메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1751-1758

A generative perspective on MRFs in low-level vision

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATION-SPECIFIC MODEL; BAYESIAN; COMMON MODELS; DISCRIMINATIVE METHODS; GENERAL CLASS; GENERATIVE MODEL; GIBBS SAMPLERS; IMAGE RESTORATION; LOW-LEVEL VISION; MARKOV RANDOM FIELD; MAXIMUM A POSTERIORI ESTIMATION; MINIMUM MEAN SQUARED ERROR; MMSE ESTIMATION; NATURAL IMAGES; NON-PROBABILISTIC; PRIOR KNOWLEDGE; PROBABILISTIC MODELS; SAMPLING-BASED;

EID: 77955989583     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2010.5539844     Document Type: Conference Paper
Times cited : (115)

References (31)
  • 1
    • 70450208956 scopus 로고    scopus 로고
    • Learning real-time MRF inference for image denoising
    • A. Barbu. Learning real-time MRF inference for image denoising. CVPR 2009.
    • CVPR 2009
    • Barbu, A.1
  • 2
    • 24344434731 scopus 로고    scopus 로고
    • Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities
    • A. Barbu and S.-C. Zhu. Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities. PAMI, 27(8):1239-1253, 2005.
    • (2005) PAMI , vol.27 , Issue.8 , pp. 1239-1253
    • Barbu, A.1    Zhu, S.-C.2
  • 3
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. PAMI, 23(11):1222-1239, 2001.
    • (2001) PAMI , vol.23 , Issue.11 , pp. 1222-1239
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 6
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • A. Gelman and D. Rubin. Inference from iterative simulation using multiple sequences. Statistical Science, 7(4):457-472, 1992.
    • (1992) Statistical Science , vol.7 , Issue.4 , pp. 457-472
    • Gelman, A.1    Rubin, D.2
  • 7
    • 0029341230 scopus 로고
    • Nonlinear image recovery with half-quadratic regularization
    • D. Geman and C. Yang. Nonlinear image recovery with half-quadratic regularization. IEEE TIP, 4(7):932-946, 1995.
    • (1995) IEEE TIP , vol.4 , Issue.7 , pp. 932-946
    • Geman, D.1    Yang, C.2
  • 8
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. PAMI, 6:721-741, 1984.
    • (1984) PAMI , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 9
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Comput., 14(8):1771-1800, 2002.
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 10
    • 63049129272 scopus 로고    scopus 로고
    • Stereo matching using population-based MCMC
    • W. Kim, J. Park, and K. M. Lee. Stereo matching using population-based MCMC. IJCV, 83(2):195-209, 2009.
    • (2009) IJCV , vol.83 , Issue.2 , pp. 195-209
    • Kim, W.1    Park, J.2    Lee, K.M.3
  • 11
    • 34547217558 scopus 로고    scopus 로고
    • Efficient belief propagation with learned higher-order Markov random fields
    • X. Lan, S. Roth, D. P. Huttenlocher, and M. J. Black. Efficient belief propagation with learned higher-order Markov random fields. ECCV 2006.
    • ECCV 2006
    • Lan, X.1    Roth, S.2    Huttenlocher, D.P.3    Black, M.J.4
  • 14
    • 77956002302 scopus 로고    scopus 로고
    • Learning for optical flow using stochastic optimization
    • Y. Li and D. P. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008.
    • ECCV 2008
    • Li, Y.1    Huttenlocher, D.P.2
  • 15
    • 62249200514 scopus 로고    scopus 로고
    • Modeling multiscale subbands of photographic images with fields of Gaussian scale mixtures
    • S. Lyu and E. P. Simoncelli. Modeling multiscale subbands of photographic images with fields of Gaussian scale mixtures. PAMI, 31(4):693-706, 2009.
    • (2009) PAMI , vol.31 , Issue.4 , pp. 693-706
