-
1
-
-
84880255073
-
Prediction intervals for short-term wind farm power generation forecasts
-
Khosravi, A., Nahavandi, S., Creighton, D., Prediction intervals for short-term wind farm power generation forecasts. IEEE Trans. Sustain. Energy 4:3 (2013), 602–610.
-
(2013)
IEEE Trans. Sustain. Energy
, vol.4
, Issue.3
, pp. 602-610
-
-
Khosravi, A.1
Nahavandi, S.2
Creighton, D.3
-
2
-
-
23244436323
-
Renewable and Efficient Electric Power Systems
-
A John Wiley & Sons, INC., Publications
-
Masters, G.M., Renewable and Efficient Electric Power Systems. 2004, A John Wiley & Sons, INC., Publications.
-
(2004)
-
-
Masters, G.M.1
-
3
-
-
84903179799
-
Closure to the discussion of “prediction intervals for short-term wind farm generation forecasts” and “combined nonparametric prediction intervals for wind power generation” and the discussion of “combined nonparametric prediction intervals for wind power generation
-
Khosravi, A., Nahavandi, S., Closure to the discussion of “prediction intervals for short-term wind farm generation forecasts” and “combined nonparametric prediction intervals for wind power generation” and the discussion of “combined nonparametric prediction intervals for wind power generation. IEEE Trans. Sustain. Energy 5:3 (2014), 1022–1023.
-
(2014)
IEEE Trans. Sustain. Energy
, vol.5
, Issue.3
, pp. 1022-1023
-
-
Khosravi, A.1
Nahavandi, S.2
-
4
-
-
85019740878
-
“Short-term wind power forecasting and uncertainty analysis using a hybrid intelligent method
-
Huang, C.M., Kuo, C.J., Huang, Y.C., “Short-term wind power forecasting and uncertainty analysis using a hybrid intelligent method. IET Renew. Power Gener. 11:5 (2017), 678–687.
-
(2017)
IET Renew. Power Gener.
, vol.11
, Issue.5
, pp. 678-687
-
-
Huang, C.M.1
Kuo, C.J.2
Huang, Y.C.3
-
5
-
-
84939816629
-
Incorporating wind power forecast uncertainties into stochastic unit commitment using neural network-based prediction intervals
-
Quan, H., Srinivasan, D., Khosravi, A., Incorporating wind power forecast uncertainties into stochastic unit commitment using neural network-based prediction intervals. IEEE Trans. Neural Netw. Learn. Syst. 26:9 (2015), 2123–2135.
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, Issue.9
, pp. 2123-2135
-
-
Quan, H.1
Srinivasan, D.2
Khosravi, A.3
-
6
-
-
84908376968
-
“Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information,” Renewable Energy
-
Osório, G.J., Matias, J.C.O., Catalão, J.P.S., “Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information,” Renewable Energy,., 75(Supplement C), 2015, 301–307.
-
(2015)
, vol.75
, pp. 301-307
-
-
Osório, G.J.1
Matias, J.C.O.2
Catalão, J.P.S.3
-
7
-
-
84951787309
-
Machine learning ensembles for wind power prediction
-
Heinermann, J., Kramer, O., Machine learning ensembles for wind power prediction. Renew. Energy 89:Supplement C (2016), 671–679.
-
(2016)
Renew. Energy
, vol.89
, pp. 671-679
-
-
Heinermann, J.1
Kramer, O.2
-
8
-
-
85006355806
-
A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system
-
Liu, J., Wang, X., Lu, Y., A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system. Renew. Energy 103:Supplement C (2017), 620–629.
-
(2017)
Renew. Energy
, vol.103
, pp. 620-629
-
-
Liu, J.1
Wang, X.2
Lu, Y.3
-
9
-
-
85007494524
-
An improved neural network-based approach for short-term wind speed and power forecast
-
Chang, G.W., Lu, H.J., Chang, Y.R., Lee, Y.D., An improved neural network-based approach for short-term wind speed and power forecast. Renew. Energy 105:Supplement C (2017), 301–311.
-
(2017)
Renew. Energy
, vol.105
, pp. 301-311
-
-
Chang, G.W.1
Lu, H.J.2
Chang, Y.R.3
Lee, Y.D.4
-
10
-
-
33646352206
-
Very short-term wind forecasting for Tasmanian power generation
-
Potter, C.W., Negnevitsky, M., Very short-term wind forecasting for Tasmanian power generation. IEEE Trans. Power Syst. 21:2 (2006), 965–972.
-
(2006)
IEEE Trans. Power Syst.
, vol.21
, Issue.2
, pp. 965-972
-
-
Potter, C.W.1
Negnevitsky, M.2
-
11
-
-
84958110177
-
Short-term wind speed or power forecasting with heteroscedastic support vector regression
-
Hu, Q., Zhang, S., Yu, M., Xie, Z., Short-term wind speed or power forecasting with heteroscedastic support vector regression. IEEE Trans. Sustain. Energy 7:1 (2016), 241–249.
