메뉴 건너뛰기




Volumn , Issue , 2010, Pages 955-978

Unsupervised Learning for Gene Regulation Network Inference from Expression Data: A Review

Author keywords

Formidable challenge, gene regulatory network dissection delineating how eukaryote cells coordinate and govern patterns of gene expression leading to a phenotype; Gene expression, data and analysis amount of mRNA produced during transcription, measure of how active or functional a gene is; Unsupervised learning for gene regulation network inference from expression data

Indexed keywords


EID: 84875740737     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9780470892107.ch41     Document Type: Chapter
Times cited : (12)

References (69)
  • 3
    • 33745242506 scopus 로고    scopus 로고
    • Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast
    • S. Balaji, M.M. Babu, L.M. Iyer, N.M. Luscombe, and L. Aravind. Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J Mol Biol, 360:204-212, 2006.
    • (2006) J Mol Biol. , vol.360 , pp. 204-212
    • Balaji, S.1    Babu, M.M.2    Iyer, L.M.3    Luscombe, N.M.4    Aravind, L.5
  • 4
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: Understanding the cell's functional organization
    • A.L. Barabasi and Z.N. Oltvai. Network biology: Understanding the cell's functional organization. Nat Rev Genet, 5:101-113, 2004.
    • (2004) Nat Rev Genet. , vol.5 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 6
    • 0038313118 scopus 로고    scopus 로고
    • Strong-associationrule mining for large-scale gene-expression data analysis: A case study on human sage data
    • research0067.1research0067.16
    • C. Becquet, S. Blachon, B. Jeudy, J.F. Boulicaut, and O. Gandrillon. Strong-associationrule mining for large-scale gene-expression data analysis: A case study on human sage data. Genome Biol, 3: research0067.1research0067.16, 2002.
    • (2002) Genome Biol. , vol.3
    • Becquet, C.1    Blachon, S.2    Jeudy, B.3    Boulicaut, J.F.4    Gandrillon, O.5
  • 7
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Stat Soc, 57:289-300, 1995.
    • (1995) J Roy Stat Soc. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 8
    • 0035733108 scopus 로고    scopus 로고
    • The control of the false discovery rate in multiple testing under dependency
    • Y. Benjamini and Y. Yekutieli. The control of the false discovery rate in multiple testing under dependency. Ann Stat, 29:1165-1198, 2001.
    • (2001) Ann Stat. , vol.29 , pp. 1165-1198
    • Benjamini, Y.1    Yekutieli, Y.2
  • 9
    • 33645319789 scopus 로고    scopus 로고
    • Constraint-based concept mining and its application to microarray data analysis
    • J. Besson, C. Robardet, J.F. Boulicaut, and S. Rome. Constraint-based concept mining and its application to microarray data analysis. Intell Data Anal, 9:59-82, 2005.
    • (2005) Intell Data Anal. , vol.9 , pp. 59-82
    • Besson, J.1    Robardet, C.2    Boulicaut, J.F.3    Rome, S.4
  • 10
    • 84855775723 scopus 로고    scopus 로고
    • Identification of functional modules based on transcriptional regulation structure
    • E. Birmele, M. Elati, C. Rouveirol, and Ch. Ambroise. Identification of functional modules based on transcriptional regulation structure. BMC Proceedings, 2:S4, 2008.
    • (2008) BMC Proceedings , vol.2 S4
    • Birmele, E.1    Elati, M.2    Rouveirol, C.3    Ambroise, C.H.4
  • 11
    • 38949106176 scopus 로고    scopus 로고
    • Clustering formal concepts to discover biologically relevant knowledge from gene expression data
    • S. Blachon, R.G. Pensa, J. Besson, C. Robardet, J.F. Boulicaut, and O. Gandrillon. Clustering formal concepts to discover biologically relevant knowledge from gene expression data. In Silico Biol, 7:467-483, 2007.
    • (2007) In Silico Biol. , vol.7 , pp. 467-483
    • Blachon, S.1    Pensa, R.G.2    Besson, J.3    Robardet, C.4    Boulicaut, J.F.5    Gandrillon, O.6
  • 13
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A.P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn, 30:1145-1159, 1997.
