-
1
-
-
77956444173
-
Wind Power Forecasting: State-of-the-art 2009
-
Report ANL/DIS-10–1 Argonne Natl. Lab.
-
[1] Monteiro, C., Bessa, R., Miranda, V., Botterud, A., Wang, J., Conzelmann, G., Wind Power Forecasting: State-of-the-art 2009. Report ANL/DIS-10–1, 2009, Argonne Natl. Lab.
-
(2009)
-
-
Monteiro, C.1
Bessa, R.2
Miranda, V.3
Botterud, A.4
Wang, J.5
Conzelmann, G.6
-
2
-
-
35549001332
-
Short term wind speed forecasting for wind turbine applications using linear prediction method
-
[2] Riahy, G., Abedi, M., Short term wind speed forecasting for wind turbine applications using linear prediction method. Renew. Energy 3 (2008), 35–41.
-
(2008)
Renew. Energy
, vol.3
, pp. 35-41
-
-
Riahy, G.1
Abedi, M.2
-
3
-
-
79952454042
-
Multiple architecture system for wind speed prediction
-
[3] Bouzgou, H., Benoudjit, N., Multiple architecture system for wind speed prediction. Appl. Energy 88 (2011), 2463–2471.
-
(2011)
Appl. Energy
, vol.88
, pp. 2463-2471
-
-
Bouzgou, H.1
Benoudjit, N.2
-
4
-
-
84867988966
-
Probabilistic wind power forecasting using radial basis function neural networks
-
[4] Sideratos, G., Hatziargyriou, N.D., Probabilistic wind power forecasting using radial basis function neural networks. IEEE Trans. Power Syst. 27 (2012), 1788–1796.
-
(2012)
IEEE Trans. Power Syst.
, vol.27
, pp. 1788-1796
-
-
Sideratos, G.1
Hatziargyriou, N.D.2
-
5
-
-
0033893705
-
A real-time learning control approach for nonlinear continuous-time system using recurrent neural networks
-
[5] Chow, T.W., Li, S.D., Fang, Y., A real-time learning control approach for nonlinear continuous-time system using recurrent neural networks. IEEE Trans. Ind. Electr. 47 (2000), 478–486.
-
(2000)
IEEE Trans. Ind. Electr.
, vol.47
, pp. 478-486
-
-
Chow, T.W.1
Li, S.D.2
Fang, Y.3
-
6
-
-
84937909008
-
Wind speed forecasting for wind farms: a method based on support vector regression
-
[6] Santamaría-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C., Wind speed forecasting for wind farms: a method based on support vector regression. Renew. Energy 56 (2016), 790–806.
-
(2016)
Renew. Energy
, vol.56
, pp. 790-806
-
-
Santamaría-Bonfil, G.1
Reyes-Ballesteros, A.2
Gershenson, C.3
-
7
-
-
84864827118
-
Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model
-
[7] Cassola, F., Burland, M., Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model. Appl. Energy 99 (2012), 154–166.
-
(2012)
Appl. Energy
, vol.99
, pp. 154-166
-
-
Cassola, F.1
Burland, M.2
-
8
-
-
84859416828
-
Evaluation of hybrid forecasting approaches for wind speed and power generation time series
-
[8] Shi, J., Guo, J.M., Zheng, S.Y., Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew. Sustain. Energy Rev. 16 (2012), 3471–3480.
-
(2012)
Renew. Sustain. Energy Rev.
, vol.16
, pp. 3471-3480
-
-
Shi, J.1
Guo, J.M.2
Zheng, S.Y.3
-
9
-
-
84862729690
-
A new strategy for predicting short-term wind speed using soft computing models
-
[9] Haque, A.U., Mandal, P., Kaye, M.E., Meng, J., Chang, L., Senjyu, T., A new strategy for predicting short-term wind speed using soft computing models. Renew. Sustain. Energy Rev. 16 (2012), 4563–4573.
-
(2012)
Renew. Sustain. Energy Rev.
, vol.16
, pp. 4563-4573
-
-
Haque, A.U.1
Mandal, P.2
Kaye, M.E.3
Meng, J.4
Chang, L.5
Senjyu, T.6
-
10
-
-
84922697904
-
Markov chain modeling for very-short-term wind power forecasting
-
[10] Carpinone, A., Giorgio, M., Langell, R., Test, A., Markov chain modeling for very-short-term wind power forecasting. Elect. Power Syst. Res. 122 (2015), 152–158.
-
(2015)
Elect. Power Syst. Res.
, vol.122
, pp. 152-158
-
-
Carpinone, A.1
Giorgio, M.2
Langell, R.3
Test, A.4
-
11
-
-
84926652712
-
Local models-based regression trees for very short-term wind speed prediction
-
[11] Troncoso, A., Salcedo-Sanz, S., Casanova-Mateo, C., Riquelme, J.C., Prieto, L., Local models-based regression trees for very short-term wind speed prediction. Renew. Energy 81 (2015), 589–598.
-
(2015)
Renew. Energy
, vol.81
, pp. 589-598
-
-
Troncoso, A.1
Salcedo-Sanz, S.2
Casanova-Mateo, C.3
Riquelme, J.C.4
Prieto, L.5
-
12
-
-
79959557168
-
Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization
-
[12] Amjady, N., Keynia, F., Zareipour, H., Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization. IEEE Trans. Sustain. Energy 2 (2011), 265–276.
-
(2011)
IEEE Trans. Sustain. Energy
, vol.2
, pp. 265-276
-
-
Amjady, N.1
Keynia, F.2
Zareipour, H.3
-
13
-
-
84916917658
-
Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA
-
[13] Shukur, O.B., Lee, M.H., Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. Renew. Energy 76 (2015), 637–647.
