-
3
-
-
33745242506
-
Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast
-
S. Balaji, M.M. Babu, L.M. Iyer, N.M. Luscombe, and L. Aravind. Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J Mol Biol, 360:204-212, 2006.
-
(2006)
J Mol Biol.
, vol.360
, pp. 204-212
-
-
Balaji, S.1
Babu, M.M.2
Iyer, L.M.3
Luscombe, N.M.4
Aravind, L.5
-
4
-
-
0742305866
-
Network biology: Understanding the cell's functional organization
-
A.L. Barabasi and Z.N. Oltvai. Network biology: Understanding the cell's functional organization. Nat Rev Genet, 5:101-113, 2004.
-
(2004)
Nat Rev Genet.
, vol.5
, pp. 101-113
-
-
Barabasi, A.L.1
Oltvai, Z.N.2
-
5
-
-
16844376909
-
Reverse engineering of regulatory networks in human B cells
-
K. Basso, A.A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera, and A. Califano. Reverse engineering of regulatory networks in human B cells. Nat Genet, 37:382-390, 2005.
-
(2005)
Nat Genet.
, vol.37
, pp. 382-390
-
-
Basso, K.1
Margolin, A.A.2
Stolovitzky, G.3
Klein, U.4
Dalla-Favera, R.5
Califano, A.6
-
6
-
-
0038313118
-
Strong-associationrule mining for large-scale gene-expression data analysis: A case study on human sage data
-
research0067.1research0067.16
-
C. Becquet, S. Blachon, B. Jeudy, J.F. Boulicaut, and O. Gandrillon. Strong-associationrule mining for large-scale gene-expression data analysis: A case study on human sage data. Genome Biol, 3: research0067.1research0067.16, 2002.
-
(2002)
Genome Biol.
, vol.3
-
-
Becquet, C.1
Blachon, S.2
Jeudy, B.3
Boulicaut, J.F.4
Gandrillon, O.5
-
7
-
-
0001677717
-
Controlling the false discovery rate: A practical and powerful approach to multiple testing
-
Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Stat Soc, 57:289-300, 1995.
-
(1995)
J Roy Stat Soc.
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
8
-
-
0035733108
-
The control of the false discovery rate in multiple testing under dependency
-
Y. Benjamini and Y. Yekutieli. The control of the false discovery rate in multiple testing under dependency. Ann Stat, 29:1165-1198, 2001.
-
(2001)
Ann Stat.
, vol.29
, pp. 1165-1198
-
-
Benjamini, Y.1
Yekutieli, Y.2
-
9
-
-
33645319789
-
Constraint-based concept mining and its application to microarray data analysis
-
J. Besson, C. Robardet, J.F. Boulicaut, and S. Rome. Constraint-based concept mining and its application to microarray data analysis. Intell Data Anal, 9:59-82, 2005.
-
(2005)
Intell Data Anal.
, vol.9
, pp. 59-82
-
-
Besson, J.1
Robardet, C.2
Boulicaut, J.F.3
Rome, S.4
-
10
-
-
84855775723
-
Identification of functional modules based on transcriptional regulation structure
-
E. Birmele, M. Elati, C. Rouveirol, and Ch. Ambroise. Identification of functional modules based on transcriptional regulation structure. BMC Proceedings, 2:S4, 2008.
-
(2008)
BMC Proceedings
, vol.2 S4
-
-
Birmele, E.1
Elati, M.2
Rouveirol, C.3
Ambroise, C.H.4
-
11
-
-
38949106176
-
Clustering formal concepts to discover biologically relevant knowledge from gene expression data
-
S. Blachon, R.G. Pensa, J. Besson, C. Robardet, J.F. Boulicaut, and O. Gandrillon. Clustering formal concepts to discover biologically relevant knowledge from gene expression data. In Silico Biol, 7:467-483, 2007.
-
(2007)
In Silico Biol.