-
(2016)
IEEE Trans. Sustain. Energy
, vol.7
, Issue.1
, pp. 241-249
-
-
Hu, Q.1
Zhang, S.2
Yu, M.3
Xie, Z.4
-
12
-
-
49249100812
-
Statistical analysis of wind power forecast error
-
Bludszuweit, H., Dominguez-Navarro, J.A., Llombart, A., Statistical analysis of wind power forecast error. IEEE Trans. Power Syst. 23:3 (2008), 983–991.
-
(2008)
IEEE Trans. Power Syst.
, vol.23
, Issue.3
, pp. 983-991
-
-
Bludszuweit, H.1
Dominguez-Navarro, J.A.2
Llombart, A.3
-
13
-
-
84864143531
-
Short-term wind-power prediction based on wavelet transform & support vector machine and statistic-characteristics analysis
-
Liu, Y., Shi, J., Yang, Y., Lee, W.J., Short-term wind-power prediction based on wavelet transform & support vector machine and statistic-characteristics analysis. IEEE Trans. Industry Appl. 48:4 (2012), 1136–1141.
-
(2012)
IEEE Trans. Industry Appl.
, vol.48
, Issue.4
, pp. 1136-1141
-
-
Liu, Y.1
Shi, J.2
Yang, Y.3
Lee, W.J.4
-
14
-
-
84899620433
-
Modeling conditional forecast error for wind power in generation scheduling
-
Zhang, N., Kang, C., Xia, Q., Liang, J., Modeling conditional forecast error for wind power in generation scheduling. IEEE Trans. Power Syst. 29:3 (2014), 1316–1324.
-
(2014)
IEEE Trans. Power Syst.
, vol.29
, Issue.3
, pp. 1316-1324
-
-
Zhang, N.1
Kang, C.2
Xia, Q.3
Liang, J.4
-
15
-
-
84884672147
-
Scenario generation of wind power based on statistical uncertainty and variability
-
Ma, X.Y., Sun, Y.Z., Fang, H.L., Scenario generation of wind power based on statistical uncertainty and variability. IEEE Trans. Sustain. Energy 4:4 (2013), 894–904.
-
(2013)
IEEE Trans. Sustain. Energy
, vol.4
, Issue.4
, pp. 894-904
-
-
Ma, X.Y.1
Sun, Y.Z.2
Fang, H.L.3
-
16
-
-
80053183705
-
Incorporating uncertainty of wind power generation forecast into power system operation, dispatch, and unit commitment procedures
-
Makarov, Y.V., Etingov, P.V., Ma, J., Huang, Z., Subbarao, K., Incorporating uncertainty of wind power generation forecast into power system operation, dispatch, and unit commitment procedures. IEEE Trans. Sustain. Energy 2:4 (2011), 433–442.
-
(2011)
IEEE Trans. Sustain. Energy
, vol.2
, Issue.4
, pp. 433-442
-
-
Makarov, Y.V.1
Etingov, P.V.2
Ma, J.3
Huang, Z.4
Subbarao, K.5
-
17
-
-
79952186591
-
Lower upper bound estimation method for construction of neural network-based prediction intervals
-
Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.F., Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Trans. Neural Netw. 22:3 (2011), 337–346.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.3
, pp. 337-346
-
-
Khosravi, A.1
Nahavandi, S.2
Creighton, D.3
Atiya, A.F.4
-
18
-
-
40949159664
-
The economic benefit of short-term forecasting for wind energy in the UK electricity market
-
Barthelmie, R., Murray, F., Pryor, S., The economic benefit of short-term forecasting for wind energy in the UK electricity market. Energy Policy 36:5 (2008), 1687–1696.
-
(2008)
Energy Policy
, vol.36
, Issue.5
, pp. 1687-1696
-
-
Barthelmie, R.1
Murray, F.2
Pryor, S.3
-
19
-
-
85027943440
-
An advanced approach for construction of optimal wind power prediction intervals
-
Zhang, G., Wu, Y., Wong, K.P., Xu, Z., Dong, Z.Y., Iu, H.H.C., An advanced approach for construction of optimal wind power prediction intervals. IEEE Trans. Power Syst. 30:5 (2015), 2706–2715.
-
(2015)
IEEE Trans. Power Syst.
, vol.30
, Issue.5
, pp. 2706-2715
-
-
Zhang, G.1
Wu, Y.2
Wong, K.P.3
Xu, Z.4
Dong, Z.Y.5
Iu, H.H.C.6
-
20
-
-
77954834717
-
Construction of optimal prediction intervals for load forecasting problems
-
Khosravi, A., Nahavandi, S., Creighton, D., Construction of optimal prediction intervals for load forecasting problems. IEEE Trans. Power Syst. 25:3 (2010), 1496–1503.
-
(2010)
IEEE Trans. Power Syst.
