-
1
-
-
85043921325
-
-
Global Wind Energy Council Brussels, Belgium
-
[1] Global Wind 2013 Report, 2013, Global Wind Energy Council, Brussels, Belgium.
-
(2013)
Global Wind 2013 Report
-
-
-
2
-
-
77955677883
-
Impacts of large-scale wind penetration on designing and operation of electric power systems
-
July
-
[2] Kabouris, J., Kanellos, F.D., Impacts of large-scale wind penetration on designing and operation of electric power systems. Sustain. Energy IEEE Trans., 1(No. 2), July 2010, 107,114.
-
(2010)
Sustain. Energy IEEE Trans.
, vol.1
, Issue.2
, pp. 107114
-
-
Kabouris, J.1
Kanellos, F.D.2
-
3
-
-
33947303690
-
An advanced statistical method for wind power forecasting
-
Feb
-
[3] Sideratos, G., Hatziargyriou, N.D., An advanced statistical method for wind power forecasting. Power Sys. IEEE Trans., 22(No. 1), Feb 2007, 258,265.
-
(2007)
Power Sys. IEEE Trans.
, vol.22
, Issue.1
, pp. 258265
-
-
Sideratos, G.1
Hatziargyriou, N.D.2
-
4
-
-
84885438201
-
Short-Term wind power forecasting using the enhanced particle swarm optimization based hybrid method
-
Sep
-
[4] Chang, Wen-Yeau, Short-Term wind power forecasting using the enhanced particle swarm optimization based hybrid method. Energies 6:No. 9 (Sep 2013), 4879–4896.
-
(2013)
Energies
, vol.6
, Issue.9
, pp. 4879-4896
-
-
Chang, W.-Y.1
-
5
-
-
84922796172
-
Combined forecasting models for wind energy forecasting: a case study in China
-
April
-
[5] Xiao, Lingo, Wang, Jianzhou, Dong, Yao, Wu, Jie, Combined forecasting models for wind energy forecasting: a case study in China. Renew. Sustain. Energy Rev. 44 (April 2015), 271–288.
-
(2015)
Renew. Sustain. Energy Rev.
, vol.44
, pp. 271-288
-
-
Xiao, L.1
Wang, J.2
Dong, Y.3
Wu, J.4
-
6
-
-
33646352206
-
Very short-term wind forecasting for tasmanian power generation
-
May
-
[6] Potter, C.W., Negnevitsky, M., Very short-term wind forecasting for tasmanian power generation. Power Syst. IEEE Trans. 21:No. 2 (May 2006), 965–972.
-
(2006)
Power Syst. IEEE Trans.
, vol.21
, Issue.2
, pp. 965-972
-
-
Potter, C.W.1
Negnevitsky, M.2
-
7
-
-
67349211771
-
Forecasting the wind generation using a two-stage network based on meteorological information
-
June
-
[7] Shu, Fan, Liao, J.R., Yokoyama, R., Chen, Luonan, Lee, Wei-Jen, Forecasting the wind generation using a two-stage network based on meteorological information. Energy Convers. IEEE Trans. 24:No. 2 (June 2009), 474–482.
-
(2009)
Energy Convers. IEEE Trans.
, vol.24
, Issue.2
, pp. 474-482
-
-
Shu, F.1
Liao, J.R.2
Yokoyama, R.3
Chen, L.4
Lee, W.-J.5
-
8
-
-
33244470907
-
Long-term wind speed and power forecasting using local recurrent neural network models
-
March
-
[8] Barbounis, T.G., Theocharis, J.B., Alexiadis, M.C., Dokopoulos, P.S., Long-term wind speed and power forecasting using local recurrent neural network models. Energy Convers. IEEE Trans. 21:No. 1 (March 2006), 273–284.
-
(2006)
Energy Convers. IEEE Trans.
, vol.21
, Issue.1
, pp. 273-284
-
-
Barbounis, T.G.1
Theocharis, J.B.2
Alexiadis, M.C.3
Dokopoulos, P.S.4
-
9
-
-
0030418613
-
Wind power forecasting using advanced neural networks models
-
Dec
-
[9] Kariniotakis, G.N., Stavrakakis, G.S., Nogaret, E.F., Wind power forecasting using advanced neural networks models. Energy Convers. IEEE Trans. 11:No. 4 (Dec 1996), 762–767.
