메뉴 건너뛰기




Volumn 126, Issue , 2018, Pages 254-269

An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine

Author keywords

Artificial neural networks; Bootstrap sampling; Differential evolution; Self adaptive evolutionary extreme learning machine; Support vector machine; Wind power generation prediction intervals

Indexed keywords

COST FUNCTIONS; ELECTRIC POWER GENERATION; KNOWLEDGE ACQUISITION; NEURAL NETWORKS; OPTIMIZATION; QUALITY CONTROL; RISK PERCEPTION; SUPPORT VECTOR MACHINES; UNCERTAINTY ANALYSIS; WEATHER FORECASTING; WIND POWER;

EID: 85046035272     PISSN: 09601481     EISSN: 18790682     Source Type: Journal    
DOI: 10.1016/j.renene.2018.03.035     Document Type: Article
Times cited : (86)

References (78)
  • 1
    • 84880255073 scopus 로고    scopus 로고
    • Prediction intervals for short-term wind farm power generation forecasts
    • Khosravi, A., Nahavandi, S., Creighton, D., Prediction intervals for short-term wind farm power generation forecasts. IEEE Trans. Sustain. Energy 4:3 (2013), 602–610.
    • (2013) IEEE Trans. Sustain. Energy , vol.4 , Issue.3 , pp. 602-610
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 2
    • 23244436323 scopus 로고    scopus 로고
    • Renewable and Efficient Electric Power Systems
    • A John Wiley & Sons, INC., Publications
    • Masters, G.M., Renewable and Efficient Electric Power Systems. 2004, A John Wiley & Sons, INC., Publications.
    • (2004)
    • Masters, G.M.1
  • 3
    • 84903179799 scopus 로고    scopus 로고
    • Closure to the discussion of “prediction intervals for short-term wind farm generation forecasts” and “combined nonparametric prediction intervals for wind power generation” and the discussion of “combined nonparametric prediction intervals for wind power generation
    • Khosravi, A., Nahavandi, S., Closure to the discussion of “prediction intervals for short-term wind farm generation forecasts” and “combined nonparametric prediction intervals for wind power generation” and the discussion of “combined nonparametric prediction intervals for wind power generation. IEEE Trans. Sustain. Energy 5:3 (2014), 1022–1023.
    • (2014) IEEE Trans. Sustain. Energy , vol.5 , Issue.3 , pp. 1022-1023
    • Khosravi, A.1    Nahavandi, S.2
  • 4
    • 85019740878 scopus 로고    scopus 로고
    • “Short-term wind power forecasting and uncertainty analysis using a hybrid intelligent method
    • Huang, C.M., Kuo, C.J., Huang, Y.C., “Short-term wind power forecasting and uncertainty analysis using a hybrid intelligent method. IET Renew. Power Gener. 11:5 (2017), 678–687.
    • (2017) IET Renew. Power Gener. , vol.11 , Issue.5 , pp. 678-687
    • Huang, C.M.1    Kuo, C.J.2    Huang, Y.C.3
  • 5
    • 84939816629 scopus 로고    scopus 로고
    • Incorporating wind power forecast uncertainties into stochastic unit commitment using neural network-based prediction intervals
    • Quan, H., Srinivasan, D., Khosravi, A., Incorporating wind power forecast uncertainties into stochastic unit commitment using neural network-based prediction intervals. IEEE Trans. Neural Netw. Learn. Syst. 26:9 (2015), 2123–2135.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.9 , pp. 2123-2135
    • Quan, H.1    Srinivasan, D.2    Khosravi, A.3
  • 6
    • 84908376968 scopus 로고    scopus 로고
    • “Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information,” Renewable Energy
    • Osório, G.J., Matias, J.C.O., Catalão, J.P.S., “Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information,” Renewable Energy,., 75(Supplement C), 2015, 301–307.
    • (2015) , vol.75 , pp. 301-307
    • Osório, G.J.1    Matias, J.C.O.2    Catalão, J.P.S.3
  • 7
    • 84951787309 scopus 로고    scopus 로고
    • Machine learning ensembles for wind power prediction
    • Heinermann, J., Kramer, O., Machine learning ensembles for wind power prediction. Renew. Energy 89:Supplement C (2016), 671–679.