, vol.25
, Issue.3
, pp. 1496-1503
-
-
Khosravi, A.1
Nahavandi, S.2
Creighton, D.3
-
21
-
-
77958487600
-
Conditional prediction intervals of wind power generation
-
Pinson, P., Kariniotakis, G., Conditional prediction intervals of wind power generation. IEEE Trans. Power Syst. 25:4 (2010), 1845–1856.
-
(2010)
IEEE Trans. Power Syst.
, vol.25
, Issue.4
, pp. 1845-1856
-
-
Pinson, P.1
Kariniotakis, G.2
-
22
-
-
84884672350
-
Combined nonparametric prediction intervals for wind power generation
-
Khosravi, A., Nahavandi, S., Combined nonparametric prediction intervals for wind power generation. IEEE Trans. Sustain. Energy 4:4 (2013), 849–856.
-
(2013)
IEEE Trans. Sustain. Energy
, vol.4
, Issue.4
, pp. 849-856
-
-
Khosravi, A.1
Nahavandi, S.2
-
23
-
-
84893641491
-
Short-term load and wind power forecasting using neural network-based prediction intervals
-
Quan, H., Srinivasan, D., Khosravi, A., Short-term load and wind power forecasting using neural network-based prediction intervals. IEEE Trans. Neural Netw. Learn. Syst. 25:2 (2014), 303–315.
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.25
, Issue.2
, pp. 303-315
-
-
Quan, H.1
Srinivasan, D.2
Khosravi, A.3
-
24
-
-
84922730875
-
A new fuzzy-based combined prediction interval for wind power forecasting
-
Kavousi-Fard, A., Khosravi, A., Nahavandi, S., A new fuzzy-based combined prediction interval for wind power forecasting. IEEE Trans. Power Syst. 31:1 (2016), 18–26.
-
(2016)
IEEE Trans. Power Syst.
, vol.31
, Issue.1
, pp. 18-26
-
-
Kavousi-Fard, A.1
Khosravi, A.2
Nahavandi, S.3
-
25
-
-
84899566603
-
Probabilistic forecasting of wind power generation using extreme learning machine
-
Wan, C., Xu, Z., Pinson, P., Dong, Z.Y., Wong, K.P., Probabilistic forecasting of wind power generation using extreme learning machine. IEEE Trans. Power Syst. 29:3 (2014), 1033–1044.
-
(2014)
IEEE Trans. Power Syst.
, vol.29
, Issue.3
, pp. 1033-1044
-
-
Wan, C.1
Xu, Z.2
Pinson, P.3
Dong, Z.Y.4
Wong, K.P.5
-
26
-
-
84893303261
-
Optimal prediction intervals of wind power generation
-
Wan, C., Xu, Z., Pinson, P., Dong, Z.Y., Wong, K.P., Optimal prediction intervals of wind power generation. IEEE Trans. Power Syst. 29:3 (2014), 1166–1174.
-
(2014)
IEEE Trans. Power Syst.
, vol.29
, Issue.3
, pp. 1166-1174
-
-
Wan, C.1
Xu, Z.2
Pinson, P.3
Dong, Z.Y.4
Wong, K.P.5
-
27
-
-
0028739205
-
Estimating the mean and variance of the target probability distribution
-
vol. 1
-
Nix, D.A., Weigend, A.S., Estimating the mean and variance of the target probability distribution. Neural Networks, 1994. IEEE World Congr. Comput. Intell. 1994 IEEE Int. Conf., 1, 1994, 55–60 vol. 1.
-
(1994)
Neural Networks, 1994. IEEE World Congr. Comput. Intell. 1994 IEEE Int. Conf.
, vol.1
, pp. 55-60
-
-
Nix, D.A.1
Weigend, A.S.2
-
28
-
-
79958092546
-
Prediction intervals to account for uncertainties in travel time prediction
-
Khosravi, A., Mazloumi, E., Nahavandi, S., Creighton, D., Lint, J. W. C. v., Prediction intervals to account for uncertainties in travel time prediction. IEEE Trans. Intelligent Transp. Syst. 12:2 (2011), 537–547.
-
(2011)
IEEE Trans. Intelligent Transp. Syst.
, vol.12
, Issue.2
, pp. 537-547
-
-
Khosravi, A.1
Mazloumi, E.2
Nahavandi, S.3
Creighton, D.4
Lint, J.W.C.V.5
-
29
-
-
84973340593
-
Probabilistic wind generation forecast based on sparse bayesian classification and dempster & shafer theory
-
Yang, M., Lin, Y., Han, X., Probabilistic wind generation forecast based on sparse bayesian classification and dempster & shafer theory. IEEE Trans. Industry Appl. 52:3 (2016), 1998–2005.
-
(2016)
IEEE Trans. Industry Appl.
, vol.52
, Issue.3
, pp. 1998-2005
-
-
Yang, M.1
Lin, Y.2
Han, X.3
-
30
-
-
84892622679
-
Probabilistic forecasts of wind power generation accounting for geographically dispersed information
-
Tastu, J., Pinson, P., Trombe, P.J., Madsen, H., Probabilistic forecasts of wind power generation accounting for geographically dispersed information. IEEE Trans. Smart Grid 5:1 (2014), 480–489.
