메뉴 건너뛰기




Volumn 9, Issue 6, 2016, Pages

Unleashing the Potential of Machine-Based Learning for the Diagnosis of Cardiac Diseases

Author keywords

cardiomyopathy; cardiovascular disease; constrictive pericarditis; diastolic dysfunction cardiomyopathy; Editorials; pericarditis

Indexed keywords

ALGORITHM; ASSOCIATIVE MEMORY; ASSOCIATIVE MEMORY CLASSIFIER; CLASSIFIER; CONSTRICTIVE PERICARDITIS; ECHOCARDIOGRAPHY; EDITORIAL; HEART CATHETERIZATION; HEART DISEASE; HEART FUNCTION; HUMAN; MACHINE LEARNING; PRIORITY JOURNAL; RESTRICTIVE CARDIOMYOPATHY; DIFFERENTIAL DIAGNOSIS;

EID: 84975822149     PISSN: 19419651     EISSN: 19420080     Source Type: Journal    
DOI: 10.1161/CIRCIMAGING.116.005059     Document Type: Editorial
Times cited : (3)

References (2)
  • 1
    • 84975795358 scopus 로고    scopus 로고
    • Cognitive machine-learning algorithm for cardiac imaging: A pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy
    • Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, Gall W, Dudley JT. Cognitive machine-learning algorithm for cardiac imaging: A pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging. 2016;9:e004330. doi: 10.1161/CIRCIMAGING.115.004330.
    • (2016) Circ Cardiovasc Imaging. , vol.9 , pp. e004330
    • Sengupta, P.P.1    Huang, Y.M.2    Bansal, M.3    Ashrafi, A.4    Fisher, M.5    Shameer, K.6    Gall, W.7    Dudley, J.T.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.