-
2
-
-
0242320493
-
Hyperparameter design criteria for support vector classifiers
-
DOI 10.1016/S0925-2312(03)00430-2
-
D. Anguita, S. Ridella, F. Rivieccio, and R. Zunino. Hyperparameter design criteria for support vector classifiers. Neurocomputing, 55:109-134, 2003. (Pubitemid 37336672)
-
(2003)
Neurocomputing
, vol.55
, Issue.1-2
, pp. 109-134
-
-
Anguita, D.1
Ridella, S.2
Rivieccio, F.3
Zunino, R.4
-
3
-
-
0034241361
-
Gradient-based optimization of hyperparameters
-
Y. Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12:1889-1900, 2000.
-
(1889)
Neural Computation
, vol.12
, pp. 2000
-
-
Bengio, Y.1
-
4
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
DOI 10.1023/A:1012450327387
-
O. Chapelle, V. Vapnik, O. Bousquet, and S.Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1-3):131-159, 2002. (Pubitemid 34129966)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
5
-
-
0033308109
-
Optimal use of regularization and cross-validation in neural network modeling
-
D. Chen and M. Hagan. Optimal use of regularization and cross-validation in neural network modeling. In IJCNN, 1999.
-
(1999)
IJCNN
-
-
Chen, D.1
Hagan, M.2
-
6
-
-
33745783706
-
CONTRAlign: Discriminative training for protein sequence alignment
-
DOI 10.1007/11732990-15, Research in Computational Molecular Biology - 10th Annual International Conference, RECOMB 2006, Proceedings
-
C. B. Do, S. S. Gross, and S. Batzoglou. CONTRAlign: discriminative training for protein sequence alignment. In RECOMB, pages 160-174, 2006. (Pubitemid 44019154)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3909
, pp. 160-174
-
-
Do, C.B.1
Gross, S.S.2
Batzoglou, S.3
-
7
-
-
33747874580
-
CONTRAfold: RNA secondary structure prediction without physics-based models
-
DOI 10.1093/bioinformatics/btl246
-
C. B. Do, D. A. Woods, and S. Batzoglou. CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics, 22(14):e90-e98, 2006. (Pubitemid 44288277)
-
(2006)
Bioinformatics
, vol.22
, Issue.14
-
-
Do, C.B.1
Woods, D.A.2
Batzoglou, S.3
-
8
-
-
0037382208
-
Evaluation of simple performance measures for tuning SVM hyperparameters
-
DOI 10.1016/S0925-2312(02)00601-X, PII S092523120200601X
-
K. Duan, S. S. Keerthi, and A.N. Poo. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing, 51(4):41-59, 2003. (Pubitemid 36367224)
-
(2003)
Neurocomputing
, vol.51
, pp. 41-59
-
-
Duan, K.1
Keerthi, S.S.2
Poo, A.N.3
-
10
-
-
23944487822
-
Gradient-based adaptation of general gaussian kernels
-
DOI 10.1162/0899766054615635
-
T. Glasmachers and C. Igel. Gradient-based adaptation of general Gaussian kernels. Neural Comp., 17(10):2099-2105, 2005. (Pubitemid 41186994)
-
(2005)
Neural Computation
, vol.17
, Issue.10
, pp. 2099-2105
-
-
Glasmachers, T.1
Igel, C.2
-
11
-
-
34547969126
-
Exponentiated gradient algorithms for log-linear structured prediction
-
A. Globerson, T. Y. Koo, X. Carreras, and M. Collins. Exponentiated gradient algorithms for log-linear structured prediction. In ICML, pages 305-312, 2007.
