메뉴 건너뛰기




Volumn 103, Issue , 2017, Pages 620-629

A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system

Author keywords

Adaptive neuro fuzzy inference system; Hybrid methodology; Least squares support vector machine; Neural network; Pearson correlation coefficient; Short term wind power forecasting

Indexed keywords

ASSOCIATION RULES; CORRELATION METHODS; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS; SUPPORT VECTOR MACHINES; TWO PHASE FLOW; WEATHER FORECASTING; WIND POWER;

EID: 85006355806     PISSN: 09601481     EISSN: 18790682     Source Type: Journal    
DOI: 10.1016/j.renene.2016.10.074     Document Type: Article
Times cited : (115)

References (34)
  • 1
    • 85043921325 scopus 로고    scopus 로고
    • Global Wind Energy Council Brussels, Belgium
    • [1] Global Wind 2013 Report, 2013, Global Wind Energy Council, Brussels, Belgium.
    • (2013) Global Wind 2013 Report
  • 2
    • 77955677883 scopus 로고    scopus 로고
    • Impacts of large-scale wind penetration on designing and operation of electric power systems
    • July
    • [2] Kabouris, J., Kanellos, F.D., Impacts of large-scale wind penetration on designing and operation of electric power systems. Sustain. Energy IEEE Trans., 1(No. 2), July 2010, 107,114.
    • (2010) Sustain. Energy IEEE Trans. , vol.1 , Issue.2 , pp. 107114
    • Kabouris, J.1    Kanellos, F.D.2
  • 3
    • 33947303690 scopus 로고    scopus 로고
    • An advanced statistical method for wind power forecasting
    • Feb
    • [3] Sideratos, G., Hatziargyriou, N.D., An advanced statistical method for wind power forecasting. Power Sys. IEEE Trans., 22(No. 1), Feb 2007, 258,265.
    • (2007) Power Sys. IEEE Trans. , vol.22 , Issue.1 , pp. 258265
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 4
    • 84885438201 scopus 로고    scopus 로고
    • Short-Term wind power forecasting using the enhanced particle swarm optimization based hybrid method
    • Sep
    • [4] Chang, Wen-Yeau, Short-Term wind power forecasting using the enhanced particle swarm optimization based hybrid method. Energies 6:No. 9 (Sep 2013), 4879–4896.
    • (2013) Energies , vol.6 , Issue.9 , pp. 4879-4896
    • Chang, W.-Y.1
  • 5
    • 84922796172 scopus 로고    scopus 로고
    • Combined forecasting models for wind energy forecasting: a case study in China
    • April
    • [5] Xiao, Lingo, Wang, Jianzhou, Dong, Yao, Wu, Jie, Combined forecasting models for wind energy forecasting: a case study in China. Renew. Sustain. Energy Rev. 44 (April 2015), 271–288.
    • (2015) Renew. Sustain. Energy Rev. , vol.44 , pp. 271-288
    • Xiao, L.1    Wang, J.2    Dong, Y.3    Wu, J.4
  • 6
    • 33646352206 scopus 로고    scopus 로고
    • Very short-term wind forecasting for tasmanian power generation
    • May
    • [6] Potter, C.W., Negnevitsky, M., Very short-term wind forecasting for tasmanian power generation. Power Syst. IEEE Trans. 21:No. 2 (May 2006), 965–972.
    • (2006) Power Syst. IEEE Trans. , vol.21 , Issue.2 , pp. 965-972
    • Potter, C.W.1    Negnevitsky, M.2
  • 7
    • 67349211771 scopus 로고    scopus 로고
    • Forecasting the wind generation using a two-stage network based on meteorological information
    • June
    • [7] Shu, Fan, Liao, J.R., Yokoyama, R., Chen, Luonan, Lee, Wei-Jen, Forecasting the wind generation using a two-stage network based on meteorological information. Energy Convers. IEEE Trans. 24:No. 2 (June 2009), 474–482.