-
(1996)
Energy Convers. IEEE Trans.
, vol.11
, Issue.4
, pp. 762-767
-
-
Kariniotakis, G.N.1
Stavrakakis, G.S.2
Nogaret, E.F.3
-
10
-
-
13844260429
-
The State of the Art in Short-term Prediction of Wind Power—A Literature Overview
-
Position paper for the ANEMOS project [Online] Available
-
[10] Giebel, G., Kariniotakis, G., Brownsword, R., The State of the Art in Short-term Prediction of Wind Power—A Literature Overview. Position paper for the ANEMOS project [Online], 2003 Available http://www.anemos-project.eu.
-
(2003)
-
-
Giebel, G.1
Kariniotakis, G.2
Brownsword, R.3
-
11
-
-
0033313265
-
Wind speed and power forecasting based on spatial correlation models
-
Sep
-
[11] Alexiadis, M.C., Dokopoulos, P.S., Sahsamanoglou, H.S., Wind speed and power forecasting based on spatial correlation models. Energy Convers. IEEE Trans. 14:No. 3 (Sep 1999), 836–842.
-
(1999)
Energy Convers. IEEE Trans.
, vol.14
, Issue.3
, pp. 836-842
-
-
Alexiadis, M.C.1
Dokopoulos, P.S.2
Sahsamanoglou, H.S.3
-
12
-
-
33244470907
-
Long-term wind speed and power forecasting using local recurrent neural network models
-
March
-
[12] Barbounis, T.G., Theocharis, J.B., Alexiadis, M.C., Dokopoulos, P.S., Long-term wind speed and power forecasting using local recurrent neural network models. Energy Convers. IEEE Trans. 21:No. 1 (March 2006), 273–284.
-
(2006)
Energy Convers. IEEE Trans.
, vol.21
, Issue.1
, pp. 273-284
-
-
Barbounis, T.G.1
Theocharis, J.B.2
Alexiadis, M.C.3
Dokopoulos, P.S.4
-
13
-
-
43049128559
-
A review on the young history of the wind power short-term prediction
-
Aug
-
[13] Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., Feitosa, E., A review on the young history of the wind power short-term prediction. Renew. Sustain. Energy Rev. 12:No. 6 (Aug 2008), 1725–1744.
-
(2008)
Renew. Sustain. Energy Rev.
, vol.12
, Issue.6
, pp. 1725-1744
-
-
Costa, A.1
Crespo, A.2
Navarro, J.3
Lizcano, G.4
Madsen, H.5
Feitosa, E.6
-
14
-
-
84908376968
-
Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
-
March
-
[14] Osório, G.J., Matias, J.C.O., Catalão, J.P.S., Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 75 (March 2015), 301–307.
-
(2015)
Renew. Energy
, vol.75
, pp. 301-307
-
-
Osório, G.J.1
Matias, J.C.O.2
Catalão, J.P.S.3
-
15
-
-
60949099322
-
Comparison of two new short-term wind-power forecasting systems
-
July
-
[15] Ramirez-Rosado, I.J., Fernandez-Jimenez, L.A., Monteiro, C., Sousa, J., Bessa, R., Comparison of two new short-term wind-power forecasting systems. Renew. Energy 34:No. 7 (July 2009), 1848–1854.
-
(2009)
Renew. Energy
, vol.34
, Issue.7
, pp. 1848-1854
-
-
Ramirez-Rosado, I.J.1
Fernandez-Jimenez, L.A.2
Monteiro, C.3
Sousa, J.4
Bessa, R.5
-
16
-
-
0033086885
-
Short-term prediction of the power production from wind farms
-
March
-
[16] Landberg, L., Short-term prediction of the power production from wind farms. J. Wind Eng. Industrial Aerodynamics 80 (March 1999), 207–220.
-
(1999)
J. Wind Eng. Industrial Aerodynamics
, vol.80
, pp. 207-220
-
-
Landberg, L.1
-
17
-
-
84897459902
-
A review of combined approaches for prediction of short-term wind speed and power
-
June
-
[17] Tascikaraoglu, A., Uzunoglu, M., A review of combined approaches for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 34 (June 2014), 243–254.