    • (1997) Pattern Recogn. , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 14
    • 0036843965 scopus 로고    scopus 로고
    • Gene networks: How to put the function in genomics
    • P. Brazhnik, A. de la Fuente, and P. Mendes. Gene networks: How to put the function in genomics. Trends Biotechnol, 20:467-472, 2002.
    • (2002) Trends Biotechnol. , vol.20 , pp. 467-472
    • Brazhnik, P.1    de la Fuente, A.2    Mendes, P.3
  • 15
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
    • A.J. Butte and I.S. Kohane. Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. Pacific Symposium in Biocomputing, 2000, pp. 418-429.
    • (2000) Pacific Symposium in Biocomputing. , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 16
    • 33745145777 scopus 로고    scopus 로고
    • A survey on condensed representations for frequent sets
    • Constraint-Based Mining and Inductive Databases, Springer, New Yor.
    • T. Calders, C. Rigotti, and J.F. Boulicaut. A survey on condensed representations for frequent sets. Constraint-Based Mining and Inductive Databases, volume 3848, Springer, New York, 2004, pp. 64-80.
    • (2004) , vol.3848 , pp. 64-80
    • Calders, T.1    Rigotti, C.2    Boulicaut, J.F.3
  • 18
    • 5044245707 scopus 로고    scopus 로고
    • Gene co-expression network topology provides a framework for molecular characterization of cellular state
    • S.L. Carter, C.M. Brechbuhler, M. Griffin, and A.T. Bond. Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics, 20:2242-2250, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 2242-2250
    • Carter, S.L.1    Brechbuhler, C.M.2    Griffin, M.3    Bond, A.T.4
  • 19
    • 33748694308 scopus 로고    scopus 로고
    • Identification of transcription factor cooperativity via stochastic system model
    • Y.H. Chang, Y.C.Wang, and B.S. Chen. Identification of transcription factor cooperativity via stochastic system model. Bioinformatics, 22:2276-2282, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 2276-2282
    • Chang, Y.H.1    Wang, Y.C.2    Chen, B.S.3
  • 21
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • D.M. Chickering. Optimal structure identification with greedy search. J Mach Learn Res, 3:507-554, 2002.
    • (2002) J Mach Learn Res. , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 23
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • C. Creighton and S. Hanash. Mining gene expression databases for association rules. Bioinformatics, 19:79-86, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 25
    • 84886022717 scopus 로고    scopus 로고
    • Inference of biological regulatory networks: Machine learning approaches
    • World Scientific, Singapor
    • F. D'Alché Buc. Inference of biological regulatory networks: Machine learning approaches. In François Képès, editor, Biological Networks, World Scientific, Singapore, 2008, pp. 41-83.
    • (2008) In François Képès, editor, Biological Networks , pp. 41-83
    • D'Alché Buc, F.1
  • 26
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • A. de la Fuente, N. Bing, I. Hoeschele, and P. Mendes. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics, 20:3565-3574, 2004.
    • (2004) Bioinformatic , vol.20 , pp. 3565-3574
    • de la Fuente, A.1    Bing, N.2    Hoeschele, I.3    Mendes, P.4
  • 28
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • P. D'haeseleer, S. Liang, and R. Somogyi. Genetic network inference: From co-expression clustering to reverse engineering. Bioinformatics, 16:707-726, 2000.
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 32
    • 33845341455 scopus 로고    scopus 로고
    • Locating mammalian transcription factor binding sites: A survey of computational and experimental techniques
    • L. Elnitski, V.X. Jin, P.J. Farnham, and S.J.M. Jones. Locating mammalian transcription factor binding sites: A survey of computational and experimental techniques. Genome Res, 16(12):1455-1464, 2006.
    • (2006) Genome Re. , vol.16 , Issue.12 , pp. 1455-1464