    • (2016) Renew. Energy , vol.89 , pp. 671-679
    • Heinermann, J.1    Kramer, O.2
  • 8
    • 85006355806 scopus 로고    scopus 로고
    • A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system
    • Liu, J., Wang, X., Lu, Y., A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system. Renew. Energy 103:Supplement C (2017), 620–629.
    • (2017) Renew. Energy , vol.103 , pp. 620-629
    • Liu, J.1    Wang, X.2    Lu, Y.3
  • 9
    • 85007494524 scopus 로고    scopus 로고
    • An improved neural network-based approach for short-term wind speed and power forecast
    • Chang, G.W., Lu, H.J., Chang, Y.R., Lee, Y.D., An improved neural network-based approach for short-term wind speed and power forecast. Renew. Energy 105:Supplement C (2017), 301–311.
    • (2017) Renew. Energy , vol.105 , pp. 301-311
    • Chang, G.W.1    Lu, H.J.2    Chang, Y.R.3    Lee, Y.D.4
  • 10
    • 33646352206 scopus 로고    scopus 로고
    • Very short-term wind forecasting for Tasmanian power generation
    • Potter, C.W., Negnevitsky, M., Very short-term wind forecasting for Tasmanian power generation. IEEE Trans. Power Syst. 21:2 (2006), 965–972.
    • (2006) IEEE Trans. Power Syst. , vol.21 , Issue.2 , pp. 965-972
    • Potter, C.W.1    Negnevitsky, M.2
  • 11
    • 84958110177 scopus 로고    scopus 로고
    • Short-term wind speed or power forecasting with heteroscedastic support vector regression
    • Hu, Q., Zhang, S., Yu, M., Xie, Z., Short-term wind speed or power forecasting with heteroscedastic support vector regression. IEEE Trans. Sustain. Energy 7:1 (2016), 241–249.
    • (2016) IEEE Trans. Sustain. Energy , vol.7 , Issue.1 , pp. 241-249
    • Hu, Q.1    Zhang, S.2    Yu, M.3    Xie, Z.4
  • 13
    • 84864143531 scopus 로고    scopus 로고
    • Short-term wind-power prediction based on wavelet transform & support vector machine and statistic-characteristics analysis
    • Liu, Y., Shi, J., Yang, Y., Lee, W.J., Short-term wind-power prediction based on wavelet transform & support vector machine and statistic-characteristics analysis. IEEE Trans. Industry Appl. 48:4 (2012), 1136–1141.
    • (2012) IEEE Trans. Industry Appl. , vol.48 , Issue.4 , pp. 1136-1141
    • Liu, Y.1    Shi, J.2    Yang, Y.3    Lee, W.J.4
  • 14
    • 84899620433 scopus 로고    scopus 로고
    • Modeling conditional forecast error for wind power in generation scheduling
    • Zhang, N., Kang, C., Xia, Q., Liang, J., Modeling conditional forecast error for wind power in generation scheduling. IEEE Trans. Power Syst. 29:3 (2014), 1316–1324.
    • (2014) IEEE Trans. Power Syst. , vol.29 , Issue.3 , pp. 1316-1324
    • Zhang, N.1    Kang, C.2    Xia, Q.3    Liang, J.4
  • 15
    • 84884672147 scopus 로고    scopus 로고
    • Scenario generation of wind power based on statistical uncertainty and variability
    • Ma, X.Y., Sun, Y.Z., Fang, H.L., Scenario generation of wind power based on statistical uncertainty and variability. IEEE Trans. Sustain. Energy 4:4 (2013), 894–904.
    • (2013) IEEE Trans. Sustain. Energy , vol.4 , Issue.4 , pp. 894-904
    • Ma, X.Y.1    Sun, Y.Z.2    Fang, H.L.3
  • 16
    • 80053183705 scopus 로고    scopus 로고
    • Incorporating uncertainty of wind power generation forecast into power system operation, dispatch, and unit commitment procedures
    • Makarov, Y.V., Etingov, P.V., Ma, J., Huang, Z., Subbarao, K., Incorporating uncertainty of wind power generation forecast into power system operation, dispatch, and unit commitment procedures. IEEE Trans. Sustain. Energy 2:4 (2011), 433–442.