-
(2014)
IEEE Trans. Smart Grid
, vol.5
, Issue.1
, pp. 480-489
-
-
Tastu, J.1
Pinson, P.2
Trombe, P.J.3
Madsen, H.4
-
31
-
-
34548047478
-
Trading wind generation from short-term probabilistic forecasts of wind power
-
Pinson, P., Chevallier, C., Kariniotakis, G.N., Trading wind generation from short-term probabilistic forecasts of wind power. IEEE Trans. Power Syst. 22:3 (2007), 1148–1156.
-
(2007)
IEEE Trans. Power Syst.
, vol.22
, Issue.3
, pp. 1148-1156
-
-
Pinson, P.1
Chevallier, C.2
Kariniotakis, G.N.3
-
32
-
-
84951133044
-
Prediction interval estimation for wind farm power generation forecasts using support vector machines
-
Shrivastava, N.A., Khosravi, A., Panigrahi, B.K., Prediction interval estimation for wind farm power generation forecasts using support vector machines. 2015 Int. Jt. Conf. Neural Netw. (IJCNN), 2015, 1–7.
-
(2015)
2015 Int. Jt. Conf. Neural Netw. (IJCNN)
, pp. 1-7
-
-
Shrivastava, N.A.1
Khosravi, A.2
Panigrahi, B.K.3
-
33
-
-
85049280625
-
Direct interval forecast of uncertain wind power based on recurrent neural networks
-
pp. 1–1
-
Shi, Z., Liang, H., Dinavahi, V., Direct interval forecast of uncertain wind power based on recurrent neural networks. IEEE Trans. Sustain. Energy, PP(99), 2017 pp. 1–1.
-
(2017)
IEEE Trans. Sustain. Energy
, vol.PP
, Issue.99
-
-
Shi, Z.1
Liang, H.2
Dinavahi, V.3
-
34
-
-
84939626905
-
Robust energy management system for a microgrid based on a fuzzy prediction interval model
-
Valencia, F., Collado, J., Sáez, D., Marín, L.G., Robust energy management system for a microgrid based on a fuzzy prediction interval model. IEEE Trans. Smart Grid 7:3 (2016), 1486–1494.
-
(2016)
IEEE Trans. Smart Grid
, vol.7
, Issue.3
, pp. 1486-1494
-
-
Valencia, F.1
Collado, J.2
Sáez, D.3
Marín, L.G.4
-
35
-
-
84886086025
-
Direct interval forecasting of wind power
-
Wan, C., Xu, Z., Pinson, P., Direct interval forecasting of wind power. IEEE Trans. Power Syst. 28:4 (2013), 4877–4878.
-
(2013)
IEEE Trans. Power Syst.
, vol.28
, Issue.4
, pp. 4877-4878
-
-
Wan, C.1
Xu, Z.2
Pinson, P.3
-
36
-
-
85048801709
-
“Nonparametric prediction intervals of wind power via linear programming
-
pp. 1–1
-
Wan, C., Wang, J., Lin, J., Song, Y., Dong, Z.Y., “Nonparametric prediction intervals of wind power via linear programming. IEEE Trans. Power Syst., PP(99), 2017 pp. 1–1.
-
(2017)
IEEE Trans. Power Syst.
, vol.PP
, Issue.99
-
-
Wan, C.1
Wang, J.2
Lin, J.3
Song, Y.4
Dong, Z.Y.5
-
37
-
-
31944448941
-
A study of particle swarm optimization particle trajectories
-
2006
-
Bergh, F. v. d., Engelbrecht, A.A.P., A study of particle swarm optimization particle trajectories. Inf. Sci. 176:8 (Apr. 2006), 937–971 2006.
-
(2006)
Inf. Sci.
, vol.176
, Issue.8
, pp. 937-971
-
-
Bergh, F.V.D.1
Engelbrecht, A.A.P.2
-
38
-
-
85046023678
-
-
ael, “Intelligent computing theory,” Springer, 10th International Conference, ICIC 2014 Taiyuan, China, August 3-6 Proceedings of the IEEE, 3–6 August, 2014
-
T. K. David Hutchison, Josef Kittler, Jon M. Kleinberg, ael, “Intelligent computing theory,” Springer, 10th International Conference, ICIC 2014 Taiyuan, China, August 3-6, 2014 Proceedings of the IEEE, 3–6 August, 2014 2014.
-
(2014)
-
-
David Hutchison, T.K.1
Kittler, J.2
Kleinberg, J.M.3
-
39
-
-
84956518831
-
Machine learning
-
E.K. Burke G. Kendall Springer Boston, MA US
-
Yao, X., Liu, Y., Machine learning. Burke, E.K., Kendall, G., (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, 2014, Springer, Boston, MA, 477–517 US.