, vol.7
, pp. 467-483
-
-
Blachon, S.1
Pensa, R.G.2
Besson, J.3
Robardet, C.4
Boulicaut, J.F.5
Gandrillon, O.6
-
13
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
A.P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn, 30:1145-1159, 1997.
-
(1997)
Pattern Recogn.
, vol.30
, pp. 1145-1159
-
-
Bradley, A.P.1
-
15
-
-
0033655775
-
Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
-
A.J. Butte and I.S. Kohane. Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. Pacific Symposium in Biocomputing, 2000, pp. 418-429.
-
(2000)
Pacific Symposium in Biocomputing.
, pp. 418-429
-
-
Butte, A.J.1
Kohane, I.S.2
-
16
-
-
33745145777
-
A survey on condensed representations for frequent sets
-
Constraint-Based Mining and Inductive Databases, Springer, New Yor.
-
T. Calders, C. Rigotti, and J.F. Boulicaut. A survey on condensed representations for frequent sets. Constraint-Based Mining and Inductive Databases, volume 3848, Springer, New York, 2004, pp. 64-80.
-
(2004)
, vol.3848
, pp. 64-80
-
-
Calders, T.1
Rigotti, C.2
Boulicaut, J.F.3
-
17
-
-
33644656960
-
Integrated analysis of gene expression by association rules discovery
-
P. Carmona-Saez, M. Chagoyen, A. Rodriguez, O. Trelles, J. Carazo, and A. Pascual- Montano. Integrated analysis of gene expression by association rules discovery. BMC Bioinformatics, 7:54, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 54
-
-
Carmona-Saez, P.1
Chagoyen, M.2
Rodriguez, A.3
Trelles, O.4
Carazo, J.5
Pascual-Montano, A.6
-
18
-
-
5044245707
-
Gene co-expression network topology provides a framework for molecular characterization of cellular state
-
S.L. Carter, C.M. Brechbuhler, M. Griffin, and A.T. Bond. Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics, 20:2242-2250, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 2242-2250
-
-
Carter, S.L.1
Brechbuhler, C.M.2
Griffin, M.3
Bond, A.T.4
-
19
-
-
33748694308
-
Identification of transcription factor cooperativity via stochastic system model
-
Y.H. Chang, Y.C.Wang, and B.S. Chen. Identification of transcription factor cooperativity via stochastic system model. Bioinformatics, 22:2276-2282, 2006.
-
(2006)
Bioinformatics
, vol.22
, pp. 2276-2282
-
-
Chang, Y.H.1
Wang, Y.C.2
Chen, B.S.3
-
20
-
-
0031858914
-
SGD: Saccharomyces Genome Database
-
J.M. Cherry, C. Adler, C. Ball, S.A. Chervitz, S.S. Dwight, E.T. Hester, Y. Jia, G. Juvik, T. Roe, M. Schroeder, S.Weng, and D. Botstein. SGD: Saccharomyces Genome Database. Nucleic Acids Res, 26:73-79, 1998.
-
(1998)
Nucleic Acids Res.
, vol.26
, pp. 73-79
-
-
Cherry, J.M.1
Adler, C.2
Ball, C.3
Chervitz, S.A.4
Dwight, S.S.5
Hester, E.T.6
Jia, Y.7
Juvik, G.8
Roe, T.9
Schroeder, M.10
Weng, S.11
Botstein, D.12
-
21
-
-
0042967741
-
Optimal structure identification with greedy search
-
D.M. Chickering. Optimal structure identification with greedy search. J Mach Learn Res, 3:507-554, 2002.
-
(2002)
J Mach Learn Res.
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
22
-
-
3142686884
-
FARMER: Finding interesting rule groups in microarray datasets
-
G. Cong, A.K.H. Tung, X. Xu, F. Pan, and J. Yang. FARMER: Finding interesting rule groups in microarray datasets. Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, Paris, France, 2004, pp. 143-154.