    • (2011) IEEE Trans. Sustain. Energy , vol.2 , Issue.4 , pp. 433-442
    • Makarov, Y.V.1    Etingov, P.V.2    Ma, J.3    Huang, Z.4    Subbarao, K.5
  • 17
    • 79952186591 scopus 로고    scopus 로고
    • Lower upper bound estimation method for construction of neural network-based prediction intervals
    • Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.F., Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Trans. Neural Netw. 22:3 (2011), 337–346.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.3 , pp. 337-346
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3    Atiya, A.F.4
  • 18
    • 40949159664 scopus 로고    scopus 로고
    • The economic benefit of short-term forecasting for wind energy in the UK electricity market
    • Barthelmie, R., Murray, F., Pryor, S., The economic benefit of short-term forecasting for wind energy in the UK electricity market. Energy Policy 36:5 (2008), 1687–1696.
    • (2008) Energy Policy , vol.36 , Issue.5 , pp. 1687-1696
    • Barthelmie, R.1    Murray, F.2    Pryor, S.3
  • 19
    • 85027943440 scopus 로고    scopus 로고
    • An advanced approach for construction of optimal wind power prediction intervals
    • Zhang, G., Wu, Y., Wong, K.P., Xu, Z., Dong, Z.Y., Iu, H.H.C., An advanced approach for construction of optimal wind power prediction intervals. IEEE Trans. Power Syst. 30:5 (2015), 2706–2715.
    • (2015) IEEE Trans. Power Syst. , vol.30 , Issue.5 , pp. 2706-2715
    • Zhang, G.1    Wu, Y.2    Wong, K.P.3    Xu, Z.4    Dong, Z.Y.5    Iu, H.H.C.6
  • 20
    • 77954834717 scopus 로고    scopus 로고
    • Construction of optimal prediction intervals for load forecasting problems
    • Khosravi, A., Nahavandi, S., Creighton, D., Construction of optimal prediction intervals for load forecasting problems. IEEE Trans. Power Syst. 25:3 (2010), 1496–1503.
    • (2010) IEEE Trans. Power Syst. , vol.25 , Issue.3 , pp. 1496-1503
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 21
    • 77958487600 scopus 로고    scopus 로고
    • Conditional prediction intervals of wind power generation
    • Pinson, P., Kariniotakis, G., Conditional prediction intervals of wind power generation. IEEE Trans. Power Syst. 25:4 (2010), 1845–1856.
    • (2010) IEEE Trans. Power Syst. , vol.25 , Issue.4 , pp. 1845-1856
    • Pinson, P.1    Kariniotakis, G.2
  • 22
    • 84884672350 scopus 로고    scopus 로고
    • Combined nonparametric prediction intervals for wind power generation
    • Khosravi, A., Nahavandi, S., Combined nonparametric prediction intervals for wind power generation. IEEE Trans. Sustain. Energy 4:4 (2013), 849–856.
    • (2013) IEEE Trans. Sustain. Energy , vol.4 , Issue.4 , pp. 849-856
    • Khosravi, A.1    Nahavandi, S.2
  • 23
    • 84893641491 scopus 로고    scopus 로고
    • Short-term load and wind power forecasting using neural network-based prediction intervals
    • Quan, H., Srinivasan, D., Khosravi, A., Short-term load and wind power forecasting using neural network-based prediction intervals. IEEE Trans. Neural Netw. Learn. Syst. 25:2 (2014), 303–315.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.2 , pp. 303-315
    • Quan, H.1    Srinivasan, D.2    Khosravi, A.3
  • 24
    • 84922730875 scopus 로고    scopus 로고
    • A new fuzzy-based combined prediction interval for wind power forecasting
    • Kavousi-Fard, A., Khosravi, A., Nahavandi, S., A new fuzzy-based combined prediction interval for wind power forecasting. IEEE Trans. Power Syst. 31:1 (2016), 18–26.