-
(2007)
ICML
, pp. 305-312
-
-
Globerson, A.1
Koo, T.Y.2
Carreras, X.3
Collins, M.4
-
12
-
-
84872508028
-
Adaptive regularization of neural networks using conjugate gradient
-
C. Goutte and J. Larsen. Adaptive regularization of neural networks using conjugate gradient. In ICASSP, 1998.
-
(1998)
ICASSP
-
-
Goutte, C.1
Larsen, J.2
-
13
-
-
13444252847
-
Rfam: Annotating non-coding RNAs in complete genomes
-
DOI 10.1093/nar/gki081
-
S. Griffiths-Jones, S. Moxon, M. Marshall, A. Khanna, S. R. Eddy, and A. Bateman. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res, 33:D121-D124, 2005. (Pubitemid 40207843)
-
(2005)
Nucleic Acids Research
, vol.33
, Issue.DATABASE ISSUE
-
-
Griffiths-Jones, S.1
Moxon, S.2
Marshall, M.3
Khanna, A.4
Eddy, S.R.5
Bateman, A.6
-
14
-
-
84864039857
-
Hyperparameter and kernel learning for graph based semisupervised classification
-
A. Kapoor, Y. Qi, H. Ahn, and R. W. Picard. Hyperparameter and kernel learning for graph based semisupervised classification. In NIPS, pages 627-634, 2006.
-
(2006)
NIPS
, pp. 627-634
-
-
Kapoor, A.1
Qi, Y.2
Ahn, H.3
Picard, R.W.4
-
15
-
-
0036738840
-
Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
-
S. S. Keerthi. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Transaction on Neural Networks, 13(5):1225-1229, 2002.
-
(2002)
IEEE Transaction on Neural Networks
, vol.13
, Issue.5
, pp. 1225-1229
-
-
Keerthi, S.S.1
-
16
-
-
84864039082
-
An efficient method for gradient-based adaptation of hyperparameters in SVM models
-
S. S. Keerthi, V. Sindhwani, and O. Chapelle. An efficient method for gradient-based adaptation of hyperparameters in SVM models. In NIPS, 2007.
-
(2007)
NIPS
-
-
Keerthi, S.S.1
Sindhwani, V.2
Chapelle, O.3
-
17
-
-
33745933843
-
Yet faster method to optimize SVR hyperparameters based on minimizing cross-validation error
-
DOI 10.1109/IJCNN.2005.1555967, 1555967, Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005
-
K. Kobayashi, D. Kitakoshi, and R. Nakano. Yet faster method to optimize SVR hyperparameters based on minimizing cross-validation error. In IJCNN, volume 2, pages 871-876, 2005. (Pubitemid 44055566)
-
(2005)
Proceedings of the International Joint Conference on Neural Networks
, vol.2
, pp. 871-876
-
-
Kobayashi, K.1
Kitakoshi, D.2
Nakano, R.3
-
19
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In ICML 18, pages 282-289, 2001.
-
(2001)
ICML
, vol.18
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
20
-
-
0029702985
-
Design and regularization of neural networks: The optimal use of a validation set
-
J. Larsen, L. K. Hansen, C. Svarer, and M. Ohlsson. Design and regularization of neural networks: the optimal use of a validation set. In NNSP, 1996.
-
(1996)
NNSP
-
-
Larsen, J.1
Hansen, L.K.2
Svarer, C.3
Ohlsson, M.4
-
21
-
-
0008200145
-
Adaptive regularization in neural network modeling
-
J. Larsen, C. Svarer, L. N. Andersen, and L. K. Hansen. Adaptive regularization in neural network modeling. In Neural Networks: Tricks of the Trade, pages 113-132, 1996.
-
(1996)
Neural Networks: Tricks of the Trade
, pp. 113-132
-
-
Larsen, J.1
Svarer, C.2
Andersen, L.N.3
Hansen, L.K.4
-
22
-
-
0001025418
-
Bayesian interpolation
-
D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415-447, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.J.C.1
-
23
-
-
0043226712
-
Interpolation models with multiple hyperparameters
-
D. J. C. MacKay and R. Takeuchi. Interpolation models with multiple hyperparameters. Statistics and Computing, 8:15-23, 1998. (Pubitemid 128405007)
-
(1998)
Statistics and Computing
, vol.8
, Issue.1
, pp. 15-23
-
-
Mackay, D.J.C.1
Takeuchi, R.2
-
24
-
-
2442449533
-
The complex-step derivative approximation
-
J. R. R. A. Martins, P. Sturdza, and J. J. Alonso. The complex-step derivative approximation. ACM Trans. Math. Softw., 29(3):245-262, 2003.