-
(2004)
Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, Paris, Franc
, pp. 143-154
-
-
Cong, G.1
Tung, A.K.H.2
Xu, X.3
Pan, F.4
Yang, Y.5
-
23
-
-
0037245822
-
Mining gene expression databases for association rules
-
C. Creighton and S. Hanash. Mining gene expression databases for association rules. Bioinformatics, 19:79-86, 2003.
-
(2003)
Bioinformatics
, vol.19
, pp. 79-86
-
-
Creighton, C.1
Hanash, S.2
-
24
-
-
54249138332
-
Discovering knowledge from local patterns with global constraints
-
Perugia, Italy, Springer-Verlag, New York
-
B. Crémilleux and A. Soulet. Discovering knowledge from local patterns with global constraints. Proceedings of the International Conference on Computational Science and Its Applications, Part II, Perugia, Italy, Springer-Verlag, New York, 2008, pp. 1242-1257.
-
(2008)
Proceedings of the International Conference on Computational Science and Its Applications, Part II
, pp. 1242-1257
-
-
Crémilleux, B.1
Soulet, A.2
-
25
-
-
84886022717
-
Inference of biological regulatory networks: Machine learning approaches
-
World Scientific, Singapor
-
F. D'Alché Buc. Inference of biological regulatory networks: Machine learning approaches. In François Képès, editor, Biological Networks, World Scientific, Singapore, 2008, pp. 41-83.
-
(2008)
In François Képès, editor, Biological Networks
, pp. 41-83
-
-
D'Alché Buc, F.1
-
26
-
-
12344321571
-
Discovery of meaningful associations in genomic data using partial correlation coefficients
-
A. de la Fuente, N. Bing, I. Hoeschele, and P. Mendes. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics, 20:3565-3574, 2004.
-
(2004)
Bioinformatic
, vol.20
, pp. 3565-3574
-
-
de la Fuente, A.1
Bing, N.2
Hoeschele, I.3
Mendes, P.4
-
27
-
-
33144486498
-
SYNTREN: A generator of synthetic gene expression data for design and analysis of structure learning algorithms
-
T. Van den Bulcke, K. Van Leemput, B. Naudts, P. van Remortel, H. Ma, A. Verschoren, B. De Moor, and K. Marchal. SynTReN: A generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinformatics, 7:43, 2006.
-
(2006)
BMC Bioinformatic
, vol.7
, pp. 43
-
-
Van den Bulcke, T.1
Van Leemput, K.2
Naudts, B.3
van Remortel, P.4
Ma, H.5
Verschoren, A.6
De Moor, B.7
Marchal, K.8
-
28
-
-
0033736476
-
Genetic network inference: From co-expression clustering to reverse engineering
-
P. D'haeseleer, S. Liang, and R. Somogyi. Genetic network inference: From co-expression clustering to reverse engineering. Bioinformatics, 16:707-726, 2000.
-
(2000)
Bioinformatics
, vol.16
, pp. 707-726
-
-
D'haeseleer, P.1
Liang, S.2
Somogyi, R.3
-
31
-
-
34548800297
-
LICORN: Learning cooperative regulation networks from gene expression data
-
M. Elati, P. Neuvial, M. Bolotin-Fukuhara, E. Barillot, F. Radvanyi, and C. Rouveirol. LICORN: Learning cooperative regulation networks from gene expression data. Bioinformatics, 23:2407-2414, 2007.
-
(2007)
Bioinformatics
, vol.23
, pp. 2407-2414
-
-
Elati, M.1
Neuvial, P.2
Bolotin-Fukuhara, M.3
Barillot, E.4
Radvanyi, F.5
Rouveirol, C.6
-
32
-
-
33845341455
-
Locating mammalian transcription factor binding sites: A survey of computational and experimental techniques
-
L. Elnitski, V.X. Jin, P.J. Farnham, and S.J.M. Jones. Locating mammalian transcription factor binding sites: A survey of computational and experimental techniques. Genome Res, 16(12):1455-1464, 2006.
-
(2006)
Genome Re.
, vol.16
, Issue.12
, pp. 1455-1464
-
-
Elnitski, L.1
Jin, V.X.2
Farnham, P.J.3
Jones, S.J.M.4
-
33
-
-
33846400424
-
Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
-
J. Faith, B. Hayete, J.T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J.J. Collins, and T.S. Gardner. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol, 5:e8, 2007.