-
(2014)
Renew. Sustain. Energy Rev.
, vol.34
, pp. 243-254
-
-
Tascikaraoglu, A.1
Uzunoglu, M.2
-
18
-
-
84864827118
-
Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output
-
Nov
-
[18] Cassola, F., Burlando, M., Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output. Appl. Energy 99 (Nov 2012), 154–166.
-
(2012)
Appl. Energy
, vol.99
, pp. 154-166
-
-
Cassola, F.1
Burlando, M.2
-
19
-
-
20444437286
-
Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
-
July
-
[19] Torres, J.L., García, A., De Blas, M., De Francisco, A., Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol. Energy 79:No. 1 (July 2005), 65–77.
-
(2005)
Sol. Energy
, vol.79
, Issue.1
, pp. 65-77
-
-
Torres, J.L.1
García, A.2
De Blas, M.3
De Francisco, A.4
-
20
-
-
84903179521
-
A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
-
Sep
-
[20] Su, Zhongyue, Wang, Jianzhou, Lu, Haiyan, Zhao, Ge, A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting. Energy Convers. Manag. 85 (Sep 2014), 443–452.
-
(2014)
Energy Convers. Manag.
, vol.85
, pp. 443-452
-
-
Su, Z.1
Wang, J.2
Lu, H.3
Zhao, G.4
-
21
-
-
60049084645
-
A review on the forecasting of wind speed and generated power
-
May
-
[21] Lei, Ma, Shiyan, Luan, Chuanwen, Jiang, Hongling, Liu, Yan, Zhang, A review on the forecasting of wind speed and generated power. Renew. Sustain. Energy Rev. 13:No. 4 (May 2009), 915–920.
-
(2009)
Renew. Sustain. Energy Rev.
, vol.13
, Issue.4
, pp. 915-920
-
-
Lei, M.1
Shiyan, L.2
Chuanwen, J.3
Hongling, L.4
Yan, Z.5
-
22
-
-
84862729690
-
A new strategy for predicting short-term wind speed using soft computing models
-
Sep
-
[22] Haque, A.U., Mandal, P., Kaye, M.E., Meng, J., Liuchen, Chang, Senjyu, T., A new strategy for predicting short-term wind speed using soft computing models. Renew. Sustain. Energy Rev. 16:No. 7 (Sep 2012), 4563–4573.
-
(2012)
Renew. Sustain. Energy Rev.
, vol.16
, Issue.7
, pp. 4563-4573
-
-
Haque, A.U.1
Mandal, P.2
Kaye, M.E.3
Meng, J.4
Liuchen, C.5
Senjyu, T.6
-
23
-
-
84867988966
-
Probabilistic wind power forecasting using radial basis function neural networks
-
[23] Sideratos, G., Hatziargyriou, N.D., Probabilistic wind power forecasting using radial basis function neural networks. Power Syst. IEEE Trans. 27:No. 4 (Nov. 2012), 1788–1796.
-
(2012)
Power Syst. IEEE Trans.
, vol.27
, Issue.4
, pp. 1788-1796
-
-
Sideratos, G.1
Hatziargyriou, N.D.2
-
24
-
-
51349095945
-
Short term wind power forecasting using adaptive neuro-fuzzy inference systems
-
Australasian Universities
-
[24] Johnson, P., Negnevitsky, M., Muttaqi, K.M., Short term wind power forecasting using adaptive neuro-fuzzy inference systems. Power Engineering Conference, 2007. AUPEC 2007, 9–12 Dec. 2007, Australasian Universities, 1–6.
-
(2007)
Power Engineering Conference, 2007. AUPEC 2007
, pp. 1-6
-
-
Johnson, P.1
Negnevitsky, M.2
Muttaqi, K.M.3
-
25
-
-
78650402541
-
Hybrid Wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal
-
Jan
-
[25] Catalão, J.P.S., Pousinho, H.M.I., Mendes, V.M.F., Hybrid Wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal. IEEE Trans. Sustain Energy 2:No. 1 (Jan 2011), 50–59.
