617580 scopus 로고    scopus 로고
    • Loss functions for discriminative training of energy-based models
    • LeCun, Yann and Huang, Fu Jie. Loss functions for discriminative training of energy-based models. In AISTATS, 2005.
    • (2005) AISTATS
    • LeCun, Y.1    Huang, F.J.2
  • 43
    • 77956556288 scopus 로고    scopus 로고
    • Learning efficiently with approximate inference via dual losses
    • Meshi, Ofer, Sontag, David, Globerson, Amir, and Jaakkola, Tommi S. Learning efficiently with approximate inference via dual losses. In ICML, 2010.
    • (2010) ICML
    • Meshi, O.1    Sontag, D.2    Globerson, A.3    Jaakkola, T.S.4
  • 46
    • 85162354773 scopus 로고    scopus 로고
    • Submodular multi-label learning
    • Petterson, James and Caetano, Tiberio S. Submodular multi-label learning. In NIPS, 2011.
    • (2011) NIPS
    • Petterson, J.1    Caetano, T.S.2
  • 47
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read, Jesse, Pfahringer, Bernhard, Holmes, Geoff, and Frank, Eibe. Classifier chains for multi-label classification. Machine learning, 85(3):333-359, 2011.
    • (2011) Machine Learning , vol.85 , Issue.3 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 48
    • 84986318909 scopus 로고    scopus 로고
    • Fully connected deep structured networks
    • 1503.02351
    • Schwing, Alexander G. and Urtasun, Raquel. Fully connected deep structured networks. CoRR, abs/1503.02351, 2015.
    • (2015) CoRR
    • Schwing, A.G.1    Urtasun, R.2
  • 49
    • 84937874740 scopus 로고    scopus 로고
    • Learning distributed representations for structured output prediction
    • Srikumar, Vivek and Manning, Christopher D. Learning distributed representations for structured output prediction. In NIPS, 2014.
    • (2014) NIPS
    • Srikumar, V.1    Manning, C.D.2
  • 51
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Sequence to sequence learning with neural networks. In NIPS, 2014.
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 54
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • Tsochantaridis, Ioannis, Hofmann, Thomas, Joachims, Thorsten, and Altun, Yasemin. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004.
    • (2004) ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 55
    • 84919793029 scopus 로고    scopus 로고
    • Large-scale multi-label learning with missing labels
    • Yu, Hsiang-Fu, Jain, Prateek, Kar, Purushottam, and Dhillon, Inderjit S. Large-scale multi-label learning with missing labels. In ICML, 2014.
    • (2014) ICML
    • Yu, H.-F.1    Jain, P.2    Kar, P.3    Dhillon, I.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.