-
(2007)
PLoS Bio.
, vol.5
-
-
Faith, J.1
Hayete, B.2
Thaden, J.T.3
Mogno, I.4
Wierzbowski, J.5
Cottarel, G.6
Kasif, S.7
Collins, J.J.8
Gardner, T.S.9
-
34
-
-
0842288337
-
Inferring cellular networks using probabilistic graphical models
-
N. Friedman. Inferring cellular networks using probabilistic graphical models. Science, 303:799-805, 2004.
-
(2004)
Science
, vol.303
, pp. 799-805
-
-
Friedman, N.1
-
35
-
-
0033707946
-
Using Bayesian network to analyze expression data
-
N. Friedman, M. Linial, I. Nachman, and D. Pe'er. Using Bayesian network to analyze expression data. Comput Biol, 7:601-620, 2000.
-
(2000)
Comput Biol.
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
36
-
-
0005107080
-
Mining n-most interesting itemsets
-
Springer- Verlag, New York
-
A.W. Fu, R.W. Kwong, and J. Tang. Mining n-most interesting itemsets. Proceedings of the 12th International Symposium Foundations Intelligent Systems (ISMIS), Springer- Verlag, New York, 2000, pp. 59-67.
-
(2000)
Proceedings of the 12th International Symposium Foundations Intelligent Systems (ISMIS)
, pp. 59-67
-
-
Fu, A.W.1
Kwong, R.W.2
Tang, J.3
-
37
-
-
27544508838
-
Analyzing microarray data using quantitative association rules
-
E. Georgii, L. Richter, U. Ruckert, and S. Kramer. Analyzing microarray data using quantitative association rules. Bioinformatics, 21:123-129, 2005.
-
(2005)
Bioinformatics
, vol.21
, pp. 123-129
-
-
Georgii, E.1
Richter, L.2
Ruckert, U.3
Kramer, S.4
-
38
-
-
27544478009
-
Advances in frequent itemset mining implementations: Introduction to FIMI03
-
B. Goethals and M.J. Zaki. Advances in frequent itemset mining implementations: Introduction to FIMI03. FIMI, volume 90, 2003.
-
(2003)
FIM
, vol.90
-
-
Goethals, B.1
Zaki, M.J.2
-
39
-
-
0036578654
-
Topological and causal structure of the yeast transcriptional regulatory network
-
N. Guelzim, S. Bottani, P. Bourgine, and F. Képès. Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet, 31:60-63, 2002.
-
(2002)
Nat Genet.
, vol.31
, pp. 60-63
-
-
Guelzim, N.1
Bottani, S.2
Bourgine, P.3
Képès, F.4
-
40
-
-
8844220454
-
Mining gene expression data for positive and negative co-regulated gene clusters
-
L. Ji and K. L. Tan. Mining gene expression data for positive and negative co-regulated gene clusters. Bioinformatics, 20:2711-2718, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 2711-2718
-
-
Ji, L.1
Tan, K.L.2
-
41
-
-
14644416505
-
Identifying time-lagged gene clusters using gene expression data
-
L. Ji and K. L. Tan. Identifying time-lagged gene clusters using gene expression data. Bioinformatics, 21:509-516, 2005.
-
(2005)
Bioinformatics
, vol.21
, pp. 509-516
-
-
Ji, L.1
Tan, K.L.2
-
42
-
-
0037174671
-
Transcriptional regulatory networks in Saccharomyces cerevisiae
-
T.I. Lee, N.J. Rinaldi, F. Robert, D.T. Odom, Z. Bar-Joseph, G.K. Gerber, N.M. Hannett, C.T. Harbison, C.M. Thompson, I. Simon, J. Zeitlinger, E.G. Jennings, H.L.Murray, D.B. Gordon, B. Ren, J.J. Wyrick, J.B. Tagne, T.L. Volkert, E. Fraenkel, D.K. Gifford, and R.A. Young. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298:799-804, 2002.
