메뉴 건너뛰기




Volumn 14, Issue 4, 2016, Pages 235-243

Comparison of Cox Model Methods in A Low-dimensional Setting with Few Events

Author keywords

Coronary artery disease; Events per variable; Penalized regression; Proportional hazards regression

Indexed keywords

C REACTIVE PROTEIN; CREATININE; HIGH DENSITY LIPOPROTEIN CHOLESTEROL; LOW DENSITY LIPOPROTEIN CHOLESTEROL; BIOLOGICAL MARKER;

EID: 84975140559     PISSN: 16720229     EISSN: 22103244     Source Type: Journal    
DOI: 10.1016/j.gpb.2016.03.006     Document Type: Article
Times cited : (19)

References (30)
  • 1
    • 67650022801 scopus 로고    scopus 로고
    • Prognosis and prognostic research: what, why, and how?
    • [1] Moons, K., Royston, P., Vergouwe, Y., Grobbee, D., Altman, D., Prognosis and prognostic research: what, why, and how?. BMJ, 338, 2009, b375.
    • (2009) BMJ , vol.338 , pp. b375
    • Moons, K.1    Royston, P.2    Vergouwe, Y.3    Grobbee, D.4    Altman, D.5
  • 2
    • 0003570192 scopus 로고    scopus 로고
    • Modeling survival data: extending the Cox model
    • Springer Science & Business Media New York
    • [2] Therneau, T.M., Grambsch, P.M., Modeling survival data: extending the Cox model. 2000, Springer Science & Business Media, New York.
    • (2000)
    • Therneau, T.M.1    Grambsch, P.M.2
  • 3
    • 0029613841 scopus 로고
    • Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates
    • [3] Peduzzi, P., Concato, J., Feinstein, A.R., Holford, T.R., Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. J Clin Epidemiol 48 (1995), 1503–1510.
    • (1995) J Clin Epidemiol , vol.48 , pp. 1503-1510
    • Peduzzi, P.1    Concato, J.2    Feinstein, A.R.3    Holford, T.R.4
  • 4
    • 0003732572 scopus 로고    scopus 로고
    • Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis
    • Springer Science & Business Media New York
    • [4] Harrell, F.E., Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. 2015, Springer Science & Business Media, New York.
    • (2015)
    • Harrell, F.E.1
  • 5
    • 84872012577 scopus 로고    scopus 로고
    • Degrees of freedom in lasso problems
    • [5] Tibshirani, R., Taylor, J., Degrees of freedom in lasso problems. Ann Stat 40 (2012), 1198–1232.
    • (2012) Ann Stat , vol.40 , pp. 1198-1232
    • Tibshirani, R.1    Taylor, J.2
  • 6
    • 0028572354 scopus 로고
    • Penalized likelihood in Cox regression
    • [6] Verweij, P.J.M., van Houwelingen, H.C., Penalized likelihood in Cox regression. Stat Med 13 (1994), 2427–2436.
    • (1994) Stat Med , vol.13 , pp. 2427-2436
    • Verweij, P.J.M.1    van Houwelingen, H.C.2
  • 7
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • [7] Tibshirani, R., The lasso method for variable selection in the Cox model. Stat Med 16 (1997), 385–395.
    • (1997) Stat Med , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 8
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • [8] Zou, H., Hastie, T., Regularization and variable selection via the elastic net. J R Stat Soc Ser B 67 (2005), 301–320.
    • (2005) J R Stat Soc Ser B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 9
    • 67651009834 scopus 로고    scopus 로고
    • Clinical prediction models: a practical approach to development, validation, and updating
    • Springer Science & Business Media New York
    • [9] Steyerberg, E., Clinical prediction models: a practical approach to development, validation, and updating. 2009, Springer Science & Business Media, New York.
    • (2009)
    • Steyerberg, E.1
  • 10
    • 78650367767 scopus 로고    scopus 로고
    • Multiple marker approach to risk stratification in patients with stable coronary artery disease
    • [10] Schnabel, R.B., Schulz, A., Messow, C.M., Lubos, E., Wild, P.S., Zeller, T., et al. Multiple marker approach to risk stratification in patients with stable coronary artery disease. Eur Heart J 31 (2010), 3024–3031.
    • (2010) Eur Heart J , vol.31 , pp. 3024-3031
    • Schnabel, R.B.1    Schulz, A.2    Messow, C.M.3    Lubos, E.4    Wild, P.S.5    Zeller, T.6
  • 11
    • 84942987885 scopus 로고    scopus 로고
    • A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease
    • [11] CARDIoGRAMplusC4D Consortium, A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 47 (2015), 1121–1130.
    • (2015) Nat Genet , vol.47 , pp. 1121-1130
    • CARDIoGRAMplusC4D Consortium1
  • 12
    • 79954466848 scopus 로고    scopus 로고
    • On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data
    • [12] Uno, H., Cai, T., Pencina, M.J., D'Agostino, R.B., Wei, L.J., On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med 30 (2011), 1105–1117.
    • (2011) Stat Med , vol.30 , pp. 1105-1117
    • Uno, H.1    Cai, T.2    Pencina, M.J.3    D'Agostino, R.B.4    Wei, L.J.5
  • 13
    • 3242770671 scopus 로고    scopus 로고
    • Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation
    • [13] Pencina, M., D'Agostino, R., Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat Med 23 (2004), 2109–2123.
    • (2004) Stat Med , vol.23 , pp. 2109-2123
    • Pencina, M.1    D'Agostino, R.2
  • 14
    • 84861193203 scopus 로고    scopus 로고
    • An evaluation of penalised survival methods for developing prognostic models with rare events