-
(2014)
Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques
, pp. 477-517
-
-
Yao, X.1
Liu, Y.2
-
40
-
-
84865089249
-
Construction of neural network-based prediction intervals using particle swarm optimization
-
Hao, Q., Srinivasan, D., Khosravi, A., Construction of neural network-based prediction intervals using particle swarm optimization. The 2012 International Joint Conference on Neural Networks (IJCNN), 2012, 1–7.
-
(2012)
The 2012 International Joint Conference on Neural Networks (IJCNN)
, pp. 1-7
-
-
Hao, Q.1
Srinivasan, D.2
Khosravi, A.3
-
41
-
-
85046033926
-
-
“Self-adaptive particle swarm optimization: a review and analysis of convergence,” Swarm Intelligence/11/28, 2017
-
K. R. Harrison, A. P. Engelbrecht, and B. M. Ombuki-Berman, “Self-adaptive particle swarm optimization: a review and analysis of convergence,” Swarm Intelligence, 2017/11/28 2017.
-
(2017)
-
-
Harrison, K.R.1
Engelbrecht, A.P.2
Ombuki-Berman, B.M.3
-
42
-
-
84988304532
-
Multi step ahead forecasting of wind power by genetic algorithm based neural networks
-
Saroha, S., Aggarwal, S.K., Multi step ahead forecasting of wind power by genetic algorithm based neural networks. Power India International Conference (PIICON), 2014 6th IEEE, 2014, 1–6.
-
(2014)
Power India International Conference (PIICON), 2014 6th IEEE
, pp. 1-6
-
-
Saroha, S.1
Aggarwal, S.K.2
-
43
-
-
84913601563
-
Short-term wind power forecasting by genetic algorithm of wavelet neural network
-
Wang, Y., Short-term wind power forecasting by genetic algorithm of wavelet neural network. Information Science, Electronics and Electrical Engineering (ISEEE), 2014 International Conference on, vol. 3, 2014, 1752–1755.
-
(2014)
Information Science, Electronics and Electrical Engineering (ISEEE), 2014 International Conference on
, vol.3
, pp. 1752-1755
-
-
Wang, Y.1
-
44
-
-
77958130779
-
Short-term forecasting of wind turbine power generation based on Genetic Neural Network
-
Xin, W., Liu, Y., Li, X., Short-term forecasting of wind turbine power generation based on Genetic Neural Network,. Intelligent Control and Automation (WCICA), 2010 8th World Congress on, 2010, 5943–5946.
-
(2010)
Intelligent Control and Automation (WCICA), 2010 8th World Congress on
, pp. 5943-5946
-
-
Xin, W.1
Liu, Y.2
Li, X.3
-
45
-
-
84937622225
-
Wind power prediction using genetic programming based ensemble of artificial neural networks (GPeANN)
-
Arshad, J., Zameer, A., Khan, A., Wind power prediction using genetic programming based ensemble of artificial neural networks (GPeANN). Frontiers of Information Technology (FIT), 2014 12th International Conference on, 2014, 257–262.
-
(2014)
Frontiers of Information Technology (FIT), 2014 12th International Conference on
, pp. 257-262
-
-
Arshad, J.1
Zameer, A.2
Khan, A.3
-
46
-
-
0030268892
-
Genetic algorithms: concepts and applications [in engineering design]
-
Man, K.F., Tang, K.S., Kwong, S., Genetic algorithms: concepts and applications [in engineering design]. IEEE Trans. Industrial Electron. 43:5 (1996), 519–534.
-
(1996)
IEEE Trans. Industrial Electron.
, vol.43
, Issue.5
, pp. 519-534
-
-
Man, K.F.1
Tang, K.S.2
Kwong, S.3
-
47
-
-
84919336343
-
Extreme learning machines [trends & controversies]
-
Cambria, E., et al. Extreme learning machines [trends & controversies]. IEEE Intell. Syst. 28:6 (2013), 30–59.
-
(2013)
IEEE Intell. Syst.
, vol.28
, Issue.6
, pp. 30-59
-
-
Cambria, E.1
-
48
-
-
84963796013
-
Interpretation of DGA for transformer fault diagnosis with complementary SaE-ELM and arctangent transform
-
Li, S., Wu, G., Gao, B., Hao, C., Xin, D., Yin, X., Interpretation of DGA for transformer fault diagnosis with complementary SaE-ELM and arctangent transform. IEEE Trans. Dielectr. Electr. Insulation 23:1 (2016), 586–595.
-
(2016)
IEEE Trans. Dielectr. Electr. Insulation
, vol.23
, Issue.1
, pp. 586-595
-
-
Li, S.1
Wu, G.2
Gao, B.3
Hao, C.4
Xin, D.5
Yin, X.6
-
49
-
-
84894082731
-
Differential evolution extreme learning machine for the classification of hyperspectral images
-
Bazi, Y., Alajlan, N., Melgani, F., AlHichri, H., Malek, S., Yager, R.R., Differential evolution extreme learning machine for the classification of hyperspectral images. IEEE Geoscience Remote Sens. Lett. 11:6 (2014), 1066–1070.