    • Elnitski, L.1    Jin, V.X.2    Farnham, P.J.3    Jones, S.J.M.4
  • 34
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • N. Friedman. Inferring cellular networks using probabilistic graphical models. Science, 303:799-805, 2004.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 35
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian network to analyze expression data
    • N. Friedman, M. Linial, I. Nachman, and D. Pe'er. Using Bayesian network to analyze expression data. Comput Biol, 7:601-620, 2000.
    • (2000) Comput Biol. , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 37
    • 27544508838 scopus 로고    scopus 로고
    • Analyzing microarray data using quantitative association rules
    • E. Georgii, L. Richter, U. Ruckert, and S. Kramer. Analyzing microarray data using quantitative association rules. Bioinformatics, 21:123-129, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 123-129
    • Georgii, E.1    Richter, L.2    Ruckert, U.3    Kramer, S.4
  • 38
    • 27544478009 scopus 로고    scopus 로고
    • Advances in frequent itemset mining implementations: Introduction to FIMI03
    • B. Goethals and M.J. Zaki. Advances in frequent itemset mining implementations: Introduction to FIMI03. FIMI, volume 90, 2003.
    • (2003) FIM , vol.90
    • Goethals, B.1    Zaki, M.J.2
  • 39
    • 0036578654 scopus 로고    scopus 로고
    • Topological and causal structure of the yeast transcriptional regulatory network
    • N. Guelzim, S. Bottani, P. Bourgine, and F. Képès. Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet, 31:60-63, 2002.
    • (2002) Nat Genet. , vol.31 , pp. 60-63
    • Guelzim, N.1    Bottani, S.2    Bourgine, P.3    Képès, F.4
  • 40
    • 8844220454 scopus 로고    scopus 로고
    • Mining gene expression data for positive and negative co-regulated gene clusters
    • L. Ji and K. L. Tan. Mining gene expression data for positive and negative co-regulated gene clusters. Bioinformatics, 20:2711-2718, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 2711-2718
    • Ji, L.1    Tan, K.L.2
  • 41
    • 14644416505 scopus 로고    scopus 로고
    • Identifying time-lagged gene clusters using gene expression data
    • L. Ji and K. L. Tan. Identifying time-lagged gene clusters using gene expression data. Bioinformatics, 21:509-516, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 509-516
    • Ji, L.1    Tan, K.L.2
  • 43
    • 67449095889 scopus 로고    scopus 로고
    • Computational methods for discovering gene networks from expression data
    • W.P. Lee and W.S. Tzou. Computational methods for discovering gene networks from expression data. Brief Bioinformatics, 10:408-423, 2009.
    • (2009) Brief Bioinformatics , vol.10 , pp. 408-423
    • Lee, W.P.1    Tzou, W.S.2
  • 45
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • N.M. Luscombe, M.M. Babu, H. Yu, M. Snyder, S.A. Teichmann, and M. Gerstein. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 431:308-312, 2004.
    • (2004) Nature , vol.431 , pp. 308-312
    • Luscombe, N.M.1    Babu, M.M.2    Yu, H.3    Snyder, M.4    Teichmann, S.A.5    Gerstein, M.6
  • 46
    • 21944442464 scopus 로고    scopus 로고
    • Levelwise search and borders of theories in knowledge discovery
    • H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discovery. Data Min Knowl Discov J, 1:241-258, 1997.
    • (1997) Data Min Knowl Discov J. , vol.1 , pp. 241-258
    • Mannila, H.1    Toivonen, H.2
  • 47
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networksa review
    • F. Markowetz and R. Spang. Inferring cellular networksa review. BMC Bioinformatics, 8 (Suppl 6):S5, 2007.
    • (2007) BMC Bioinformatic , vol.8 , Issue.SUPPL 6
    • Markowetz, F.1    Spang, R.2
  • 48
    • 36249019195 scopus 로고    scopus 로고
    • High confidence rule mining for microarray analysis
    • S. Chawla and T. McIntosh. High confidence rule mining for microarray analysis. IEEE/ACM Trans Comput Biol Bioinform, 4(4):611-623, 2007.
    • (2007) IEEE/ACM Trans Comput Biol Bioinfor. , vol.4 , Issue.4 , pp. 611-623
