-
1
-
-
67650022801
-
Prognosis and prognostic research: what, why, and how?
-
[1] Moons, K., Royston, P., Vergouwe, Y., Grobbee, D., Altman, D., Prognosis and prognostic research: what, why, and how?. BMJ, 338, 2009, b375.
-
(2009)
BMJ
, vol.338
, pp. b375
-
-
Moons, K.1
Royston, P.2
Vergouwe, Y.3
Grobbee, D.4
Altman, D.5
-
2
-
-
0003570192
-
Modeling survival data: extending the Cox model
-
Springer Science & Business Media New York
-
[2] Therneau, T.M., Grambsch, P.M., Modeling survival data: extending the Cox model. 2000, Springer Science & Business Media, New York.
-
(2000)
-
-
Therneau, T.M.1
Grambsch, P.M.2
-
3
-
-
0029613841
-
Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates
-
[3] Peduzzi, P., Concato, J., Feinstein, A.R., Holford, T.R., Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. J Clin Epidemiol 48 (1995), 1503–1510.
-
(1995)
J Clin Epidemiol
, vol.48
, pp. 1503-1510
-
-
Peduzzi, P.1
Concato, J.2
Feinstein, A.R.3
Holford, T.R.4
-
4
-
-
0003732572
-
Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis
-
Springer Science & Business Media New York
-
[4] Harrell, F.E., Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. 2015, Springer Science & Business Media, New York.
-
(2015)
-
-
Harrell, F.E.1
-
5
-
-
84872012577
-
Degrees of freedom in lasso problems
-
[5] Tibshirani, R., Taylor, J., Degrees of freedom in lasso problems. Ann Stat 40 (2012), 1198–1232.
-
(2012)
Ann Stat
, vol.40
, pp. 1198-1232
-
-
Tibshirani, R.1
Taylor, J.2
-
6
-
-
0028572354
-
Penalized likelihood in Cox regression
-
[6] Verweij, P.J.M., van Houwelingen, H.C., Penalized likelihood in Cox regression. Stat Med 13 (1994), 2427–2436.
-
(1994)
Stat Med
, vol.13
, pp. 2427-2436
-
-
Verweij, P.J.M.1
van Houwelingen, H.C.2
-
7
-
-
0031015557
-
The lasso method for variable selection in the Cox model
-
[7] Tibshirani, R., The lasso method for variable selection in the Cox model. Stat Med 16 (1997), 385–395.
-
(1997)
Stat Med
, vol.16
, pp. 385-395
-
-
Tibshirani, R.1
-
8
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
[8] Zou, H., Hastie, T., Regularization and variable selection via the elastic net. J R Stat Soc Ser B 67 (2005), 301–320.
-
(2005)
J R Stat Soc Ser B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
9
-
-
67651009834
-
Clinical prediction models: a practical approach to development, validation, and updating
-
Springer Science & Business Media New York
-
[9] Steyerberg, E., Clinical prediction models: a practical approach to development, validation, and updating. 2009, Springer Science & Business Media, New York.
-
(2009)
-
-
Steyerberg, E.1
-
10
-
-
78650367767
-
Multiple marker approach to risk stratification in patients with stable coronary artery disease
-
[10] Schnabel, R.B., Schulz, A., Messow, C.M., Lubos, E., Wild, P.S., Zeller, T., et al. Multiple marker approach to risk stratification in patients with stable coronary artery disease. Eur Heart J 31 (2010), 3024–3031.
-
(2010)
Eur Heart J
, vol.31
, pp. 3024-3031
-
-
Schnabel, R.B.1
Schulz, A.2
Messow, C.M.3
Lubos, E.4
Wild, P.S.5
Zeller, T.6
-
11
-
-
84942987885
-
A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease
-
[11] CARDIoGRAMplusC4D Consortium, A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 47 (2015), 1121–1130.
-
(2015)
Nat Genet
, vol.47
, pp. 1121-1130
-
-
CARDIoGRAMplusC4D Consortium1
-
12
-
-
79954466848
-
On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data
-
[12] Uno, H., Cai, T., Pencina, M.J., D'Agostino, R.B., Wei, L.J., On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med 30 (2011), 1105–1117.
-
(2011)
Stat Med
, vol.30
, pp. 1105-1117
-
-
Uno, H.1
Cai, T.2
Pencina, M.J.3
D'Agostino, R.B.4
Wei, L.J.5
-
13
-
-
3242770671
-
Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation
-
[13] Pencina, M., D'Agostino, R., Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat Med 23 (2004), 2109–2123.
-
(2004)
Stat Med
, vol.23
, pp. 2109-2123
-
-
Pencina, M.1
D'Agostino, R.2
-
14
-
-
84861193203
-
An evaluation of penalised survival methods for developing prognostic models with rare events
-
[14] Ambler, G., Seaman, S., Omar, R.Z., An evaluation of penalised survival methods for developing prognostic models with rare events. Stat Med 31 (2012), 1150–1161.
-
(2012)
Stat Med
, vol.31
, pp. 1150-1161
-
-
Ambler, G.1
Seaman, S.2
Omar, R.Z.3
-
15
-
-
77953325160
-
Sparse regression techniques in low-dimensional survival data settings
-
[15] Porzelius, C., Schumacher, M., Binder, H., Sparse regression techniques in low-dimensional survival data settings. Stat Comput 20 (2009), 151–163.
-
(2009)
Stat Comput
, vol.20
, pp. 151-163
-
-
Porzelius, C.1
Schumacher, M.2
Binder, H.3
-
16
-
-
77952566299
-
High-dimensional Cox models: the choice of penalty as part of the model building process
-
[16] Benner, A., Zucknick, M., Hielscher, T., Ittrich, C., Mansmann, U., High-dimensional Cox models: the choice of penalty as part of the model building process. Biom J 52 (2010), 50–69.
