메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Efficient multiple hyperparameter learning for log-linear models

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOINFORMATICS; REGRESSION ANALYSIS;

EID: 85161996864     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (69)

References (39)
  • 2
    • 0242320493 scopus 로고    scopus 로고
    • Hyperparameter design criteria for support vector classifiers
    • DOI 10.1016/S0925-2312(03)00430-2
    • D. Anguita, S. Ridella, F. Rivieccio, and R. Zunino. Hyperparameter design criteria for support vector classifiers. Neurocomputing, 55:109-134, 2003. (Pubitemid 37336672)
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 109-134
    • Anguita, D.1    Ridella, S.2    Rivieccio, F.3    Zunino, R.4
  • 3
    • 0034241361 scopus 로고
    • Gradient-based optimization of hyperparameters
    • Y. Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12:1889-1900, 2000.
    • (1889) Neural Computation , vol.12 , pp. 2000
    • Bengio, Y.1
  • 4
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. Vapnik, O. Bousquet, and S.Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1-3):131-159, 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 5
    • 0033308109 scopus 로고    scopus 로고
    • Optimal use of regularization and cross-validation in neural network modeling
    • D. Chen and M. Hagan. Optimal use of regularization and cross-validation in neural network modeling. In IJCNN, 1999.
    • (1999) IJCNN
    • Chen, D.1    Hagan, M.2
  • 7
    • 33747874580 scopus 로고    scopus 로고
    • CONTRAfold: RNA secondary structure prediction without physics-based models
    • DOI 10.1093/bioinformatics/btl246
    • C. B. Do, D. A. Woods, and S. Batzoglou. CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics, 22(14):e90-e98, 2006. (Pubitemid 44288277)
    • (2006) Bioinformatics , vol.22 , Issue.14
    • Do, C.B.1    Woods, D.A.2    Batzoglou, S.3
  • 8
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • DOI 10.1016/S0925-2312(02)00601-X, PII S092523120200601X
    • K. Duan, S. S. Keerthi, and A.N. Poo. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing, 51(4):41-59, 2003. (Pubitemid 36367224)
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 10
    • 23944487822 scopus 로고    scopus 로고
    • Gradient-based adaptation of general gaussian kernels
    • DOI 10.1162/0899766054615635
    • T. Glasmachers and C. Igel. Gradient-based adaptation of general Gaussian kernels. Neural Comp., 17(10):2099-2105, 2005. (Pubitemid 41186994)
    • (2005) Neural Computation , vol.17 , Issue.10 , pp. 2099-2105
    • Glasmachers, T.1    Igel, C.2
  • 11
    • 34547969126 scopus 로고    scopus 로고
    • Exponentiated gradient algorithms for log-linear structured prediction
    • A. Globerson, T. Y. Koo, X. Carreras, and M. Collins. Exponentiated gradient algorithms for log-linear structured prediction. In ICML, pages 305-312, 2007.
    • (2007) ICML , pp. 305-312
    • Globerson, A.1    Koo, T.Y.2    Carreras, X.3    Collins, M.4
  • 12
    • 84872508028 scopus 로고    scopus 로고
    • Adaptive regularization of neural networks using conjugate gradient
    • C. Goutte and J. Larsen. Adaptive regularization of neural networks using conjugate gradient. In ICASSP, 1998.
    • (1998) ICASSP
    • Goutte, C.1    Larsen, J.2
  • 14
    • 84864039857 scopus 로고    scopus 로고
    • Hyperparameter and kernel learning for graph based semisupervised classification
    • A. Kapoor, Y. Qi, H. Ahn, and R. W. Picard. Hyperparameter and kernel learning for graph based semisupervised classification. In NIPS, pages 627-634, 2006.
    • (2006) NIPS , pp. 627-634
    • Kapoor, A.1    Qi, Y.2    Ahn, H.3    Picard, R.W.4
  • 15
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
    • S. S. Keerthi. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Transaction on Neural Networks, 13(5):1225-1229, 2002.
    • (2002) IEEE Transaction on Neural Networks , vol.13 , Issue.5 , pp. 1225-1229
    • Keerthi, S.S.1
  • 16
    • 84864039082 scopus 로고    scopus 로고
    • An efficient method for gradient-based adaptation of hyperparameters in SVM models
    • S. S. Keerthi, V. Sindhwani, and O. Chapelle. An efficient method for gradient-based adaptation of hyperparameters in SVM models. In NIPS, 2007.
    • (2007) NIPS
    • Keerthi, S.S.1    Sindhwani, V.2    Chapelle, O.3
  • 17
    • 33745933843 scopus 로고    scopus 로고
    • Yet faster method to optimize SVR hyperparameters based on minimizing cross-validation error
    • DOI 10.1109/IJCNN.2005.1555967, 1555967, Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005
    • K. Kobayashi, D. Kitakoshi, and R. Nakano. Yet faster method to optimize SVR hyperparameters based on minimizing cross-validation error. In IJCNN, volume 2, pages 871-876, 2005. (Pubitemid 44055566)