    • (2016) IEEE Trans. Power Syst. , vol.31 , Issue.1 , pp. 18-26
    • Kavousi-Fard, A.1    Khosravi, A.2    Nahavandi, S.3
  • 25
    • 84899566603 scopus 로고    scopus 로고
    • Probabilistic forecasting of wind power generation using extreme learning machine
    • Wan, C., Xu, Z., Pinson, P., Dong, Z.Y., Wong, K.P., Probabilistic forecasting of wind power generation using extreme learning machine. IEEE Trans. Power Syst. 29:3 (2014), 1033–1044.
    • (2014) IEEE Trans. Power Syst. , vol.29 , Issue.3 , pp. 1033-1044
    • Wan, C.1    Xu, Z.2    Pinson, P.3    Dong, Z.Y.4    Wong, K.P.5
  • 26
    • 84893303261 scopus 로고    scopus 로고
    • Optimal prediction intervals of wind power generation
    • Wan, C., Xu, Z., Pinson, P., Dong, Z.Y., Wong, K.P., Optimal prediction intervals of wind power generation. IEEE Trans. Power Syst. 29:3 (2014), 1166–1174.
    • (2014) IEEE Trans. Power Syst. , vol.29 , Issue.3 , pp. 1166-1174
    • Wan, C.1    Xu, Z.2    Pinson, P.3    Dong, Z.Y.4    Wong, K.P.5
  • 29
    • 84973340593 scopus 로고    scopus 로고
    • Probabilistic wind generation forecast based on sparse bayesian classification and dempster & shafer theory
    • Yang, M., Lin, Y., Han, X., Probabilistic wind generation forecast based on sparse bayesian classification and dempster & shafer theory. IEEE Trans. Industry Appl. 52:3 (2016), 1998–2005.
    • (2016) IEEE Trans. Industry Appl. , vol.52 , Issue.3 , pp. 1998-2005
    • Yang, M.1    Lin, Y.2    Han, X.3
  • 30
    • 84892622679 scopus 로고    scopus 로고
    • Probabilistic forecasts of wind power generation accounting for geographically dispersed information
    • Tastu, J., Pinson, P., Trombe, P.J., Madsen, H., Probabilistic forecasts of wind power generation accounting for geographically dispersed information. IEEE Trans. Smart Grid 5:1 (2014), 480–489.
    • (2014) IEEE Trans. Smart Grid , vol.5 , Issue.1 , pp. 480-489
    • Tastu, J.1    Pinson, P.2    Trombe, P.J.3    Madsen, H.4
  • 31
    • 34548047478 scopus 로고    scopus 로고
    • Trading wind generation from short-term probabilistic forecasts of wind power
    • Pinson, P., Chevallier, C., Kariniotakis, G.N., Trading wind generation from short-term probabilistic forecasts of wind power. IEEE Trans. Power Syst. 22:3 (2007), 1148–1156.
    • (2007) IEEE Trans. Power Syst. , vol.22 , Issue.3 , pp. 1148-1156
    • Pinson, P.1    Chevallier, C.2    Kariniotakis, G.N.3
  • 32
    • 84951133044 scopus 로고    scopus 로고
    • Prediction interval estimation for wind farm power generation forecasts using support vector machines
    • Shrivastava, N.A., Khosravi, A., Panigrahi, B.K., Prediction interval estimation for wind farm power generation forecasts using support vector machines. 2015 Int. Jt. Conf. Neural Netw. (IJCNN), 2015, 1–7.
    • (2015) 2015 Int. Jt. Conf. Neural Netw. (IJCNN) , pp. 1-7
    • Shrivastava, N.A.1    Khosravi, A.2    Panigrahi, B.K.3
  • 33
    • 85049280625 scopus 로고    scopus 로고
    • Direct interval forecast of uncertain wind power based on recurrent neural networks
    • pp. 1–1
    • Shi, Z., Liang, H., Dinavahi, V., Direct interval forecast of uncertain wind power based on recurrent neural networks. IEEE Trans. Sustain. Energy, PP(99), 2017 pp. 1–1.
