메뉴 건너뛰기




Volumn 97, Issue 1, 2011, Pages 7-18

A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks

Author keywords

Computational methods; Evaluation; Gene expression microarray analysis; Regulatory network de novo reverse engineering

Indexed keywords

ALGORITHM; ARTICLE; AUTOMATION; DATA ANALYSIS; DE NOVO REVERSE ENGINEERING; ENGINEERING; GENE REGULATORY NETWORK; METHODOLOGY; PRIORITY JOURNAL; STATISTICAL ANALYSIS;

EID: 78650773077     PISSN: 08887543     EISSN: 10898646     Source Type: Journal    
DOI: 10.1016/j.ygeno.2010.10.003     Document Type: Article
Times cited : (33)

References (48)
  • 2
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and Markov blanket induction for causal discovery and feature selection for classification: Part I. Algorithms and empirical evaluation
    • Aliferis C.F., Statnikov A., Tsamardinos I., Mani S., Koutsoukos X.D. Local causal and Markov blanket induction for causal discovery and feature selection for classification: Part I. Algorithms and empirical evaluation. J. Mach. Learn. Res. 2010, 11:171-234.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 171-234
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 3
    • 76749122843 scopus 로고    scopus 로고
    • Local causal and Markov blanket induction for causal discovery and feature selection for classification: Part II. Analysis and extensions
    • Aliferis C.F., Statnikov A., Tsamardinos I., Mani S., Koutsoukos X.D. Local causal and Markov blanket induction for causal discovery and feature selection for classification: Part II. Analysis and extensions. J. Mach. Learn. Res. 2010, 11:235-284.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 235-284
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 10
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements
    • Butte A.J., Kohane I.S. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput. 2000, 418-429.
    • (2000) Pac. Symp. Biocomput. , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 11
    • 67649786082 scopus 로고    scopus 로고
    • Towards the automated engineering of a synthetic genome
    • Carrera J., Rodrigo G., Jaramillo A. Towards the automated engineering of a synthetic genome. Mol. Biosyst. 2009, 5:733-743.
    • (2009) Mol. Biosyst. , vol.5 , pp. 733-743
    • Carrera, J.1    Rodrigo, G.2    Jaramillo, A.3
  • 12
    • 33845523872 scopus 로고    scopus 로고
    • A robust procedure for Gaussian graphical model search from microarray data with p larger than n
    • Castelo R., Roverato A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. J. Mach. Learn. Res. 2006, 7:2650.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2650
    • Castelo, R.1    Roverato, A.2
  • 13
    • 59649121280 scopus 로고    scopus 로고
    • Reverse engineering molecular regulatory networks from microarray data with qp-graphs
    • Castelo R., Roverato A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. J. Comput. Biol. 2009, 16:213-227.
    • (2009) J. Comput. Biol. , vol.16 , pp. 213-227
    • Castelo, R.1    Roverato, A.2
  • 14
    • 33646107783 scopus 로고    scopus 로고
    • Large-sample learning of Bayesian networks is NP-hard
    • Chickering D.M., Heckerman D., Meek C. Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res. 2004, 5:1287-1330.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1287-1330
    • Chickering, D.M.1    Heckerman, D.2    Meek, C.3
  • 15
    • 0037715339 scopus 로고    scopus 로고
    • A statistical problem for inference to regulatory structure from associations of gene expression measurements with microarrays
    • Chu T., Glymour C., Scheines R., Spirtes P. A statistical problem for inference to regulatory structure from associations of gene expression measurements with microarrays. Bioinformatics 2003, 19:1147-1152.
    • (2003) Bioinformatics , vol.19 , pp. 1147-1152
    • Chu, T.1    Glymour, C.2    Scheines, R.3    Spirtes, P.4
  • 17
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
    • DeLong E.R., DeLong D.M., Clarke-Pearson D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988, 44:837-845.