-
(2003)
ACM Trans. Math. Softw.
, vol.29
, Issue.3
, pp. 245-262
-
-
Martins, J.R.R.A.1
Sturdza, P.2
Alonso, J.J.3
-
25
-
-
0345978970
-
Expectation propagation for approximate Bayesian inference
-
T. P. Minka. Expectation propagation for approximate Bayesian inference. In UAI, volume 17, pages 362-369, 2001.
-
(2001)
UAI
, vol.17
, pp. 362-369
-
-
Minka, T.P.1
-
26
-
-
33846024557
-
Bayesian learning in undirected graphical models: Approximate MCMC algorithms
-
I. Murray and Z. Ghahramani. Bayesian learning in undirected graphical models: approximate MCMC algorithms. In UAI, pages 392-399, 2004.
-
(2004)
UAI
, pp. 392-399
-
-
Murray, I.1
Ghahramani, Z.2
-
28
-
-
0003637220
-
Preventing over fitting of cross-validation data
-
A. Y. Ng. Preventing over fitting of cross-validation data. In ICML, pages 245-253, 1997.
-
(1997)
ICML
, pp. 245-253
-
-
Ng, A.Y.1
-
29
-
-
14344249889
-
Feature selection, L1 vs. L2 regularization, and rotational invariance
-
A. Y. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance. In ICML, 2004.
-
(2004)
ICML
-
-
Ng, A.Y.1
-
31
-
-
0000255539
-
Fast exact multiplication by the Hessian
-
B. A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Comp, 6(1):147-160, 1994.
-
(1994)
Neural Comp
, vol.6
, Issue.1
, pp. 147-160
-
-
Pearlmutter, B.A.1
-
33
-
-
46249109879
-
Cross-validation optimization for large scale hierarchical classification kernel methods
-
M. Seeger. Cross-validation optimization for large scale hierarchical classification kernel methods. In NIPS, 2007.
-
(2007)
NIPS
-
-
Seeger, M.1
-
34
-
-
85043116988
-
Shallow parsing with conditional random fields
-
F. Sha and F. Pereira. Shallow parsing with conditional random fields. In NAACL, pages 134-141, 2003.
-
(2003)
NAACL
, pp. 134-141
-
-
Sha, F.1
Pereira, F.2
-
35
-
-
0035344742
-
Predictive approaches for choosing hyperparameters in gaussian processes
-
DOI 10.1162/08997660151134343
-
S. Sundararajan and S. S. Keerthi. Predictive approaches for choosing hyperparameters in Gaussian processes. Neural Comp., 13(5):1103-1118, 2001. (Pubitemid 33595024)
-
(2001)
Neural Computation
, vol.13
, Issue.5
, pp. 1103-1118
-
-
Sundararajan, S.1
Keerthi, S.S.2
-
36
-
-
33749243756
-
Accelerated training of conditional random fields with stochastic gradient methods
-
S. V. N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. P. Murphy. Accelerated training of conditional random fields with stochastic gradient methods. In ICML, pages 969-976, 2006.
-
(2006)
ICML
, pp. 969-976
-
-
Vishwanathan, S.V.N.1
Schraudolph, N.N.2
Schmidt, M.W.3
Murphy, K.P.4
-
37
-
-
84858772436
-
Bayesian random fields: The Bethe-Laplace approximation
-
M. Wellings and S. Parise. Bayesian random fields: the Bethe-Laplace approximation. In ICML, 2006.
-
(2006)
ICML
-
-
Wellings, M.1
Parise, S.2
-
39
-
-
84864033982
-
Hyperparameter learning for graph based semi-supervised learning algorithms
-
X. Zhang and W. S. Lee. Hyperparameter learning for graph based semi-supervised learning algorithms. In NIPS, 2007.
-
(2007)
NIPS
-
-
Zhang, X.1
Lee, W.S.2
|