    • Chawla, S.1    McIntosh, T.2
  • 51
    • 0032092760 scopus 로고    scopus 로고
    • Exploratory mining and pruning optimizations of constrained associations rules
    • R.T. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained associations rules. SIGMOD Rec, 27(2):13-24, 1998.
    • (1998) SIGMOD Re. , vol.27 , Issue.2 , pp. 13-24
    • Ng, R.T.1    Lakshmanan, L.V.S.2    Han, J.3    Pang, A.4
  • 54
    • 0018058024 scopus 로고
    • On the connection between the complexity and credibility of inferred models
    • J. Pearl. On the connection between the complexity and credibility of inferred models. Int J Gen Syst, 4:255-264, 1978.
    • (1978) Int J Gen Syst , vol.4 , pp. 255-264
    • Pearl, J.1
  • 55
    • 11244318119 scopus 로고    scopus 로고
    • Minreg: Inferring an active regulator set
    • D. Pe'er, A. Regev, and A. Tanay. Minreg: Inferring an active regulator set. Bioinformatics, 18:258-267, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 258-267
    • Pe'er, D.1    Regev, A.2    Tanay, A.3
  • 57
    • 27544508635 scopus 로고    scopus 로고
    • Mining yeast transcriptional regulatory modules from factor dna-binding sites and gene expression data
    • T.H. Pham, K. Satou, and T.B. Ho. Mining yeast transcriptional regulatory modules from factor dna-binding sites and gene expression data. Genome Inform, 15:287-295, 2004.
    • (2004) Genome Inform. , vol.15 , pp. 287-295
    • Pham, T.H.1    Satou, K.2    Ho, T.B.3
  • 58
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary dna microarray
    • M. Schena, D. Shalon, R. Davis, and P. Brown. Quantitative monitoring of gene expression patterns with a complementary dna microarray. Science, 70:467-470, 1995.
    • (1995) Science , vol.70 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.3    Brown, P.4
  • 59
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • E. Segal, M. Shapira, A. Regev, D. Pe'er, D. Botstein, D. Koller, and N. Friedman. Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet, 34:166-176, 2003.
    • (2003) Nat Genet. , vol.34 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 60
    • 0000042837 scopus 로고    scopus 로고
    • Evaluating functional network inference using simulations of complex biological systems
    • V.A. Smith, E.D. Jarvis, and A.J. Hartemink. Evaluating functional network inference using simulations of complex biological systems. Bioinformatics, 18:216S-224S, 2002.
    • (2002) Bioinformatic , vol.18
    • Smith, V.A.1    Jarvis, E.D.2    Hartemink, A.J.3
  • 64
    • 0042526388 scopus 로고    scopus 로고
    • The mutual information: Detecting and evaluating dependencies between variables
    • R. Steuer, J. Kurths, C.O. Daub, J. Weise, and J. Selbig. The mutual information: Detecting and evaluating dependencies between variables. Bioinformatics, S18:231-240, 2002.
    • (2002) Bioinformatic , vol.S18 , pp. 231-240
    • Steuer, R.1    Kurths, J.2    Daub, C.O.3    Weise, J.4    Selbig, J.5
  • 67
    • 38349030979 scopus 로고    scopus 로고
    • Inferring transcriptional interactions and regulator activities from experimental data
    • R.S. Wang, X.S. Zhang, and L. Chen. Inferring transcriptional interactions and regulator activities from experimental data. Mol Cells, 24:307-15, 2007.
    • (2007) Mol Cells. , vol.24 , pp. 307-15
    • Wang, R.S.1    Zhang, X.S.2    Chen, L.3
  • 68
    • 45149087505 scopus 로고    scopus 로고
    • Experiments on the accuracy of algorithms for inferring the structure of genetic regulatory networks from microarray expression levels
    • F.C. Wimberly, T. Heiman, J. Ramsey, and C. Glymour. Experiments on the accuracy of algorithms for inferring the structure of genetic regulatory networks from microarray expression levels. Proceedings of the IJCAI 2003 Bioinformatics Workshop, 2003.
    • (2003) Proceedings of the IJCAI 2003 Bioinformatics Workshop
    • Wimberly, F.C.1    Heiman, T.2    Ramsey, J.3    Glymour, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.