-
(2010)
Biom J
, vol.52
, pp. 50-69
-
-
Benner, A.1
Zucknick, M.2
Hielscher, T.3
Ittrich, C.4
Mansmann, U.5
-
17
-
-
0035530911
-
Application of shrinkage techniques in logistic regression analysis: a case study
-
[17] Steyerberg, E., Eijkemans, M., Habbema, J., Application of shrinkage techniques in logistic regression analysis: a case study. Stat Neerl 55 (2001), 76–88.
-
(2001)
Stat Neerl
, vol.55
, pp. 76-88
-
-
Steyerberg, E.1
Eijkemans, M.2
Habbema, J.3
-
18
-
-
84878248081
-
Shrinkage methods enhanced the accuracy of parameter estimation using Cox models with small number of events
-
[18] Lin, I.F., Chang, W.P., Liao, Y.-N., Shrinkage methods enhanced the accuracy of parameter estimation using Cox models with small number of events. J Clin Epidemiol 66 (2013), 743–751.
-
(2013)
J Clin Epidemiol
, vol.66
, pp. 743-751
-
-
Lin, I.F.1
Chang, W.P.2
Liao, Y.-N.3
-
19
-
-
0035099124
-
A solution to the problem of monotone likelihood in Cox regression
-
[19] Heinze, G., Schemper, M., A solution to the problem of monotone likelihood in Cox regression. Biometrics, 2001, 114–119.
-
(2001)
Biometrics
, pp. 114-119
-
-
Heinze, G.1
Schemper, M.2
-
20
-
-
33748631068
-
Cross-validated Cox regression on microarray gene expression data
-
[20] Van Houwelingen, H.C., Bruinsma, T., Hart, A.A.M., Van't Veer, L.J., Wessels, L.F.A., Cross-validated Cox regression on microarray gene expression data. Stat Med 25 (2006), 3201–3216.
-
(2006)
Stat Med
, vol.25
, pp. 3201-3216
-
-
Van Houwelingen, H.C.1
Bruinsma, T.2
Hart, A.A.M.3
Van't Veer, L.J.4
Wessels, L.F.A.5
-
21
-
-
0345832338
-
A global test for groups of genes: testing association with a clinical outcome
-
[21] Goeman, J.J., Van De Geer, S.A., De Kort, F., Van Houwelingen, H.C., A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20 (2004), 93–99.
-
(2004)
Bioinformatics
, vol.20
, pp. 93-99
-
-
Goeman, J.J.1
Van De Geer, S.A.2
De Kort, F.3
Van Houwelingen, H.C.4
-
22
-
-
57449111248
-
Random survival forests
-
[22] Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S., Random survival forests. Ann Appl Stat, 2008, 841–860.
-
(2008)
Ann Appl Stat
, pp. 841-860
-
-
Ishwaran, H.1
Kogalur, U.B.2
Blackstone, E.H.3
Lauer, M.S.4
-
23
-
-
78649508578
-
MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes
-
[23] Li, Y., Willer, C.J., Ding, J., Scheet, P., Abecasis, G.R., MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34 (2010), 816–834.
-
(2010)
Genet Epidemiol
, vol.34
, pp. 816-834
-
-
Li, Y.1
Willer, C.J.2
Ding, J.3
Scheet, P.4
Abecasis, G.R.5
-
24
-
-
19944372078
-
Generating survival times to simulate Cox proportional hazards models
-
[24] Bender, R., Augustin, T., Blettner, M., Generating survival times to simulate Cox proportional hazards models. Stat Med 24 (2005), 1713–1723.
-
(2005)
Stat Med
, vol.24
, pp. 1713-1723
-
-
Bender, R.1
Augustin, T.2
Blettner, M.3
-
25
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
[25] Friedman, J., Hastie, T., Tibshirani, R., Regularization paths for generalized linear models via coordinate descent. J Stat Software, 33, 2010, 1.
-
(2010)
J Stat Software
, vol.33
, pp. 1
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
26
-
-
79952934063
-
Regularization paths for Cox's proportional hazards model via coordinate descent
-
[26] Simon, N., Friedman, J., Hastie, T., Tibshirani, R., Regularization paths for Cox's proportional hazards model via coordinate descent. J Stat Software 39 (2011), 1–13.
-
(2011)
J Stat Software
, vol.39
, pp. 1-13
-
-
Simon, N.1
Friedman, J.2
Hastie, T.3
Tibshirani, R.4
-
27
-
-
0027765563
-
Cross-validation in survival analysis
-
[27] Verweij, P.J.M., Van Houwelingen, H.C., Cross-validation in survival analysis. Stat Med 12 (1993), 2305–2314.
-
(1993)
Stat Med
, vol.12
, pp. 2305-2314
-
-
Verweij, P.J.M.1
Van Houwelingen, H.C.2
-
28
-
-
0001138328
-
Algorithm AS 136: a k-means clustering algorithm
-
[28] Hartigan, J.A., Wong, M.A., Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc Ser C 28 (1979), 100–108.
-
(1979)
J R Stat Soc Ser C
, vol.28
, pp. 100-108
-
-
Hartigan, J.A.1
Wong, M.A.2
-
29
-
-
0002282074
-
A new measure of rank correlation
-
[29] Kendall, M.G., A new measure of rank correlation. Biometrika 30 (1938), 81–93.
-
(1938)
Biometrika
, vol.30
, pp. 81-93
-
-
Kendall, M.G.1
-
30
-
-
84950461478
-
Estimating the error rate of a prediction rule: improvement on cross-validation
-
[30] Efron, B., Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 78 (1983), 316–331.
-
(1983)
J Am Stat Assoc
, vol.78
, pp. 316-331
-
-
Efron, B.1
|