메뉴 건너뛰기




Volumn 105, Issue , 2017, Pages 301-311

An improved neural network-based approach for short-term wind speed and power forecast

Author keywords

Forecast; Radial basis function neural network; Wind power; Wind speed

Indexed keywords

COMPUTATIONAL EFFICIENCY; ELECTRIC POWER GENERATION; ELECTRIC POWER SYSTEM INTERCONNECTION; ELECTRIC UTILITIES; FORECASTING; FUNCTIONS; RADIAL BASIS FUNCTION NETWORKS; SPEED; WIND EFFECTS; WIND POWER;

EID: 85007494524     PISSN: 09601481     EISSN: 18790682     Source Type: Journal    
DOI: 10.1016/j.renene.2016.12.071     Document Type: Article
Times cited : (236)

References (28)
  • 1
    • 77956444173 scopus 로고    scopus 로고
    • Wind Power Forecasting: State-of-the-art 2009
    • Report ANL/DIS-10–1 Argonne Natl. Lab.
    • [1] Monteiro, C., Bessa, R., Miranda, V., Botterud, A., Wang, J., Conzelmann, G., Wind Power Forecasting: State-of-the-art 2009. Report ANL/DIS-10–1, 2009, Argonne Natl. Lab.
    • (2009)
    • Monteiro, C.1    Bessa, R.2    Miranda, V.3    Botterud, A.4    Wang, J.5    Conzelmann, G.6
  • 2
    • 35549001332 scopus 로고    scopus 로고
    • Short term wind speed forecasting for wind turbine applications using linear prediction method
    • [2] Riahy, G., Abedi, M., Short term wind speed forecasting for wind turbine applications using linear prediction method. Renew. Energy 3 (2008), 35–41.
    • (2008) Renew. Energy , vol.3 , pp. 35-41
    • Riahy, G.1    Abedi, M.2
  • 3
    • 79952454042 scopus 로고    scopus 로고
    • Multiple architecture system for wind speed prediction
    • [3] Bouzgou, H., Benoudjit, N., Multiple architecture system for wind speed prediction. Appl. Energy 88 (2011), 2463–2471.
    • (2011) Appl. Energy , vol.88 , pp. 2463-2471
    • Bouzgou, H.1    Benoudjit, N.2
  • 4
    • 84867988966 scopus 로고    scopus 로고
    • Probabilistic wind power forecasting using radial basis function neural networks
    • [4] Sideratos, G., Hatziargyriou, N.D., Probabilistic wind power forecasting using radial basis function neural networks. IEEE Trans. Power Syst. 27 (2012), 1788–1796.
    • (2012) IEEE Trans. Power Syst. , vol.27 , pp. 1788-1796
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 5
    • 0033893705 scopus 로고    scopus 로고
    • A real-time learning control approach for nonlinear continuous-time system using recurrent neural networks
    • [5] Chow, T.W., Li, S.D., Fang, Y., A real-time learning control approach for nonlinear continuous-time system using recurrent neural networks. IEEE Trans. Ind. Electr. 47 (2000), 478–486.
    • (2000) IEEE Trans. Ind. Electr. , vol.47 , pp. 478-486
    • Chow, T.W.1    Li, S.D.2    Fang, Y.3
  • 6
    • 84937909008 scopus 로고    scopus 로고
    • Wind speed forecasting for wind farms: a method based on support vector regression
    • [6] Santamaría-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C., Wind speed forecasting for wind farms: a method based on support vector regression. Renew. Energy 56 (2016), 790–806.
    • (2016) Renew. Energy , vol.56 , pp. 790-806
    • Santamaría-Bonfil, G.1    Reyes-Ballesteros, A.2    Gershenson, C.3
  • 7
    • 84864827118 scopus 로고    scopus 로고
    • Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model
    • [7] Cassola, F., Burland, M., Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model. Appl. Energy 99 (2012), 154–166.
    • (2012) Appl. Energy , vol.99 , pp. 154-166
    • Cassola, F.1    Burland, M.2
  • 8
    • 84859416828 scopus 로고    scopus 로고
    • Evaluation of hybrid forecasting approaches for wind speed and power generation time series
    • [8] Shi, J., Guo, J.M., Zheng, S.Y., Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew. Sustain. Energy Rev. 16 (2012), 3471–3480.
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 3471-3480
    • Shi, J.1    Guo, J.M.2    Zheng, S.Y.3
  • 9
  • 10
    • 84922697904 scopus 로고    scopus 로고
    • Markov chain modeling for very-short-term wind power forecasting
    • [10] Carpinone, A., Giorgio, M., Langell, R., Test, A., Markov chain modeling for very-short-term wind power forecasting. Elect. Power Syst. Res. 122 (2015), 152–158.
    • (2015) Elect. Power Syst. Res. , vol.122 , pp. 152-158
    • Carpinone, A.1    Giorgio, M.2    Langell, R.3    Test, A.4
  • 12
    • 79959557168 scopus 로고    scopus 로고
    • Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization
    • [12] Amjady, N., Keynia, F., Zareipour, H., Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization. IEEE Trans. Sustain. Energy 2 (2011), 265–276.
    • (2011) IEEE Trans. Sustain. Energy , vol.2 , pp. 265-276
    • Amjady, N.1    Keynia, F.2    Zareipour, H.3
  • 13
    • 84916917658 scopus 로고    scopus 로고
    • Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA
    • [13] Shukur, O.B., Lee, M.H., Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. Renew. Energy 76 (2015), 637–647.
    • (2015) Renew. Energy , vol.76 , pp. 637-647
    • Shukur, O.B.1    Lee, M.H.2
  • 14
    • 84892588054 scopus 로고    scopus 로고