    • (2017) IEEE Trans. Sustain. Energy , vol.PP , Issue.99
    • Shi, Z.1    Liang, H.2    Dinavahi, V.3
  • 34
    • 84939626905 scopus 로고    scopus 로고
    • Robust energy management system for a microgrid based on a fuzzy prediction interval model
    • Valencia, F., Collado, J., Sáez, D., Marín, L.G., Robust energy management system for a microgrid based on a fuzzy prediction interval model. IEEE Trans. Smart Grid 7:3 (2016), 1486–1494.
    • (2016) IEEE Trans. Smart Grid , vol.7 , Issue.3 , pp. 1486-1494
    • Valencia, F.1    Collado, J.2    Sáez, D.3    Marín, L.G.4
  • 35
    • 84886086025 scopus 로고    scopus 로고
    • Direct interval forecasting of wind power
    • Wan, C., Xu, Z., Pinson, P., Direct interval forecasting of wind power. IEEE Trans. Power Syst. 28:4 (2013), 4877–4878.
    • (2013) IEEE Trans. Power Syst. , vol.28 , Issue.4 , pp. 4877-4878
    • Wan, C.1    Xu, Z.2    Pinson, P.3
  • 36
    • 85048801709 scopus 로고    scopus 로고
    • “Nonparametric prediction intervals of wind power via linear programming
    • pp. 1–1
    • Wan, C., Wang, J., Lin, J., Song, Y., Dong, Z.Y., “Nonparametric prediction intervals of wind power via linear programming. IEEE Trans. Power Syst., PP(99), 2017 pp. 1–1.
    • (2017) IEEE Trans. Power Syst. , vol.PP , Issue.99
    • Wan, C.1    Wang, J.2    Lin, J.3    Song, Y.4    Dong, Z.Y.5
  • 37
    • 31944448941 scopus 로고    scopus 로고
    • A study of particle swarm optimization particle trajectories
    • 2006
    • Bergh, F. v. d., Engelbrecht, A.A.P., A study of particle swarm optimization particle trajectories. Inf. Sci. 176:8 (Apr. 2006), 937–971 2006.
    • (2006) Inf. Sci. , vol.176 , Issue.8 , pp. 937-971
    • Bergh, F.V.D.1    Engelbrecht, A.A.P.2
  • 38
    • 85046023678 scopus 로고    scopus 로고
    • ael, “Intelligent computing theory,” Springer, 10th International Conference, ICIC 2014 Taiyuan, China, August 3-6 Proceedings of the IEEE, 3–6 August, 2014
    • T. K. David Hutchison, Josef Kittler, Jon M. Kleinberg, ael, “Intelligent computing theory,” Springer, 10th International Conference, ICIC 2014 Taiyuan, China, August 3-6, 2014 Proceedings of the IEEE, 3–6 August, 2014 2014.
    • (2014)
    • David Hutchison, T.K.1    Kittler, J.2    Kleinberg, J.M.3
  • 41
    • 85046033926 scopus 로고    scopus 로고
    • “Self-adaptive particle swarm optimization: a review and analysis of convergence,” Swarm Intelligence/11/28, 2017
    • K. R. Harrison, A. P. Engelbrecht, and B. M. Ombuki-Berman, “Self-adaptive particle swarm optimization: a review and analysis of convergence,” Swarm Intelligence, 2017/11/28 2017.
    • (2017)
    • Harrison, K.R.1    Engelbrecht, A.P.2    Ombuki-Berman, B.M.3
  • 46
    • 0030268892 scopus 로고    scopus 로고
    • Genetic algorithms: concepts and applications [in engineering design]
    • Man, K.F., Tang, K.S., Kwong, S., Genetic algorithms: concepts and applications [in engineering design]. IEEE Trans. Industrial Electron. 43:5 (1996), 519–534.
