메뉴 건너뛰기




Volumn 36, Issue 3, 2012, Pages 285-305

Self-adaptive evolutionary extreme learning machine

Author keywords

Differential evolution; Extreme learning machine; Levenberg Marquardt algorithm; Single hidden layer feedforward networks; Support vector machine

Indexed keywords

CONTROL PARAMETERS; DIFFERENTIAL EVOLUTION; EXTREME LEARNING MACHINE; FEED-FORWARD NETWORK; GENERALIZATION PERFORMANCE; HIDDEN LAYERS; HIDDEN NODES; LEVENBERG-MARQUARDT ALGORITHM; MOORE-PENROSE GENERALIZED INVERSE; SELF-ADAPTIVE; SELF-ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHMS; VECTOR GENERATION;

EID: 84869885866     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-012-9236-y     Document Type: Article
Times cited : (265)

References (26)
  • 2
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1-3):489-501
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 3
    • 79956125371 scopus 로고    scopus 로고
    • Composite function wavelet neural networks with differential evolution and extreme learning machine
    • Cao JW, Lin ZP, Huang G-B (2011) Composite function wavelet neural networks with differential evolution and extreme learning machine. Neural Process Lett 33(3):251-265
    • (2011) Neural Process Lett , vol.33 , Issue.3 , pp. 251-265
    • Cao, J.W.1    Lin, Z.P.2    Huang, G.-B.3
  • 4
    • 80755133532 scopus 로고    scopus 로고
    • Voting based extreme learning machine
    • Cao JW, Lin ZP, Huang G-B (2012) Voting based extreme learning machine. Inf Sci 185(1):66-77
    • (2012) Inf Sci , vol.185 , Issue.1 , pp. 66-77
    • Cao, J.W.1    Lin, Z.P.2    Huang, G.-B.3
  • 5
    • 77953702262 scopus 로고    scopus 로고
    • Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques
    • Balabin RM, Safieva RZ, Lomakina EI (2010) Gasoline classification using near infrared (NIR) spectroscopy data: comparison of multivariate techniques. Anal Chim Acta 671:27-35
    • (2010) Anal Chim Acta , vol.671 , pp. 27-35
    • Balabin, R.M.1    Safieva, R.Z.2    Lomakina, E.I.3
  • 6
    • 79952487365 scopus 로고    scopus 로고
    • Biodiesel classification by base stock type (vegetable oil) using near infrared (NIR) spectroscopy data
    • Balabin RM, Safieva RZ (2011) Biodiesel classification by base stock type (vegetable oil) using near infrared (NIR) spectroscopy data. Anal Chim Acta 689(2):190-197
    • (2011) Anal Chim Acta , vol.689 , Issue.2 , pp. 190-197
    • Balabin, R.M.1    Safieva, R.Z.2
  • 7
    • 79959480027 scopus 로고    scopus 로고
    • Support vector machine regression (LS-SVM) -an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?
    • Balabin RM, Lomakina EI (2011) Support vector machine regression (LS-SVM) -an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?. Phys Chem Chem Phys 13(24):11710-11718
    • (2011) Phys Chem Chem Phys , vol.13 , Issue.24 , pp. 11710-11718
    • Balabin, R.M.1    Lomakina, E.I.2
  • 8
    • 79953210805 scopus 로고    scopus 로고
    • Support vector machine regression (SVR/LS-SVM) -an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data
    • Balabin RM, Lomakina EI (2011) Support vector machine regression (SVR/LS-SVM) -an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 136(8):1703-1712
    • (2011) Analyst , vol.136 , Issue.8 , pp. 1703-1712
    • Balabin, R.M.1    Lomakina, E.I.2
  • 9
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C-W, Lin C-J (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415-425
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 10
    • 0000873069 scopus 로고
    • A method for the solution of certain non-linear problems in least squares
    • Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164-168
    • (1944) Q Appl Math , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 11
    • 0028543366 scopus 로고
    • Training feedforward networks with themarquardt algorithm
    • HaganMT, MenhajMB (1994) Training feedforward networks with themarquardt algorithm. IEEE Trans Neural Netw 5(6):989-993
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 12