    • (2009) Energy Convers. IEEE Trans. , vol.24 , Issue.2 , pp. 474-482
    • Shu, F.1    Liao, J.R.2    Yokoyama, R.3    Chen, L.4    Lee, W.-J.5
  • 8
    • 33244470907 scopus 로고    scopus 로고
    • Long-term wind speed and power forecasting using local recurrent neural network models
    • March
    • [8] Barbounis, T.G., Theocharis, J.B., Alexiadis, M.C., Dokopoulos, P.S., Long-term wind speed and power forecasting using local recurrent neural network models. Energy Convers. IEEE Trans. 21:No. 1 (March 2006), 273–284.
    • (2006) Energy Convers. IEEE Trans. , vol.21 , Issue.1 , pp. 273-284
    • Barbounis, T.G.1    Theocharis, J.B.2    Alexiadis, M.C.3    Dokopoulos, P.S.4
  • 10
    • 13844260429 scopus 로고    scopus 로고
    • The State of the Art in Short-term Prediction of Wind Power—A Literature Overview
    • Position paper for the ANEMOS project [Online] Available
    • [10] Giebel, G., Kariniotakis, G., Brownsword, R., The State of the Art in Short-term Prediction of Wind Power—A Literature Overview. Position paper for the ANEMOS project [Online], 2003 Available http://www.anemos-project.eu.
    • (2003)
    • Giebel, G.1    Kariniotakis, G.2    Brownsword, R.3
  • 11
    • 0033313265 scopus 로고    scopus 로고
    • Wind speed and power forecasting based on spatial correlation models
    • Sep
    • [11] Alexiadis, M.C., Dokopoulos, P.S., Sahsamanoglou, H.S., Wind speed and power forecasting based on spatial correlation models. Energy Convers. IEEE Trans. 14:No. 3 (Sep 1999), 836–842.
    • (1999) Energy Convers. IEEE Trans. , vol.14 , Issue.3 , pp. 836-842
    • Alexiadis, M.C.1    Dokopoulos, P.S.2    Sahsamanoglou, H.S.3
  • 12
    • 33244470907 scopus 로고    scopus 로고
    • Long-term wind speed and power forecasting using local recurrent neural network models
    • March
    • [12] Barbounis, T.G., Theocharis, J.B., Alexiadis, M.C., Dokopoulos, P.S., Long-term wind speed and power forecasting using local recurrent neural network models. Energy Convers. IEEE Trans. 21:No. 1 (March 2006), 273–284.
    • (2006) Energy Convers. IEEE Trans. , vol.21 , Issue.1 , pp. 273-284
    • Barbounis, T.G.1    Theocharis, J.B.2    Alexiadis, M.C.3    Dokopoulos, P.S.4
  • 14
    • 84908376968 scopus 로고    scopus 로고
    • Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
    • March
    • [14] Osório, G.J., Matias, J.C.O., Catalão, J.P.S., Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 75 (March 2015), 301–307.
    • (2015) Renew. Energy , vol.75 , pp. 301-307
    • Osório, G.J.1    Matias, J.C.O.2    Catalão, J.P.S.3
  • 16
    • 0033086885 scopus 로고    scopus 로고
    • Short-term prediction of the power production from wind farms
    • March
    • [16] Landberg, L., Short-term prediction of the power production from wind farms. J. Wind Eng. Industrial Aerodynamics 80 (March 1999), 207–220.
    • (1999) J. Wind Eng. Industrial Aerodynamics , vol.80 , pp. 207-220
    • Landberg, L.1
  • 17
    • 84897459902 scopus 로고    scopus 로고
    • A review of combined approaches for prediction of short-term wind speed and power
    • June
    • [17] Tascikaraoglu, A., Uzunoglu, M., A review of combined approaches for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 34 (June 2014), 243–254.
    • (2014) Renew. Sustain. Energy Rev. , vol.34 , pp. 243-254
    • Tascikaraoglu, A.1    Uzunoglu, M.2
  • 18
    • 84864827118 scopus 로고    scopus 로고
    • Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output
    • Nov
    • [18] Cassola, F., Burlando, M., Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output. Appl. Energy 99 (Nov 2012), 154–166.
    • (2012) Appl. Energy , vol.99 , pp. 154-166
    • Cassola, F.1    Burlando, M.2
  • 19
    • 20444437286 scopus 로고    scopus 로고
    • Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
    • July
    • [19] Torres, J.L., García, A., De Blas, M., De Francisco, A., Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol. Energy 79:No. 1 (July 2005), 65–77.
    • (2005) Sol. Energy , vol.79 , Issue.1 , pp. 65-77
    • Torres, J.L.1    García, A.2    De Blas, M.3    De Francisco, A.4
  • 20
    • 84903179521 scopus 로고    scopus 로고
    • A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
    • Sep
    • [20] Su, Zhongyue, Wang, Jianzhou, Lu, Haiyan, Zhao, Ge, A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting. Energy Convers. Manag. 85 (Sep 2014), 443–452.
    • (2014) Energy Convers. Manag. , vol.85 , pp. 443-452
    • Su, Z.1    Wang, J.2    Lu, H.3    Zhao, G.4
  • 21
    • 60049084645 scopus 로고    scopus 로고
    • A review on the forecasting of wind speed and generated power
    • May
    • [21] Lei, Ma, Shiyan, Luan, Chuanwen, Jiang, Hongling, Liu, Yan, Zhang, A review on the forecasting of wind speed and generated power. Renew. Sustain. Energy Rev. 13:No. 4 (May 2009), 915–920.
    • (2009) Renew. Sustain. Energy Rev. , vol.13 , Issue.4 , pp. 915-920
    • Lei, M.1    Shiyan, L.2    Chuanwen, J.3    Hongling, L.4    Yan, Z.5
  • 22
    • 84862729690 scopus 로고    scopus 로고
    • A new strategy for predicting short-term wind speed using soft computing models
    • Sep
    • [22] Haque, A.U., Mandal, P., Kaye, M.E., Meng, J., Liuchen, Chang, Senjyu, T., A new strategy for predicting short-term wind speed using soft computing models. Renew. Sustain. Energy Rev. 16:No. 7 (Sep 2012), 4563–4573.
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , Issue.7 , pp. 4563-4573
    • Haque, A.U.1    Mandal, P.2    Kaye, M.E.3    Meng, J.4    Liuchen, C.5    Senjyu, T.6
  • 23
    • 84867988966 scopus 로고    scopus 로고
    • Probabilistic wind power forecasting using radial basis function neural networks
    • [23] Sideratos, G., Hatziargyriou, N.D., Probabilistic wind power forecasting using radial basis function neural networks. Power Syst. IEEE Trans. 27:No. 4 (Nov. 2012), 1788–1796.
    • (2012) Power Syst. IEEE Trans. , vol.27 , Issue.4 , pp. 1788-1796
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 24
    • 51349095945 scopus 로고    scopus 로고
    • Short term wind power forecasting using adaptive neuro-fuzzy inference systems
    • Australasian Universities
    • [24] Johnson, P., Negnevitsky, M., Muttaqi, K.M., Short term wind power forecasting using adaptive neuro-fuzzy inference systems. Power Engineering Conference, 2007. AUPEC 2007, 9–12 Dec. 2007, Australasian Universities, 1–6.
    • (2007) Power Engineering Conference, 2007. AUPEC 2007 , pp. 1-6
    • Johnson, P.1    Negnevitsky, M.2    Muttaqi, K.M.3
  • 25
    • 78650402541 scopus 로고    scopus 로고
    • Hybrid Wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal
    • Jan
    • [25] Catalão, J.P.S., Pousinho, H.M.I., Mendes, V.M.F., Hybrid Wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal. IEEE Trans. Sustain Energy 2:No. 1 (Jan 2011), 50–59.