-
(2015)
Renew. Energy
, vol.76
, pp. 637-647
-
-
Shukur, O.B.1
Lee, M.H.2
-
14
-
-
84892588054
-
Hybrid forecasting model for very-short term wind power forecasting based on grey relational analysis and wind speed distribution features
-
[14] Shi, J., Ding, Z., Lee, W.J., Yang, Y., Liu, Y., Zhang, M., Hybrid forecasting model for very-short term wind power forecasting based on grey relational analysis and wind speed distribution features. IEEE Trans. Smart Grid 5 (2014), 521–526.
-
(2014)
IEEE Trans. Smart Grid
, vol.5
, pp. 521-526
-
-
Shi, J.1
Ding, Z.2
Lee, W.J.3
Yang, Y.4
Liu, Y.5
Zhang, M.6
-
15
-
-
84962148959
-
Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
-
[15] Wang, Y., Wang, S., Zhang, N., Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew. Energy 94 (2016), 629–636.
-
(2016)
Renew. Energy
, vol.94
, pp. 629-636
-
-
Wang, Y.1
Wang, S.2
Zhang, N.3
-
16
-
-
84930947539
-
New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks
-
[16] Liu, H., Tian, H., Liang, X., Li, Y., New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks. Renew. Energy 83 (2015), 1066–1075.
-
(2015)
Renew. Energy
, vol.83
, pp. 1066-1075
-
-
Liu, H.1
Tian, H.2
Liang, X.3
Li, Y.4
-
18
-
-
0003413187
-
Neural Networks: a Comprehensive Foundation
-
Prentice Hall
-
[18] Haykin, S.S., Neural Networks: a Comprehensive Foundation. 1999, Prentice Hall.
-
(1999)
-
-
Haykin, S.S.1
-
19
-
-
0004003832
-
Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering
-
MIT Press
-
[19] Kasabov, N.K., Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering. 1996, MIT Press.
-
(1996)
-
-
Kasabov, N.K.1
-
20
-
-
0036647190
-
An efficient k-means clustering algorithm: analysis and implementation
-
[20] Kanungo, T., Mount, D.M., An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Patt. Anal. Mach. Intell. 24 (2002), 881–892.
-
(2002)
IEEE Trans. Patt. Anal. Mach. Intell.
, vol.24
, pp. 881-892
-
-
Kanungo, T.1
Mount, D.M.2
-
21
-
-
84867844623
-
Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks
-
[21] Egrioglu, E., Aladag, C.H., Yolcu, U., Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks. Expert Syst. Appl. 40 (2013), 854–857.
-
(2013)
Expert Syst. Appl.
, vol.40
, pp. 854-857
-
-
Egrioglu, E.1
Aladag, C.H.2
Yolcu, U.3
-
22
-
-
84863541904
-
Probabilistic load flow with non-Gaussian correlated random variables using Gaussian mixture models
-
[22] Valverde, G., Saric, A.T., Terzija, V., Probabilistic load flow with non-Gaussian correlated random variables using Gaussian mixture models. IET Gen. Trans. Dist. 6 (2012), 701–709.
-
(2012)
IET Gen. Trans. Dist.
, vol.6
, pp. 701-709
-
-
Valverde, G.1
Saric, A.T.2
Terzija, V.3
-
23
-
-
34548216339
-
Clustering-based symmetric radial basis function beamforming
-
[23] Chen, S., Labib, K., Hanzo, L., Clustering-based symmetric radial basis function beamforming. IEEE Sign. Proc. Lett. 14 (2007), 589–592.
-
(2007)
IEEE Sign. Proc. Lett.
, vol.14
, pp. 589-592
-
-
Chen, S.1
Labib, K.2
Hanzo, L.3
-
24
-
-
84884573115
-
Day-ahead price forecasting of electricity markets based on local informative vector machine
-
[24] Elattar, E.E., Day-ahead price forecasting of electricity markets based on local informative vector machine. IET Gen. Trans. Dist. 7 (2013), 1063–1071.
-
(2013)
IET Gen. Trans. Dist.
, vol.7
, pp. 1063-1071
-
-
Elattar, E.E.1
-
25
-
-
84892009922
-
Physical Approach to Short-term Wind Power Prediction
-
Springer
-
[25] Lange, M., Focken, U., Physical Approach to Short-term Wind Power Prediction. 2006, Springer.
-
(2006)
-
-
Lange, M.1
Focken, U.2
-
26
-
-
71849084254
-
A methodology to generate statistically dependent wind speed scenarios
-
[26] Morales, J.M., Minguez, R., Conejo, A.J., A methodology to generate statistically dependent wind speed scenarios. Appl. Energy 87 (2010), 843–855.
-
(2010)
Appl. Energy
, vol.87
, pp. 843-855
-
-
Morales, J.M.1
Minguez, R.2
Conejo, A.J.3
-
27
-
-
11944258430
-
To combine or not to combine: selecting among forecasts and their combinations
-
[27] Hibon, M., Evgeniou, T., To combine or not to combine: selecting among forecasts and their combinations. Int. J. Forecast. 21 (2005), 15–24.
-
(2005)
Int. J. Forecast.
, vol.21
, pp. 15-24
-
-
Hibon, M.1
Evgeniou, T.2
-
28
-
-
31744451232
-
Short-term prediction of wind energy production
-
[28] Sánchez, I., Short-term prediction of wind energy production. Int. J. Forecast. 22 (2006), 43–56.
-
(2006)
Int. J. Forecast.
, vol.22
, pp. 43-56
-
-
Sánchez, I.1
|