    • (1988) Biometrics , vol.44 , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 23
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J., Hastie T., Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008, 9:432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 26
  • 27
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • Hand D.J., Till R.J. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 2001, 45:171-186.
    • (2001) Mach. Learn. , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 29
    • 69849104130 scopus 로고    scopus 로고
    • The impact of incomplete knowledge on evaluation: an experimental benchmark for protein function prediction
    • Huttenhower C., Hibbs M.A., Myers C.L., Caudy A.A., Hess D.C., Troyanskaya O.G. The impact of incomplete knowledge on evaluation: an experimental benchmark for protein function prediction. Bioinformatics 2009, 25:2404-2410.
    • (2009) Bioinformatics , vol.25 , pp. 2404-2410
    • Huttenhower, C.1    Hibbs, M.A.2    Myers, C.L.3    Caudy, A.A.4    Hess, D.C.5    Troyanskaya, O.G.6
  • 35
    • 59649110273 scopus 로고    scopus 로고
    • Generating realistic in silico gene networks for performance assessment of reverse engineering methods
    • Marbach D., Schaffter T., Mattiussi C., Floreano D. Generating realistic in silico gene networks for performance assessment of reverse engineering methods. J. Comput. Biol. 2009, 16:229-239.
    • (2009) J. Comput. Biol. , vol.16 , pp. 229-239
    • Marbach, D.1    Schaffter, T.2    Mattiussi, C.3    Floreano, D.4
  • 37
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinshausen N., Buhlmann P. High-dimensional graphs and variable selection with the lasso. Ann. Stat. 2006, 34:1436-1462.
    • (2006) Ann. Stat. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 38
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
    • Opgen-Rhein R., Strimmer K. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol. 2007, 1:37.
    • (2007) BMC Syst. Biol. , vol.1 , pp. 37
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 41
    • 61449181084 scopus 로고    scopus 로고
    • Fast calculation of pairwise mutual information for gene regulatory network reconstruction
    • Qiu P., Gentles A.J., Plevritis S.K. Fast calculation of pairwise mutual information for gene regulatory network reconstruction. Comput. Meth. Programs Biomed. 2009, 94:177-180.
    • (2009) Comput. Meth. Programs Biomed. , vol.94 , pp. 177-180
    • Qiu, P.1    Gentles, A.J.2    Plevritis, S.K.3
  • 42
    • 20044396570 scopus 로고    scopus 로고
    • Integrative analysis of the cancer transcriptome
    • Rhodes D.R., Chinnaiyan A.M. Integrative analysis of the cancer transcriptome. Nat. Genet. 2005, 37(Suppl):S31-S37.
    • (2005) Nat. Genet. , vol.37 , Issue.SUPPL
    • Rhodes, D.R.1    Chinnaiyan, A.M.2
  • 44
    • 77955493761 scopus 로고    scopus 로고
    • Analysis and computational dissection of molecular signature multiplicity
    • Statnikov A., Aliferis C.F. Analysis and computational dissection of molecular signature multiplicity. PLoS Computational Biol. 2010, 6:e1000790.
    • (2010) PLoS Computational Biol. , vol.6
    • Statnikov, A.1    Aliferis, C.F.2
  • 45
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference
    • Stolovitzky G., Monroe D., Califano A. Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann. N.Y. Acad. Sci. 2007, 1115:1-22.
    • (2007) Ann. N.Y. Acad. Sci. , vol.1115 , pp. 1-22
    • Stolovitzky, G.1    Monroe, D.2    Califano, A.3
  • 48
    • 63849257557 scopus 로고    scopus 로고
    • Inference of regulatory gene interactions from expression data using three-way mutual information
    • Watkinson J., Liang K.C., Wang X., Zheng T., Anastassiou D. Inference of regulatory gene interactions from expression data using three-way mutual information. Ann. N.Y. Acad. Sci. 2009, 1158:302-313.
    • (2009) Ann. N.Y. Acad. Sci. , vol.1158 , pp. 302-313
    • Watkinson, J.1    Liang, K.C.2    Wang, X.3    Zheng, T.4    Anastassiou, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.