    • (2011) IEEE Trans. Sustain Energy , vol.2 , Issue.1 , pp. 50-59
    • Catalão, J.P.S.1    Pousinho, H.M.I.2    Mendes, V.M.F.3
  • 26
    • 78650944534 scopus 로고    scopus 로고
    • Fine tuning support vector machines for short-term wind speed forecasting
    • Apr
    • [26] Zhou, Junyi, Shi, Jing, Li, Gong, Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers. Manag. 52:No. 4 (Apr 2011), 1990–1998.
    • (2011) Energy Convers. Manag. , vol.52 , Issue.4 , pp. 1990-1998
    • Zhou, J.1    Shi, J.2    Li, G.3
  • 27
    • 84865439917 scopus 로고    scopus 로고
    • A hybrid strategy of short term wind power prediction
    • Feb
    • [27] Peng, Huaiwu, Liu, Fangrui, Yang, Xiaofeng, A hybrid strategy of short term wind power prediction. Renew. Energy 50 (Feb 2013), 590–595.
    • (2013) Renew. Energy , vol.50 , pp. 590-595
    • Peng, H.1    Liu, F.2    Yang, X.3
  • 28
    • 84859036543 scopus 로고    scopus 로고
    • AWNN-assisted wind power forecasting using feed-forward neural network
    • [28] Bhaskar, K., Singh, S.N., AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans. Sustain. Energy 3:No. 2 (2012), 306–315.
    • (2012) IEEE Trans. Sustain. Energy , vol.3 , Issue.2 , pp. 306-315
    • Bhaskar, K.1    Singh, S.N.2
  • 29
    • 34250762015 scopus 로고    scopus 로고
    • Application of artificial neural networks for the wind speed prediction of target station using reference stations data
    • [29] Bilgili, M., Sahin, B., Yasar, A., Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew. Energy 32:No. 14 (2007), 2350–2360.
    • (2007) Renew. Energy , vol.32 , Issue.14 , pp. 2350-2360
    • Bilgili, M.1    Sahin, B.2    Yasar, A.3
  • 30
    • 62649168462 scopus 로고    scopus 로고
    • On the importance of the Pearson correlation coefficient in noise reduction
    • May
    • [30] Benesty, J., Chen, Jingdong, Huang, Yiteng, On the importance of the Pearson correlation coefficient in noise reduction. Audio, Speech, Lang. Process. IEEE Trans. 16:No. 4 (May 2008), 757–765.
    • (2008) Audio, Speech, Lang. Process. IEEE Trans. , vol.16 , Issue.4 , pp. 757-765
    • Benesty, J.1    Chen, J.2    Huang, Y.3
  • 31
    • 0003502203 scopus 로고
    • Applied Statistics: Analysis of Variance n and Regression
    • Wiley New York
    • [31] Dunn, O.J., Clark, V.A., Applied Statistics: Analysis of Variance n and Regression. 1974, Wiley, New York.
    • (1974)
    • Dunn, O.J.1    Clark, V.A.2
  • 32
    • 85043905903 scopus 로고    scopus 로고
    • Measurement-Based Correlation Approach for Power System Dynamic Response Estimation
    • Accepted by IET Generation, Transmission & Distribution April
    • [32] Bai, Feifei, Liu, Yong, Liu, Yilu, Sun, Kai, Bhatt, N., Rosso, A.D., Farantatos, E., Wang, Xiaoru, Measurement-Based Correlation Approach for Power System Dynamic Response Estimation. Accepted by IET Generation, Transmission & Distribution, April 2015.
    • (2015)
    • Bai, F.1    Liu, Y.2    Liu, Y.3    Sun, K.4    Bhatt, N.5    Rosso, A.D.6    Farantatos, E.7    Wang, X.8
  • 33
    • 84884126948 scopus 로고    scopus 로고
    • Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
    • Feb
    • [33] Liu, Da, Niu, Dongxiao, Wang, Hui, Fan, Leilei, Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew. Energy 62 (Feb 2014), 592–597.
    • (2014) Renew. Energy , vol.62 , pp. 592-597
    • Liu, D.1    Niu, D.2    Wang, H.3    Fan, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.