-
(2011)
IEEE Trans. Sustain Energy
, vol.2
, Issue.1
, pp. 50-59
-
-
Catalão, J.P.S.1
Pousinho, H.M.I.2
Mendes, V.M.F.3
-
26
-
-
78650944534
-
Fine tuning support vector machines for short-term wind speed forecasting
-
Apr
-
[26] Zhou, Junyi, Shi, Jing, Li, Gong, Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers. Manag. 52:No. 4 (Apr 2011), 1990–1998.
-
(2011)
Energy Convers. Manag.
, vol.52
, Issue.4
, pp. 1990-1998
-
-
Zhou, J.1
Shi, J.2
Li, G.3
-
27
-
-
84865439917
-
A hybrid strategy of short term wind power prediction
-
Feb
-
[27] Peng, Huaiwu, Liu, Fangrui, Yang, Xiaofeng, A hybrid strategy of short term wind power prediction. Renew. Energy 50 (Feb 2013), 590–595.
-
(2013)
Renew. Energy
, vol.50
, pp. 590-595
-
-
Peng, H.1
Liu, F.2
Yang, X.3
-
28
-
-
84859036543
-
AWNN-assisted wind power forecasting using feed-forward neural network
-
[28] Bhaskar, K., Singh, S.N., AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans. Sustain. Energy 3:No. 2 (2012), 306–315.
-
(2012)
IEEE Trans. Sustain. Energy
, vol.3
, Issue.2
, pp. 306-315
-
-
Bhaskar, K.1
Singh, S.N.2
-
29
-
-
34250762015
-
Application of artificial neural networks for the wind speed prediction of target station using reference stations data
-
[29] Bilgili, M., Sahin, B., Yasar, A., Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew. Energy 32:No. 14 (2007), 2350–2360.
-
(2007)
Renew. Energy
, vol.32
, Issue.14
, pp. 2350-2360
-
-
Bilgili, M.1
Sahin, B.2
Yasar, A.3
-
30
-
-
62649168462
-
On the importance of the Pearson correlation coefficient in noise reduction
-
May
-
[30] Benesty, J., Chen, Jingdong, Huang, Yiteng, On the importance of the Pearson correlation coefficient in noise reduction. Audio, Speech, Lang. Process. IEEE Trans. 16:No. 4 (May 2008), 757–765.
-
(2008)
Audio, Speech, Lang. Process. IEEE Trans.
, vol.16
, Issue.4
, pp. 757-765
-
-
Benesty, J.1
Chen, J.2
Huang, Y.3
-
31
-
-
0003502203
-
Applied Statistics: Analysis of Variance n and Regression
-
Wiley New York
-
[31] Dunn, O.J., Clark, V.A., Applied Statistics: Analysis of Variance n and Regression. 1974, Wiley, New York.
-
(1974)
-
-
Dunn, O.J.1
Clark, V.A.2
-
32
-
-
85043905903
-
Measurement-Based Correlation Approach for Power System Dynamic Response Estimation
-
Accepted by IET Generation, Transmission & Distribution April
-
[32] Bai, Feifei, Liu, Yong, Liu, Yilu, Sun, Kai, Bhatt, N., Rosso, A.D., Farantatos, E., Wang, Xiaoru, Measurement-Based Correlation Approach for Power System Dynamic Response Estimation. Accepted by IET Generation, Transmission & Distribution, April 2015.
-
(2015)
-
-
Bai, F.1
Liu, Y.2
Liu, Y.3
Sun, K.4
Bhatt, N.5
Rosso, A.D.6
Farantatos, E.7
Wang, X.8
-
33
-
-
84884126948
-
Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
-
Feb
-
[33] Liu, Da, Niu, Dongxiao, Wang, Hui, Fan, Leilei, Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew. Energy 62 (Feb 2014), 592–597.
-
(2014)
Renew. Energy
, vol.62
, pp. 592-597
-
-
Liu, D.1
Niu, D.2
Wang, H.3
Fan, L.4
-
34
-
-
0242288903
-
Benchmarking least squares support vector machine classifiers
-
[34] Gestel, T.V., Suykens, J.A.K., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., et al. Benchmarking least squares support vector machine classifiers. Mach. Learn. 54 (2004), 5–32.
-
(2004)
Mach. Learn.
, vol.54
, pp. 5-32
-
-
Gestel, T.V.1
Suykens, J.A.K.2
Baesens, B.3
Viaene, S.4
Vanthienen, J.5
Dedene, G.6
|