-
(2014)
IEEE Geoscience Remote Sens. Lett.
, vol.11
, Issue.6
, pp. 1066-1070
-
-
Bazi, Y.1
Alajlan, N.2
Melgani, F.3
AlHichri, H.4
Malek, S.5
Yager, R.R.6
-
50
-
-
84869885866
-
Self-adaptive evolutionary extreme learning machine
-
2012/12/01
-
Cao, J., Lin, Z., Huang, G.-B., Self-adaptive evolutionary extreme learning machine. Neural Process. Lett. 36:3 (2012), 285–305 2012/12/01.
-
(2012)
Neural Process. Lett.
, vol.36
, Issue.3
, pp. 285-305
-
-
Cao, J.1
Lin, Z.2
Huang, G.-B.3
-
51
-
-
84955730358
-
Self-adaptive extreme learning machine
-
2016/02/01
-
Wang, G.-G., Lu, M., Dong, Y.-Q., Zhao, X.-J., Self-adaptive extreme learning machine. Neural Comput. Appl. 27:2 (2016), 291–303 2016/02/01.
-
(2016)
Neural Comput. Appl.
, vol.27
, Issue.2
, pp. 291-303
-
-
Wang, G.-G.1
Lu, M.2
Dong, Y.-Q.3
Zhao, X.-J.4
-
52
-
-
84878836502
-
Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems
-
2013/07/01
-
Han, M.-F., Liao, S.-H., Chang, J.-Y., Lin, C.-T., Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl. Intell. 39:1 (2013), 41–56 2013/07/01.
-
(2013)
Appl. Intell.
, vol.39
, Issue.1
, pp. 41-56
-
-
Han, M.-F.1
Liao, S.-H.2
Chang, J.-Y.3
Lin, C.-T.4
-
53
-
-
85021968017
-
Differential evolution with novel mutation and adaptive crossover strategies for solving large scale global optimization problems
-
2017, Art. no. 7974218
-
Mohamed, A.W., Almazyad, A.S., Differential evolution with novel mutation and adaptive crossover strategies for solving large scale global optimization problems. Appl. Comput. Intell. Soft Comput., 2017, 18 2017, Art. no. 7974218.
-
(2017)
Appl. Comput. Intell. Soft Comput.
, pp. 18
-
-
Mohamed, A.W.1
Almazyad, A.S.2
-
54
-
-
59649083826
-
Differential evolution algorithm with strategy adaptation for global numerical optimization
-
Qin, A.K., Huang, V.L., Suganthan, P.N., Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13:2 (2009), 398–417.
-
(2009)
IEEE Trans. Evol. Comput.
, vol.13
, Issue.2
, pp. 398-417
-
-
Qin, A.K.1
Huang, V.L.2
Suganthan, P.N.3
-
55
-
-
33645822323
-
Exploring dynamic self-adaptive populations in differential evolution
-
2006/06/01
-
Teo, J., Exploring dynamic self-adaptive populations in differential evolution. Soft Comput. 10:8 (2006), 673–686 2006/06/01.
-
(2006)
Soft Comput.
, vol.10
, Issue.8
, pp. 673-686
-
-
Teo, J.1
-
56
-
-
85031418758
-
-
“Intrusion detection based on self-adaptive differential evolution extreme learning machine with gaussian Kernel,” in Parallel Architecture, Algorithm and Programming: 8th International Symposium, PAAP 2017, Haikou, China, June 17–18, Proceedings, G. Chen, H. Shen, and M. Chen, Eds. Singapore: Springer Singapore
-
J. Ku and B. Zheng, “Intrusion detection based on self-adaptive differential evolution extreme learning machine with gaussian Kernel,” in Parallel Architecture, Algorithm and Programming: 8th International Symposium, PAAP 2017, Haikou, China, June 17–18, 2017, Proceedings, G. Chen, H. Shen, and M. Chen, Eds. Singapore: Springer Singapore, vol. 2017, pp. 13–24.
-
(2017)
, vol.2017
, pp. 13-24
-
-
Ku, J.1
Zheng, B.2
-
57
-
-
84864249355
-
-
“Multi-objective self-adaptive differential evolution with dividing operator and elitist archive,” in Communications and Information Processing: International Conference, ICCIP 2012 Aveiro, Portugal, March 7-11 Revised Selected Papers, Part I, M. Zhao and J. Sha, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg
-
Y. Gao, Y. Chen, and Q. Jiang, “Multi-objective self-adaptive differential evolution with dividing operator and elitist archive,” in Communications and Information Processing: International Conference, ICCIP 2012 Aveiro, Portugal, March 7-11, 2012 Revised Selected Papers, Part I, M. Zhao and J. Sha, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, vol. 2012, pp. 415–429.