    • Lyu, S.1    Simoncelli, E.P.2
  • 16
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. ICCV 2001.
    • ICCV 2001
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 17
    • 37249040173 scopus 로고    scopus 로고
    • Model distortions in Bayesian MAP reconstruction
    • M. Nikolova. Model distortions in Bayesian MAP reconstruction. AIMS J. on Inverse Problems and Imaging, 1(2):399-422, 2007.
    • (2007) AIMS J. on Inverse Problems and Imaging , vol.1 , Issue.2 , pp. 399-422
    • Nikolova, M.1
  • 18
    • 70450159350 scopus 로고    scopus 로고
    • Stacks of convolutional restricted Boltzmann machines for shift-invariant feature learning
    • M. Norouzi, M. Ranjbar, and G. Mori. Stacks of convolutional restricted Boltzmann machines for shift-invariant feature learning. CVPR, 2009.
    • (2009) CVPR
    • Norouzi, M.1    Ranjbar, M.2    Mori, G.3
  • 19
    • 0242636409 scopus 로고    scopus 로고
    • Image denoising using scale mixtures of Gaussians in the wavelet domain
    • J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE TIP, 12(11):1338-1351, 2003.
    • (2003) IEEE TIP , vol.12 , Issue.11 , pp. 1338-1351
    • Portilla, J.1    Strela, V.2    Wainwright, M.J.3    Simoncelli, E.P.4
  • 20
    • 60449120149 scopus 로고    scopus 로고
    • Fields of experts
    • S. Roth and M. J. Black. Fields of experts. IJCV, 82(2):205-229, 2009.
    • (2009) IJCV , vol.82 , Issue.2 , pp. 205-229
    • Roth, S.1    Black, M.J.2
  • 21
    • 70450207702 scopus 로고    scopus 로고
    • Learning optimized MAP estimates in continuously-valued MRF models
    • K. G. G. Samuel and M. F. Tappen. Learning optimized MAP estimates in continuously-valued MRF models. CVPR 2009.
    • CVPR 2009
    • Samuel, K.G.G.1    Tappen, M.F.2
  • 25
    • 5044233829 scopus 로고    scopus 로고
    • Exploiting the sparse derivative prior for super-resolution and image demosaicing
    • M. F. Tappen, B. C. Russell, and W. T. Freeman. Exploiting the sparse derivative prior for super-resolution and image demosaicing. Int. Workshop SCTV, 2003.
    • Int. Workshop SCTV, 2003
    • Tappen, M.F.1    Russell, B.C.2    Freeman, W.T.3
  • 26
    • 77955995757 scopus 로고    scopus 로고
    • Personal communication
    • Y. Weiss. Personal communication, 2005.
    • (2005)
    • Weiss, Y.1
  • 27
    • 35148861156 scopus 로고    scopus 로고
    • What makes a good model of natural images?
    • Y. Weiss and W. T. Freeman. What makes a good model of natural images? CVPR 2007.
    • CVPR 2007
    • Weiss, Y.1    Freeman, W.T.2
  • 28
    • 84898970768 scopus 로고    scopus 로고
    • Learning sparse topographic representations with products of Student-t distributions
    • M. Welling, G. E. Hinton, and S. Osindero. Learning sparse topographic representations with products of Student-t distributions. NIPS*2002.
    • NIPS*2002
    • Welling, M.1    Hinton, G.E.2    Osindero, S.3
  • 29
  • 30
    • 77955996707 scopus 로고    scopus 로고
    • MMSE approximation for denoising using several sparse representations
    • I. Yavneh and M. Elad. MMSE approximation for denoising using several sparse representations. 4th World Conf. of the IASC, 2008.
    • 4th World Conf. of the IASC, 2008
    • Yavneh, I.1    Elad, M.2
  • 31
    • 0031270256 scopus 로고    scopus 로고
    • Prior learning and Gibbs reactiondiffusion
    • S. C. Zhu and D. Mumford. Prior learning and Gibbs reactiondiffusion. PAMI, 19(11):1236-1250, 1997.
    • (1997) PAMI , vol.19 , Issue.11 , pp. 1236-1250
    • Zhu, S.C.1    Mumford, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.