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G-B, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879-892
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.K.3
  • 13
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate on-line sequential learning algorithm for feedforward networks
    • Liang N-Y, Huang G-B, Saratchandran P, Sundararajan N (2006) A fast and accurate on-line sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17(6):1411-1423
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.-Y.1    Huang, G.-B.2    Saratchandran, P.3    Sundararajan, N.4
  • 14
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G-B, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70(16-18):3056-3062
    • (2007) Neurocomputing , vol.70 , Issue.6-18 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 15
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G-B, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16-18):3460-3468
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 16
    • 85008039450 scopus 로고    scopus 로고
    • On-line sequential fuzzy extreme learning machine for function approximation and classification problems
    • Rong H-J, Huang G-B, Saratchandran P, Sundararajan N (2009) On-line sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans Syst Man Cybern B 39(4):1067-1072
    • (2009) IEEE Trans Syst Man Cybern B , vol.39 , Issue.4 , pp. 1067-1072
    • Rong, H.-J.1    Huang, G.-B.2    Saratchandran, P.3    Sundararajan, N.4
  • 17
    • 77954299719 scopus 로고    scopus 로고
    • Ensemble of online sequential extreme learning machine
    • Lan Y, Soh YC, Huang G-B (2009) Ensemble of online sequential extreme learning machine. Neurocomputing 72(13-15):3391-3395
    • (2009) Neurocomputing , vol.72 , Issue.13-15 , pp. 3391-3395
    • Lan, Y.1    Soh, Y.C.2    Huang, G.-B.3
  • 18
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution -A simple and efficient heuristic for global optimization over continuous spaces
    • Storn R, Price K (2004) Differential evolution -A simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341-359
    • (2004) J Glob Optim , vol.11 , Issue.4 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 19
    • 0037312458 scopus 로고    scopus 로고
    • Differential evolution training algorithm for feedforward neural networks
    • Ilonen J, Kamarainen JI, Lampinen J (2003) Differential evolution training algorithm for feedforward neural networks. Neural Process Lett 17:93-105
    • (2003) Neural Process Lett , vol.17 , pp. 93-105
    • Ilonen, J.1    Kamarainen, J.I.2    Lampinen, J.3
  • 20
    • 42449127855 scopus 로고    scopus 로고
    • Differential evolution and levenberg marquardt trained neural network scheme for nonlinear system identification
    • Subudhi B, Jena D (2008) Differential evolution and levenberg marquardt trained neural network scheme for nonlinear system identification. Neural Process Lett 27:285-296
    • (2008) Neural Process Lett , vol.27 , pp. 285-296
    • Subudhi, B.1    Jena, D.2
  • 22
    • 59649083826 scopus 로고    scopus 로고
    • Differential evolution algorithm with strategy adaptation for global numerical optimization
    • Qin A-K, Huang V-L, Suganthan P-N (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398-417
    • (2009) IEEE Trans Evol Comput , vol.13 , Issue.2 , pp. 398-417
    • Qin, A.-K.1    Huang, V.-L.2    Suganthan, P.-N.3
  • 23
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Bartlett PL (1998) The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inf Theory 44(2):525-536
    • (1998) IEEE Trans Inf Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 24
    • 77649238806 scopus 로고    scopus 로고
    • Composite function wavelet neural networks with extreme learning machine
    • Cao JW, Lin ZP, Huang G-B (2010) Composite function wavelet neural networks with extreme learning machine. Neurocomputing 73(7-9):1405-1416
    • (2010) Neurocomputing , vol.73 , Issue.7-9 , pp. 1405-1416
    • Cao, J.W.1    Lin, Z.P.2    Huang, G.-B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.