-
(2002)
Science
, vol.298
, pp. 799-804
-
-
Lee, T.I.1
Rinaldi, N.J.2
Robert, F.3
Odom, D.T.4
Bar-Joseph, Z.5
Gerber, G.K.6
Hannett, N.M.7
Harbison, C.T.8
Thompson, C.M.9
Simon, I.10
Zeitlinger, J.11
Jennings, E.G.12
Murray, H.L.13
Gordon, D.B.14
Ren, B.15
Wyrick, J.J.16
Tagne, J.B.17
Volkert, T.L.18
Fraenkel, E.19
Gifford, D.K.20
Young, R.A.21
more..
-
43
-
-
67449095889
-
Computational methods for discovering gene networks from expression data
-
W.P. Lee and W.S. Tzou. Computational methods for discovering gene networks from expression data. Brief Bioinformatics, 10:408-423, 2009.
-
(2009)
Brief Bioinformatics
, vol.10
, pp. 408-423
-
-
Lee, W.P.1
Tzou, W.S.2
-
44
-
-
33746082673
-
ining approximate frequent itemsets from noisy data
-
J. Liu, S. Paulsen,W.Wang, A. Nobel, and J. Prins.Mining approximate frequent itemsets from noisy data. Proceedings of the Fifth IEEE International Conference on Data Mining, IEEE Computer Society, Piscataway, NJ, 2005, 721-724.
-
(2005)
Proceedings of the Fifth IEEE International Conference on Data Mining, IEEE Computer Society, Piscataway, NJ
, pp. 721-724
-
-
Liu, J.1
Paulsen, S.2
Wang, W.3
Nobel, A.4
Prins, J.5
-
45
-
-
4644326931
-
Genomic analysis of regulatory network dynamics reveals large topological changes
-
N.M. Luscombe, M.M. Babu, H. Yu, M. Snyder, S.A. Teichmann, and M. Gerstein. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 431:308-312, 2004.
-
(2004)
Nature
, vol.431
, pp. 308-312
-
-
Luscombe, N.M.1
Babu, M.M.2
Yu, H.3
Snyder, M.4
Teichmann, S.A.5
Gerstein, M.6
-
46
-
-
21944442464
-
Levelwise search and borders of theories in knowledge discovery
-
H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discovery. Data Min Knowl Discov J, 1:241-258, 1997.
-
(1997)
Data Min Knowl Discov J.
, vol.1
, pp. 241-258
-
-
Mannila, H.1
Toivonen, H.2
-
47
-
-
38449088751
-
Inferring cellular networksa review
-
F. Markowetz and R. Spang. Inferring cellular networksa review. BMC Bioinformatics, 8 (Suppl 6):S5, 2007.
-
(2007)
BMC Bioinformatic
, vol.8
, Issue.SUPPL 6
-
-
Markowetz, F.1
Spang, R.2
-
48
-
-
36249019195
-
High confidence rule mining for microarray analysis
-
S. Chawla and T. McIntosh. High confidence rule mining for microarray analysis. IEEE/ACM Trans Comput Biol Bioinform, 4(4):611-623, 2007.
-
(2007)
IEEE/ACM Trans Comput Biol Bioinfor.
, vol.4
, Issue.4
, pp. 611-623
-
-
Chawla, S.1
McIntosh, T.2
-
49
-
-
14744275223
-
Predicting genetic regulatory response using classification
-
M. Middendorf, A. Kundaje, C. Wiggins, Y. Freund, and C. Leslie. Predicting genetic regulatory response using classification. Bioinformatics, 20:232-240, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 232-240
-
-
Middendorf, M.1
Kundaje, A.2
Wiggins, C.3
Freund, Y.4
Leslie, C.5
-
51
-
-
0032092760
-
Exploratory mining and pruning optimizations of constrained associations rules
-
R.T. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained associations rules. SIGMOD Rec, 27(2):13-24, 1998.