    • (1996) IEEE Trans. Industrial Electron. , vol.43 , Issue.5 , pp. 519-534
    • Man, K.F.1    Tang, K.S.2    Kwong, S.3
  • 47
    • 84919336343 scopus 로고    scopus 로고
    • Extreme learning machines [trends & controversies]
    • Cambria, E., et al. Extreme learning machines [trends & controversies]. IEEE Intell. Syst. 28:6 (2013), 30–59.
    • (2013) IEEE Intell. Syst. , vol.28 , Issue.6 , pp. 30-59
    • Cambria, E.1
  • 48
    • 84963796013 scopus 로고    scopus 로고
    • Interpretation of DGA for transformer fault diagnosis with complementary SaE-ELM and arctangent transform
    • Li, S., Wu, G., Gao, B., Hao, C., Xin, D., Yin, X., Interpretation of DGA for transformer fault diagnosis with complementary SaE-ELM and arctangent transform. IEEE Trans. Dielectr. Electr. Insulation 23:1 (2016), 586–595.
    • (2016) IEEE Trans. Dielectr. Electr. Insulation , vol.23 , Issue.1 , pp. 586-595
    • Li, S.1    Wu, G.2    Gao, B.3    Hao, C.4    Xin, D.5    Yin, X.6
  • 49
    • 84894082731 scopus 로고    scopus 로고
    • Differential evolution extreme learning machine for the classification of hyperspectral images
    • Bazi, Y., Alajlan, N., Melgani, F., AlHichri, H., Malek, S., Yager, R.R., Differential evolution extreme learning machine for the classification of hyperspectral images. IEEE Geoscience Remote Sens. Lett. 11:6 (2014), 1066–1070.
    • (2014) IEEE Geoscience Remote Sens. Lett. , vol.11 , Issue.6 , pp. 1066-1070
    • Bazi, Y.1    Alajlan, N.2    Melgani, F.3    AlHichri, H.4    Malek, S.5    Yager, R.R.6
  • 50
    • 84869885866 scopus 로고    scopus 로고
    • Self-adaptive evolutionary extreme learning machine
    • 2012/12/01
    • Cao, J., Lin, Z., Huang, G.-B., Self-adaptive evolutionary extreme learning machine. Neural Process. Lett. 36:3 (2012), 285–305 2012/12/01.
    • (2012) Neural Process. Lett. , vol.36 , Issue.3 , pp. 285-305
    • Cao, J.1    Lin, Z.2    Huang, G.-B.3
  • 51
    • 84955730358 scopus 로고    scopus 로고
    • Self-adaptive extreme learning machine
    • 2016/02/01
    • Wang, G.-G., Lu, M., Dong, Y.-Q., Zhao, X.-J., Self-adaptive extreme learning machine. Neural Comput. Appl. 27:2 (2016), 291–303 2016/02/01.
    • (2016) Neural Comput. Appl. , vol.27 , Issue.2 , pp. 291-303
    • Wang, G.-G.1    Lu, M.2    Dong, Y.-Q.3    Zhao, X.-J.4
  • 52
    • 84878836502 scopus 로고    scopus 로고
    • Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems
    • 2013/07/01
    • Han, M.-F., Liao, S.-H., Chang, J.-Y., Lin, C.-T., Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl. Intell. 39:1 (2013), 41–56 2013/07/01.
    • (2013) Appl. Intell. , vol.39 , Issue.1 , pp. 41-56
    • Han, M.-F.1    Liao, S.-H.2    Chang, J.-Y.3    Lin, C.-T.4
  • 53
    • 85021968017 scopus 로고    scopus 로고
    • Differential evolution with novel mutation and adaptive crossover strategies for solving large scale global optimization problems
    • 2017, Art. no. 7974218
    • Mohamed, A.W., Almazyad, A.S., Differential evolution with novel mutation and adaptive crossover strategies for solving large scale global optimization problems. Appl. Comput. Intell. Soft Comput., 2017, 18 2017, Art. no. 7974218.
    • (2017) Appl. Comput. Intell. Soft Comput. , pp. 18
    • Mohamed, A.W.1    Almazyad, A.S.2
  • 54
    • 59649083826 scopus 로고    scopus 로고
    • Differential evolution algorithm with strategy adaptation for global numerical optimization
    • Qin, A.K., Huang, V.L., Suganthan, P.N., Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13:2 (2009), 398–417.