    • Hybrid forecasting model for very-short term wind power forecasting based on grey relational analysis and wind speed distribution features
    • [14] Shi, J., Ding, Z., Lee, W.J., Yang, Y., Liu, Y., Zhang, M., Hybrid forecasting model for very-short term wind power forecasting based on grey relational analysis and wind speed distribution features. IEEE Trans. Smart Grid 5 (2014), 521–526.
    • (2014) IEEE Trans. Smart Grid , vol.5 , pp. 521-526
    • Shi, J.1    Ding, Z.2    Lee, W.J.3    Yang, Y.4    Liu, Y.5    Zhang, M.6
  • 15
    • 84962148959 scopus 로고    scopus 로고
    • Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
    • [15] Wang, Y., Wang, S., Zhang, N., Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew. Energy 94 (2016), 629–636.
    • (2016) Renew. Energy , vol.94 , pp. 629-636
    • Wang, Y.1    Wang, S.2    Zhang, N.3
  • 16
    • 84930947539 scopus 로고    scopus 로고
    • New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks
    • [16] Liu, H., Tian, H., Liang, X., Li, Y., New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks. Renew. Energy 83 (2015), 1066–1075.
    • (2015) Renew. Energy , vol.83 , pp. 1066-1075
    • Liu, H.1    Tian, H.2    Liang, X.3    Li, Y.4
  • 18
    • 0003413187 scopus 로고    scopus 로고
    • Neural Networks: a Comprehensive Foundation
    • Prentice Hall
    • [18] Haykin, S.S., Neural Networks: a Comprehensive Foundation. 1999, Prentice Hall.
    • (1999)
    • Haykin, S.S.1
  • 19
    • 0004003832 scopus 로고    scopus 로고
    • Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering
    • MIT Press
    • [19] Kasabov, N.K., Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering. 1996, MIT Press.
    • (1996)
    • Kasabov, N.K.1
  • 20
    • 0036647190 scopus 로고    scopus 로고
    • An efficient k-means clustering algorithm: analysis and implementation
    • [20] Kanungo, T., Mount, D.M., An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Patt. Anal. Mach. Intell. 24 (2002), 881–892.
    • (2002) IEEE Trans. Patt. Anal. Mach. Intell. , vol.24 , pp. 881-892
    • Kanungo, T.1    Mount, D.M.2
  • 21
    • 84867844623 scopus 로고    scopus 로고
    • Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks
    • [21] Egrioglu, E., Aladag, C.H., Yolcu, U., Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks. Expert Syst. Appl. 40 (2013), 854–857.
    • (2013) Expert Syst. Appl. , vol.40 , pp. 854-857
    • Egrioglu, E.1    Aladag, C.H.2    Yolcu, U.3
  • 22
    • 84863541904 scopus 로고    scopus 로고
    • Probabilistic load flow with non-Gaussian correlated random variables using Gaussian mixture models
    • [22] Valverde, G., Saric, A.T., Terzija, V., Probabilistic load flow with non-Gaussian correlated random variables using Gaussian mixture models. IET Gen. Trans. Dist. 6 (2012), 701–709.
    • (2012) IET Gen. Trans. Dist. , vol.6 , pp. 701-709
    • Valverde, G.1    Saric, A.T.2    Terzija, V.3
  • 23
    • 34548216339 scopus 로고    scopus 로고
    • Clustering-based symmetric radial basis function beamforming
    • [23] Chen, S., Labib, K., Hanzo, L., Clustering-based symmetric radial basis function beamforming. IEEE Sign. Proc. Lett. 14 (2007), 589–592.
    • (2007) IEEE Sign. Proc. Lett. , vol.14 , pp. 589-592
    • Chen, S.1    Labib, K.2    Hanzo, L.3
  • 24
    • 84884573115 scopus 로고    scopus 로고
    • Day-ahead price forecasting of electricity markets based on local informative vector machine
    • [24] Elattar, E.E., Day-ahead price forecasting of electricity markets based on local informative vector machine. IET Gen. Trans. Dist. 7 (2013), 1063–1071.
    • (2013) IET Gen. Trans. Dist. , vol.7 , pp. 1063-1071
    • Elattar, E.E.1
  • 25
    • 84892009922 scopus 로고    scopus 로고
    • Physical Approach to Short-term Wind Power Prediction
    • Springer
    • [25] Lange, M., Focken, U., Physical Approach to Short-term Wind Power Prediction. 2006, Springer.
    • (2006)
    • Lange, M.1    Focken, U.2
  • 26
    • 71849084254 scopus 로고    scopus 로고
    • A methodology to generate statistically dependent wind speed scenarios
    • [26] Morales, J.M., Minguez, R., Conejo, A.J., A methodology to generate statistically dependent wind speed scenarios. Appl. Energy 87 (2010), 843–855.
    • (2010) Appl. Energy , vol.87 , pp. 843-855
    • Morales, J.M.1    Minguez, R.2    Conejo, A.J.3
  • 27
    • 11944258430 scopus 로고    scopus 로고
    • To combine or not to combine: selecting among forecasts and their combinations
    • [27] Hibon, M., Evgeniou, T., To combine or not to combine: selecting among forecasts and their combinations. Int. J. Forecast. 21 (2005), 15–24.
    • (2005) Int. J. Forecast. , vol.21 , pp. 15-24
    • Hibon, M.1    Evgeniou, T.2
  • 28
    • 31744451232 scopus 로고    scopus 로고
    • Short-term prediction of wind energy production
    • [28] Sánchez, I., Short-term prediction of wind energy production. Int. J. Forecast. 22 (2006), 43–56.
    • (2006) Int. J. Forecast. , vol.22 , pp. 43-56
    • Sánchez, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.