-
(1998)
SIGMOD Re.
, vol.27
, Issue.2
, pp. 13-24
-
-
Ng, R.T.1
Lakshmanan, L.V.S.2
Han, J.3
Pang, A.4
-
52
-
-
77952367051
-
Carpenter: Finding closed patterns in long biological datasets
-
F. Pan, G. Cong, A.K.H. Tung, J. Yang, and M.J. Zaki. Carpenter: Finding closed patterns in long biological datasets. KDD '03: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 637-642.
-
(2003)
KDD '03: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 637-642
-
-
Pan, Y.1
Cong, G.2
Tung, A.K.H.3
Yang, J.4
Zaki, M.J.5
-
53
-
-
1642309679
-
Pruning closed itemset lattices for association rules
-
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Pruning closed itemset lattices for association rules. Actes 14ème Conférence Bases de Donnes Avances (BDA'98), 1998, pp. 177-196.
-
(1998)
Actes 14ème Conférence Bases de Donnes Avances (BDA'98)
, pp. 177-196
-
-
Pasquier, N.1
Bastide, Y.2
Taouil, R.3
Lakhal, L.4
-
54
-
-
0018058024
-
On the connection between the complexity and credibility of inferred models
-
J. Pearl. On the connection between the complexity and credibility of inferred models. Int J Gen Syst, 4:255-264, 1978.
-
(1978)
Int J Gen Syst
, vol.4
, pp. 255-264
-
-
Pearl, J.1
-
55
-
-
11244318119
-
Minreg: Inferring an active regulator set
-
D. Pe'er, A. Regev, and A. Tanay. Minreg: Inferring an active regulator set. Bioinformatics, 18:258-267, 2002.
-
(2002)
Bioinformatics
, vol.18
, pp. 258-267
-
-
Pe'er, D.1
Regev, A.2
Tanay, A.3
-
56
-
-
26944497301
-
Assessment of discretization techniques for relevant pattern discovery from gene expression data
-
R.G. Pensa, C. Leschi, J. Besson, and J.F. Boulicaut. Assessment of discretization techniques for relevant pattern discovery from gene expression data. Proceedings of the 4th ACM SIGKDD Workshop on Data Mining in Bioinformatics BIOKDD'04, 2004, pp. 24-30.
-
(2004)
Proceedings of the 4th ACM SIGKDD Workshop on Data Mining in Bioinformatics BIOKDD'0
, pp. 24-30
-
-
Pensa, R.G.1
Leschi, C.2
Besson, J.3
Boulicaut, J.F.4
-
57
-
-
27544508635
-
Mining yeast transcriptional regulatory modules from factor dna-binding sites and gene expression data
-
T.H. Pham, K. Satou, and T.B. Ho. Mining yeast transcriptional regulatory modules from factor dna-binding sites and gene expression data. Genome Inform, 15:287-295, 2004.
-
(2004)
Genome Inform.
, vol.15
, pp. 287-295
-
-
Pham, T.H.1
Satou, K.2
Ho, T.B.3
-
58
-
-
0028806048
-
Quantitative monitoring of gene expression patterns with a complementary dna microarray
-
M. Schena, D. Shalon, R. Davis, and P. Brown. Quantitative monitoring of gene expression patterns with a complementary dna microarray. Science, 70:467-470, 1995.
-
(1995)
Science
, vol.70
, pp. 467-470
-
-
Schena, M.1
Shalon, D.2
Davis, R.3
Brown, P.4
-
59
-
-
0037941585
-
Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
-
E. Segal, M. Shapira, A. Regev, D. Pe'er, D. Botstein, D. Koller, and N. Friedman. Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet, 34:166-176, 2003.
-
(2003)
Nat Genet.
, vol.34
, pp. 166-176
-
-
Segal, E.1
Shapira, M.2
Regev, A.3
Pe'er, D.4
Botstein, D.5
Koller, D.6
Friedman, N.7
-
60
-
-
0000042837
-
Evaluating functional network inference using simulations of complex biological systems
-
V.A. Smith, E.D. Jarvis, and A.J. Hartemink. Evaluating functional network inference using simulations of complex biological systems. Bioinformatics, 18:216S-224S, 2002.