    • [14] Ambler, G., Seaman, S., Omar, R.Z., An evaluation of penalised survival methods for developing prognostic models with rare events. Stat Med 31 (2012), 1150–1161.
    • (2012) Stat Med , vol.31 , pp. 1150-1161
    • Ambler, G.1    Seaman, S.2    Omar, R.Z.3
  • 15
    • 77953325160 scopus 로고    scopus 로고
    • Sparse regression techniques in low-dimensional survival data settings
    • [15] Porzelius, C., Schumacher, M., Binder, H., Sparse regression techniques in low-dimensional survival data settings. Stat Comput 20 (2009), 151–163.
    • (2009) Stat Comput , vol.20 , pp. 151-163
    • Porzelius, C.1    Schumacher, M.2    Binder, H.3
  • 16
    • 77952566299 scopus 로고    scopus 로고
    • High-dimensional Cox models: the choice of penalty as part of the model building process
    • [16] Benner, A., Zucknick, M., Hielscher, T., Ittrich, C., Mansmann, U., High-dimensional Cox models: the choice of penalty as part of the model building process. Biom J 52 (2010), 50–69.
    • (2010) Biom J , vol.52 , pp. 50-69
    • Benner, A.1    Zucknick, M.2    Hielscher, T.3    Ittrich, C.4    Mansmann, U.5
  • 17
    • 0035530911 scopus 로고    scopus 로고
    • Application of shrinkage techniques in logistic regression analysis: a case study
    • [17] Steyerberg, E., Eijkemans, M., Habbema, J., Application of shrinkage techniques in logistic regression analysis: a case study. Stat Neerl 55 (2001), 76–88.
    • (2001) Stat Neerl , vol.55 , pp. 76-88
    • Steyerberg, E.1    Eijkemans, M.2    Habbema, J.3
  • 18
    • 84878248081 scopus 로고    scopus 로고
    • Shrinkage methods enhanced the accuracy of parameter estimation using Cox models with small number of events
    • [18] Lin, I.F., Chang, W.P., Liao, Y.-N., Shrinkage methods enhanced the accuracy of parameter estimation using Cox models with small number of events. J Clin Epidemiol 66 (2013), 743–751.
    • (2013) J Clin Epidemiol , vol.66 , pp. 743-751
    • Lin, I.F.1    Chang, W.P.2    Liao, Y.-N.3
  • 19
    • 0035099124 scopus 로고    scopus 로고
    • A solution to the problem of monotone likelihood in Cox regression
    • [19] Heinze, G., Schemper, M., A solution to the problem of monotone likelihood in Cox regression. Biometrics, 2001, 114–119.
    • (2001) Biometrics , pp. 114-119
    • Heinze, G.1    Schemper, M.2
  • 21
    • 0345832338 scopus 로고    scopus 로고
    • A global test for groups of genes: testing association with a clinical outcome
    • [21] Goeman, J.J., Van De Geer, S.A., De Kort, F., Van Houwelingen, H.C., A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20 (2004), 93–99.
    • (2004) Bioinformatics , vol.20 , pp. 93-99
    • Goeman, J.J.1    Van De Geer, S.A.2    De Kort, F.3    Van Houwelingen, H.C.4
  • 23
    • 78649508578 scopus 로고    scopus 로고
    • MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes
    • [23] Li, Y., Willer, C.J., Ding, J., Scheet, P., Abecasis, G.R., MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34 (2010), 816–834.
    • (2010) Genet Epidemiol , vol.34 , pp. 816-834
    • Li, Y.1    Willer, C.J.2    Ding, J.3    Scheet, P.4    Abecasis, G.R.5
  • 24
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • [24] Bender, R., Augustin, T., Blettner, M., Generating survival times to simulate Cox proportional hazards models. Stat Med 24 (2005), 1713–1723.
    • (2005) Stat Med , vol.24 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 25
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • [25] Friedman, J., Hastie, T., Tibshirani, R., Regularization paths for generalized linear models via coordinate descent. J Stat Software, 33, 2010, 1.
    • (2010) J Stat Software , vol.33 , pp. 1
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 26
    • 79952934063 scopus 로고    scopus 로고
    • Regularization paths for Cox's proportional hazards model via coordinate descent
    • [26] Simon, N., Friedman, J., Hastie, T., Tibshirani, R., Regularization paths for Cox's proportional hazards model via coordinate descent. J Stat Software 39 (2011), 1–13.
    • (2011) J Stat Software , vol.39 , pp. 1-13
    • Simon, N.1    Friedman, J.2    Hastie, T.3    Tibshirani, R.4
  • 27
    • 0027765563 scopus 로고
    • Cross-validation in survival analysis
    • [27] Verweij, P.J.M., Van Houwelingen, H.C., Cross-validation in survival analysis. Stat Med 12 (1993), 2305–2314.
    • (1993) Stat Med , vol.12 , pp. 2305-2314
    • Verweij, P.J.M.1    Van Houwelingen, H.C.2
  • 28
    • 0001138328 scopus 로고
    • Algorithm AS 136: a k-means clustering algorithm
    • [28] Hartigan, J.A., Wong, M.A., Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc Ser C 28 (1979), 100–108.
    • (1979) J R Stat Soc Ser C , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 29
    • 0002282074 scopus 로고
    • A new measure of rank correlation
    • [29] Kendall, M.G., A new measure of rank correlation. Biometrika 30 (1938), 81–93.
    • (1938) Biometrika , vol.30 , pp. 81-93
    • Kendall, M.G.1
  • 30
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: improvement on cross-validation
    • [30] Efron, B., Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 78 (1983), 316–331.
    • (1983) J Am Stat Assoc , vol.78 , pp. 316-331
    • Efron, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.