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.2 , pp. 398-417
    • Qin, A.K.1    Huang, V.L.2    Suganthan, P.N.3
  • 55
    • 33645822323 scopus 로고    scopus 로고
    • Exploring dynamic self-adaptive populations in differential evolution
    • 2006/06/01
    • Teo, J., Exploring dynamic self-adaptive populations in differential evolution. Soft Comput. 10:8 (2006), 673–686 2006/06/01.
    • (2006) Soft Comput. , vol.10 , Issue.8 , pp. 673-686
    • Teo, J.1
  • 56
    • 85031418758 scopus 로고    scopus 로고
    • “Intrusion detection based on self-adaptive differential evolution extreme learning machine with gaussian Kernel,” in Parallel Architecture, Algorithm and Programming: 8th International Symposium, PAAP 2017, Haikou, China, June 17–18, Proceedings, G. Chen, H. Shen, and M. Chen, Eds. Singapore: Springer Singapore
    • J. Ku and B. Zheng, “Intrusion detection based on self-adaptive differential evolution extreme learning machine with gaussian Kernel,” in Parallel Architecture, Algorithm and Programming: 8th International Symposium, PAAP 2017, Haikou, China, June 17–18, 2017, Proceedings, G. Chen, H. Shen, and M. Chen, Eds. Singapore: Springer Singapore, vol. 2017, pp. 13–24.
    • (2017) , vol.2017 , pp. 13-24
    • Ku, J.1    Zheng, B.2
  • 57
    • 84864249355 scopus 로고    scopus 로고
    • “Multi-objective self-adaptive differential evolution with dividing operator and elitist archive,” in Communications and Information Processing: International Conference, ICCIP 2012 Aveiro, Portugal, March 7-11 Revised Selected Papers, Part I, M. Zhao and J. Sha, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg
    • Y. Gao, Y. Chen, and Q. Jiang, “Multi-objective self-adaptive differential evolution with dividing operator and elitist archive,” in Communications and Information Processing: International Conference, ICCIP 2012 Aveiro, Portugal, March 7-11, 2012 Revised Selected Papers, Part I, M. Zhao and J. Sha, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, vol. 2012, pp. 415–429.
    • (2012) , vol.2012 , pp. 415-429
    • Gao, Y.1    Chen, Y.2    Jiang, Q.3
  • 58
    • 85046019882 scopus 로고    scopus 로고
    • Rational and self-adaptive evolutionary extreme learning machine for electricity price forecast
    • J. Cao K. Mao J. Wu A. Lendasse Springer International Publishing Cham
    • Xiao, C., Dong, Z., Xu, Y., Meng, K., Zhou, X., Zhang, X., Rational and self-adaptive evolutionary extreme learning machine for electricity price forecast. Cao, J., Mao, K., Wu, J., Lendasse, A., (eds.) Proceedings of ELM-2015 Volume 2: Theory, Algorithms and Applications (II), 2016, Springer International Publishing, Cham, 189–202.
    • (2016) Proceedings of ELM-2015 Volume 2: Theory, Algorithms and Applications (II) , pp. 189-202
    • Xiao, C.1    Dong, Z.2    Xu, Y.3    Meng, K.4    Zhou, X.5    Zhang, X.6
  • 59
    • 85046017233 scopus 로고    scopus 로고
    • 2012 national transmission network development plan (NTNDP)
    • AEMO, 2012 national transmission network development plan (NTNDP). Aust. Energy Mark. Oper., 2012, 2012.
    • (2012) Aust. Energy Mark. Oper. , pp. 2012
    • AEMO1
  • 60
    • 84892566521 scopus 로고    scopus 로고
    • A hybrid approach for probabilistic forecasting of electricity price
    • Wan, C., Xu, Z., Wang, Y., Dong, Z.Y., Wong, K.P., A hybrid approach for probabilistic forecasting of electricity price. IEEE Trans. Smart Grid 5:1 (2014), 463–470.