-
(2012)
, vol.2012
, pp. 415-429
-
-
Gao, Y.1
Chen, Y.2
Jiang, Q.3
-
58
-
-
85046019882
-
Rational and self-adaptive evolutionary extreme learning machine for electricity price forecast
-
J. Cao K. Mao J. Wu A. Lendasse Springer International Publishing Cham
-
Xiao, C., Dong, Z., Xu, Y., Meng, K., Zhou, X., Zhang, X., Rational and self-adaptive evolutionary extreme learning machine for electricity price forecast. Cao, J., Mao, K., Wu, J., Lendasse, A., (eds.) Proceedings of ELM-2015 Volume 2: Theory, Algorithms and Applications (II), 2016, Springer International Publishing, Cham, 189–202.
-
(2016)
Proceedings of ELM-2015 Volume 2: Theory, Algorithms and Applications (II)
, pp. 189-202
-
-
Xiao, C.1
Dong, Z.2
Xu, Y.3
Meng, K.4
Zhou, X.5
Zhang, X.6
-
59
-
-
85046017233
-
2012 national transmission network development plan (NTNDP)
-
AEMO, 2012 national transmission network development plan (NTNDP). Aust. Energy Mark. Oper., 2012, 2012.
-
(2012)
Aust. Energy Mark. Oper.
, pp. 2012
-
-
AEMO1
-
60
-
-
84892566521
-
A hybrid approach for probabilistic forecasting of electricity price
-
Wan, C., Xu, Z., Wang, Y., Dong, Z.Y., Wong, K.P., A hybrid approach for probabilistic forecasting of electricity price. IEEE Trans. Smart Grid 5:1 (2014), 463–470.
-
(2014)
IEEE Trans. Smart Grid
, vol.5
, Issue.1
, pp. 463-470
-
-
Wan, C.1
Xu, Z.2
Wang, Y.3
Dong, Z.Y.4
Wong, K.P.5
-
61
-
-
84940704970
-
A multiobjective framework for wind speed prediction interval forecasts
-
Shrivastava, N.A., Lohia, K., Panigrahi, B.K., A multiobjective framework for wind speed prediction interval forecasts. Renew. Energy 87:2 (2016), 903–910.
-
(2016)
Renew. Energy
, vol.87
, Issue.2
, pp. 903-910
-
-
Shrivastava, N.A.1
Lohia, K.2
Panigrahi, B.K.3
-
62
-
-
84903128295
-
A decision-theoretic approach to interval estimation
-
Winkler, R.L., A decision-theoretic approach to interval estimation. J. Am. Stat. Assoc. 67:337 (1972), 187–191.
-
(1972)
J. Am. Stat. Assoc.
, vol.67
, Issue.337
, pp. 187-191
-
-
Winkler, R.L.1
-
63
-
-
84903131391
-
Discussion of “combined nonparametric prediction intervals for wind power generation”
-
pp. 1021–1021
-
Wan, C., Xu, Z., Østergaard, J., Dong, Z.Y., Wong, K.P., Discussion of “combined nonparametric prediction intervals for wind power generation”. IEEE Trans. Sustain. Energy, 5(3), 2014 pp. 1021–1021.
-
(2014)
IEEE Trans. Sustain. Energy
, vol.5
, Issue.3
-
-
Wan, C.1
Xu, Z.2
Østergaard, J.3
Dong, Z.Y.4
Wong, K.P.5
-
64
-
-
10944272650
-
Extreme learning machine: a new learning scheme of feedforward neural networks
-
Z, Q.-Y., Huang, G.-B., Siew, C.-K., Extreme learning machine: a new learning scheme of feedforward neural networks. Proceedings of International Joint Conference on Neural Networks, Budapest, Hungary, 2004, 985–990.
-
(2004)
Proceedings of International Joint Conference on Neural Networks, Budapest, Hungary
, pp. 985-990
-
-
Z, Q.-Y.1
Huang, G.-B.2
Siew, C.-K.3
-
65
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Z, Q.-Y., Huang, G.-B., Siew, C.-K., Extreme learning machine: theory and applications. Neurocomputing, 70:1–3 (2006), 489–501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Z, Q.-Y.1
Huang, G.-B.2
Siew, C.-K.3
-
66
-
-
84929000701
-
Extreme learning machine for multilayer perceptron
-
Tang, J., Deng, C., Huang, G.B., Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27:4 (2016), 809–821.
-
(2016)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.27
, Issue.4
, pp. 809-821
-
-
Tang, J.1
Deng, C.2
Huang, G.B.3
-
67
-
-
73949154686
-
OP-ELM: optimally pruned extreme learning machine
-
Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A., OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 21:1 (2010), 158–162.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.1
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.6
-
68
-
-
84893523385
-
Evolutionary extreme learning machine based on particle swarm optimization and clustering strategies
-
Pacifico, L.D.S., Ludermir, T.B., Evolutionary extreme learning machine based on particle swarm optimization and clustering strategies. Neural Networks (IJCNN), the 2013 International Joint Conference on, 2013, 1–6.