-
(2002)
Bioinformatic
, vol.18
-
-
Smith, V.A.1
Jarvis, E.D.2
Hartemink, A.J.3
-
62
-
-
1842505638
-
Constructing Bayesian network models of gene expression networks from microarray data
-
P. Spirtes, C. Glymour, R. Scheines, S. Kauffman, V. Aimale, and F. Wimberly. Constructing Bayesian network models of gene expression networks from microarray data. Proceedings of the Atlantic Symposium on Computational Biology, Genome Information Systems and Technology, 2000.
-
(2000)
Proceedings of the Atlantic Symposium on Computational Biology, Genome Information Systems and Technolog
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
Kauffman, S.4
Aimale, V.5
Wimberly, F.6
-
63
-
-
33644873184
-
BioGRID: A general repository for interaction datasets
-
C. Stark, B.J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, andM. Tyers. BioGRID: A general repository for interaction datasets. Nucleic Acids Res, 34:535-539, 2006.
-
(2006)
Nucleic Acids Res.
, vol.34
, pp. 535-539
-
-
Stark, C.1
Breitkreutz, B.J.2
Reguly, T.3
Boucher, L.4
Breitkreutz, A.5
Tyers, M.6
-
64
-
-
0042526388
-
The mutual information: Detecting and evaluating dependencies between variables
-
R. Steuer, J. Kurths, C.O. Daub, J. Weise, and J. Selbig. The mutual information: Detecting and evaluating dependencies between variables. Bioinformatics, S18:231-240, 2002.
-
(2002)
Bioinformatic
, vol.S18
, pp. 231-240
-
-
Steuer, R.1
Kurths, J.2
Daub, C.O.3
Weise, J.4
Selbig, J.5
-
65
-
-
33644873683
-
The YEASTRACT database: A tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae
-
M.C. Teixeira, P. Monteiro, P. Jain, S. Tenreiro, A.R. Fernandes, N.P. Mira, M. Alenquer, A.T. Freitas, A.L. Oliveira, and I. Sa-Correia. The YEASTRACT database: A tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res, 34:446-451, 2006.
-
(2006)
Nucleic Acids Res.
, vol.34
, pp. 446-451
-
-
Teixeira, M.C.1
Monteiro, P.2
Jain, P.3
Tenreiro, S.4
Fernandes, A.R.5
Mira, N.P.6
Alenquer, M.7
Freitas, A.T.8
Oliveira, A.L.9
Sa-Correia, I.10
-
66
-
-
0001831521
-
Functional models for regression tree leaves
-
L. Torgo. Functional models for regression tree leaves. Proceedings of the 14th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA, 1997, pp. 385-393.
-
(1997)
Proceedings of the 14th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA
, pp. 385-393
-
-
Torgo, L.1
-
67
-
-
38349030979
-
Inferring transcriptional interactions and regulator activities from experimental data
-
R.S. Wang, X.S. Zhang, and L. Chen. Inferring transcriptional interactions and regulator activities from experimental data. Mol Cells, 24:307-15, 2007.
-
(2007)
Mol Cells.
, vol.24
, pp. 307-15
-
-
Wang, R.S.1
Zhang, X.S.2
Chen, L.3
-
68
-
-
45149087505
-
Experiments on the accuracy of algorithms for inferring the structure of genetic regulatory networks from microarray expression levels
-
F.C. Wimberly, T. Heiman, J. Ramsey, and C. Glymour. Experiments on the accuracy of algorithms for inferring the structure of genetic regulatory networks from microarray expression levels. Proceedings of the IJCAI 2003 Bioinformatics Workshop, 2003.
-
(2003)
Proceedings of the IJCAI 2003 Bioinformatics Workshop
-
-
Wimberly, F.C.1
Heiman, T.2
Ramsey, J.3
Glymour, C.4
|