    • (2014) IEEE Trans. Smart Grid , vol.5 , Issue.1 , pp. 463-470
    • Wan, C.1    Xu, Z.2    Wang, Y.3    Dong, Z.Y.4    Wong, K.P.5
  • 61
    • 84940704970 scopus 로고    scopus 로고
    • A multiobjective framework for wind speed prediction interval forecasts
    • Shrivastava, N.A., Lohia, K., Panigrahi, B.K., A multiobjective framework for wind speed prediction interval forecasts. Renew. Energy 87:2 (2016), 903–910.
    • (2016) Renew. Energy , vol.87 , Issue.2 , pp. 903-910
    • Shrivastava, N.A.1    Lohia, K.2    Panigrahi, B.K.3
  • 62
    • 84903128295 scopus 로고
    • A decision-theoretic approach to interval estimation
    • Winkler, R.L., A decision-theoretic approach to interval estimation. J. Am. Stat. Assoc. 67:337 (1972), 187–191.
    • (1972) J. Am. Stat. Assoc. , vol.67 , Issue.337 , pp. 187-191
    • Winkler, R.L.1
  • 63
    • 84903131391 scopus 로고    scopus 로고
    • Discussion of “combined nonparametric prediction intervals for wind power generation”
    • pp. 1021–1021
    • Wan, C., Xu, Z., Østergaard, J., Dong, Z.Y., Wong, K.P., Discussion of “combined nonparametric prediction intervals for wind power generation”. IEEE Trans. Sustain. Energy, 5(3), 2014 pp. 1021–1021.
    • (2014) IEEE Trans. Sustain. Energy , vol.5 , Issue.3
    • Wan, C.1    Xu, Z.2    Østergaard, J.3    Dong, Z.Y.4    Wong, K.P.5
  • 65
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Z, Q.-Y., Huang, G.-B., Siew, C.-K., Extreme learning machine: theory and applications. Neurocomputing, 70:1–3 (2006), 489–501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Z, Q.-Y.1    Huang, G.-B.2    Siew, C.-K.3
  • 72
    • 0003991665 scopus 로고
    • An Introduction to the Bootstrap
    • Chapman & Hall New York, N.Y.; London
    • Efron, B., Tibshirani, R.J., An Introduction to the Bootstrap. 1993, Chapman & Hall, New York, N.Y.; London.
    • (1993)
    • Efron, B.1    Tibshirani, R.J.2
  • 73
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • Jan. 1979
    • Efron, B., Bootstrap methods: another look at the jackknife. Ann. Stat. 7:1 (1979), 1–26 Jan. 1979.
    • (1979) Ann. Stat. , vol.7 , Issue.1 , pp. 1-26
    • Efron, B.1
  • 74
    • 84880924633 scopus 로고    scopus 로고
    • Confidence intervals estimation for reliability data of power distribution equipments using bootstrap
    • Rodrigues, A.B., Silva, M. d. G. d, Confidence intervals estimation for reliability data of power distribution equipments using bootstrap. IEEE Trans. Power Syst. 28:3 (2013), 3283–3291.
    • (2013) IEEE Trans. Power Syst. , vol.28 , Issue.3 , pp. 3283-3291
    • Rodrigues, A.B.1    Silva, M.D.G.D.2
  • 77
    • 0004322632 scopus 로고    scopus 로고
    • Sequential Minimal Optimization: a Fast Algorithm for Training Support Vector Machines
    • Technical Report MSR-TR-98–14
    • Platt, J., Sequential Minimal Optimization: a Fast Algorithm for Training Support Vector Machines. 1999 Technical Report MSR-TR-98–14.
    • (1999)
    • Platt, J.1
  • 78
    • 33746932071 scopus 로고    scopus 로고
    • A study on SMO-type decomposition methods for support vector machines
    • Chen, Pai-Hsuen, Fan, Rong-En, Lin, a. C.-J., A study on SMO-type decomposition methods for support vector machines. IEEE Trans. Neural Netw. 17:4 (July 2006), 893–908.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 893-908
    • Chen, P.-H.1    Fan, R.-E.2    Lin, A.C.-J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.