    • (2005) Proceedings of the International Joint Conference on Neural Networks , vol.2 , pp. 871-876
    • Kobayashi, K.1    Kitakoshi, D.2    Nakano, R.3
  • 19
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In ICML 18, pages 282-289, 2001.
    • (2001) ICML , vol.18 , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 20
    • 0029702985 scopus 로고    scopus 로고
    • Design and regularization of neural networks: The optimal use of a validation set
    • J. Larsen, L. K. Hansen, C. Svarer, and M. Ohlsson. Design and regularization of neural networks: the optimal use of a validation set. In NNSP, 1996.
    • (1996) NNSP
    • Larsen, J.1    Hansen, L.K.2    Svarer, C.3    Ohlsson, M.4
  • 22
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415-447, 1992.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 23
    • 0043226712 scopus 로고    scopus 로고
    • Interpolation models with multiple hyperparameters
    • D. J. C. MacKay and R. Takeuchi. Interpolation models with multiple hyperparameters. Statistics and Computing, 8:15-23, 1998. (Pubitemid 128405007)
    • (1998) Statistics and Computing , vol.8 , Issue.1 , pp. 15-23
    • Mackay, D.J.C.1    Takeuchi, R.2
  • 25
    • 0345978970 scopus 로고    scopus 로고
    • Expectation propagation for approximate Bayesian inference
    • T. P. Minka. Expectation propagation for approximate Bayesian inference. In UAI, volume 17, pages 362-369, 2001.
    • (2001) UAI , vol.17 , pp. 362-369
    • Minka, T.P.1
  • 26
    • 33846024557 scopus 로고    scopus 로고
    • Bayesian learning in undirected graphical models: Approximate MCMC algorithms
    • I. Murray and Z. Ghahramani. Bayesian learning in undirected graphical models: approximate MCMC algorithms. In UAI, pages 392-399, 2004.
    • (2004) UAI , pp. 392-399
    • Murray, I.1    Ghahramani, Z.2
  • 28
    • 0003637220 scopus 로고    scopus 로고
    • Preventing over fitting of cross-validation data
    • A. Y. Ng. Preventing over fitting of cross-validation data. In ICML, pages 245-253, 1997.
    • (1997) ICML , pp. 245-253
    • Ng, A.Y.1
  • 29
    • 14344249889 scopus 로고    scopus 로고
    • Feature selection, L1 vs. L2 regularization, and rotational invariance
    • A. Y. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance. In ICML, 2004.
    • (2004) ICML
    • Ng, A.Y.1
  • 31
    • 0000255539 scopus 로고
    • Fast exact multiplication by the Hessian
    • B. A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Comp, 6(1):147-160, 1994.
    • (1994) Neural Comp , vol.6 , Issue.1 , pp. 147-160
    • Pearlmutter, B.A.1
  • 32
    • 80053224752 scopus 로고    scopus 로고
    • Bayesian conditional random fields
    • Y. Qi, M. Szummer, and T. P. Minka. Bayesian conditional random fields. In AISTATS, 2005.
    • (2005) AISTATS
    • Qi, Y.1    Szummer, M.2    Minka, T.P.3
  • 33
    • 46249109879 scopus 로고    scopus 로고
    • Cross-validation optimization for large scale hierarchical classification kernel methods
    • M. Seeger. Cross-validation optimization for large scale hierarchical classification kernel methods. In NIPS, 2007.
    • (2007) NIPS
    • Seeger, M.1
  • 34
    • 85043116988 scopus 로고    scopus 로고
    • Shallow parsing with conditional random fields
    • F. Sha and F. Pereira. Shallow parsing with conditional random fields. In NAACL, pages 134-141, 2003.
    • (2003) NAACL , pp. 134-141
    • Sha, F.1    Pereira, F.2
  • 35
    • 0035344742 scopus 로고    scopus 로고
    • Predictive approaches for choosing hyperparameters in gaussian processes
    • DOI 10.1162/08997660151134343
    • S. Sundararajan and S. S. Keerthi. Predictive approaches for choosing hyperparameters in Gaussian processes. Neural Comp., 13(5):1103-1118, 2001. (Pubitemid 33595024)
    • (2001) Neural Computation , vol.13 , Issue.5 , pp. 1103-1118
    • Sundararajan, S.1    Keerthi, S.S.2
  • 36
    • 33749243756 scopus 로고    scopus 로고
    • Accelerated training of conditional random fields with stochastic gradient methods
    • S. V. N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. P. Murphy. Accelerated training of conditional random fields with stochastic gradient methods. In ICML, pages 969-976, 2006.
    • (2006) ICML , pp. 969-976
    • Vishwanathan, S.V.N.1    Schraudolph, N.N.2    Schmidt, M.W.3    Murphy, K.P.4
  • 37
    • 84858772436 scopus 로고    scopus 로고
    • Bayesian random fields: The Bethe-Laplace approximation
    • M. Wellings and S. Parise. Bayesian random fields: the Bethe-Laplace approximation. In ICML, 2006.
    • (2006) ICML
    • Wellings, M.1    Parise, S.2
  • 39
    • 84864033982 scopus 로고    scopus 로고
    • Hyperparameter learning for graph based semi-supervised learning algorithms
    • X. Zhang and W. S. Lee. Hyperparameter learning for graph based semi-supervised learning algorithms. In NIPS, 2007.
    • (2007) NIPS
    • Zhang, X.1    Lee, W.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.