-
(2013)
Neural Networks (IJCNN), the 2013 International Joint Conference on
, pp. 1-6
-
-
Pacifico, L.D.S.1
Ludermir, T.B.2
-
69
-
-
84954457146
-
Evolutionary extreme learning machine based weighted nearest-neighbor equality classification
-
Zhang, N., Qu, Y., Deng, A., Evolutionary extreme learning machine based weighted nearest-neighbor equality classification. 2015 7th International Conference on Intelligent Human-machine Systems and Cybernetics, vol. 2, 2015, 274–279.
-
(2015)
2015 7th International Conference on Intelligent Human-machine Systems and Cybernetics
, vol.2
, pp. 274-279
-
-
Zhang, N.1
Qu, Y.2
Deng, A.3
-
70
-
-
77958144053
-
Genetic algorithm-piecewise support vector machine model for short term wind power prediction
-
Jie, S., Yongping, Y., Peng, W., Liu, Y., Shuang, H., Genetic algorithm-piecewise support vector machine model for short term wind power prediction. Intelligent Control and Automation (WCICA), 2010 8th World Congress on, 2010, 2254–2258.
-
(2010)
Intelligent Control and Automation (WCICA), 2010 8th World Congress on
, pp. 2254-2258
-
-
Jie, S.1
Yongping, Y.2
Peng, W.3
Liu, Y.4
Shuang, H.5
-
71
-
-
84859002368
-
An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization
-
no. 2
-
Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N., An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, 2012, 482–500 no. 2.
-
(2012)
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
, vol.42
, pp. 482-500
-
-
Islam, S.M.1
Das, S.2
Ghosh, S.3
Roy, S.4
Suganthan, P.N.5
-
72
-
-
0003991665
-
An Introduction to the Bootstrap
-
Chapman & Hall New York, N.Y.; London
-
Efron, B., Tibshirani, R.J., An Introduction to the Bootstrap. 1993, Chapman & Hall, New York, N.Y.; London.
-
(1993)
-
-
Efron, B.1
Tibshirani, R.J.2
-
73
-
-
0002344794
-
Bootstrap methods: another look at the jackknife
-
Jan. 1979
-
Efron, B., Bootstrap methods: another look at the jackknife. Ann. Stat. 7:1 (1979), 1–26 Jan. 1979.
-
(1979)
Ann. Stat.
, vol.7
, Issue.1
, pp. 1-26
-
-
Efron, B.1
-
74
-
-
84880924633
-
Confidence intervals estimation for reliability data of power distribution equipments using bootstrap
-
Rodrigues, A.B., Silva, M. d. G. d, Confidence intervals estimation for reliability data of power distribution equipments using bootstrap. IEEE Trans. Power Syst. 28:3 (2013), 3283–3291.
-
(2013)
IEEE Trans. Power Syst.
, vol.28
, Issue.3
, pp. 3283-3291
-
-
Rodrigues, A.B.1
Silva, M.D.G.D.2
-
75
-
-
85046015310
-
Intelligent computing theory
-
Springer 3–6 August 2014
-
Gerhard Goos, J.H., Leeuwen, Jan van, Intelligent computing theory. 10th International Conference, ICIC 2014 Taiyuan, China, August 3–6, 2014 Proceedings of the IEEE, 8588, 2014, Springer 3–6 August 2014.
-
(2014)
10th International Conference, ICIC 2014 Taiyuan, China, August 3–6, 2014 Proceedings of the IEEE
, vol.8588
-
-
Gerhard Goos, J.H.1
Leeuwen, J.V.2
-
76
-
-
85046032222
-
Bio-inspired computing and applications
-
Springer China
-
De-Shuang Huang, Y.G., Prashan Premaratne, Kyungsook Han, Bio-inspired computing and applications. 7th International Conference on Intelligent Computing, ICIC 2011 Zhengzhou, 2011, Springer, China.
-
(2011)
7th International Conference on Intelligent Computing, ICIC 2011 Zhengzhou
-
-
De-Shuang Huang, Y.G.1
Prashan Premaratne2
Kyungsook Han3
-
77
-
-
0004322632
-
Sequential Minimal Optimization: a Fast Algorithm for Training Support Vector Machines
-
Technical Report MSR-TR-98–14
-
Platt, J., Sequential Minimal Optimization: a Fast Algorithm for Training Support Vector Machines. 1999 Technical Report MSR-TR-98–14.
-
(1999)
-
-
Platt, J.1
-
78
-
-
33746932071
-
A study on SMO-type decomposition methods for support vector machines
-
Chen, Pai-Hsuen, Fan, Rong-En, Lin, a. C.-J., A study on SMO-type decomposition methods for support vector machines. IEEE Trans. Neural Netw. 17:4 (July 2006), 893–908.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.4
, pp. 893-908
-
-
Chen, P.-H.1
Fan, R.-E.2
Lin, A.C.-J.3
|