메뉴 건너뛰기




Volumn 22, Issue 3, 2011, Pages 337-346

Lower upper bound estimation method for construction of neural network-based prediction intervals

Author keywords

Neural network; prediction interval; simulated annealing; uncertainty

Indexed keywords

COMPUTATIONAL LOADS; COVERAGE PROBABILITIES; DATA DISTRIBUTION; HIGH QUALITY; OBJECTIVE FUNCTIONS; PREDICTION INTERVAL; QUANTITATIVE COMPARISON; SIMULATED ANNEALING METHOD; TRADITIONAL TECHNIQUES; UNCERTAINTY; UPPER AND LOWER BOUNDS; UPPER BOUND;

EID: 79952186591     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2096824     Document Type: Article
Times cited : (641)

References (37)
  • 1
    • 67949102009 scopus 로고    scopus 로고
    • Bayesian committee of neural networks to predict travel times with confidence intervals
    • Oct.
    • C. P. I. J. van Hinsbergen, J. W. C. van Lint, and H. J. van Zuylen, "Bayesian committee of neural networks to predict travel times with confidence intervals," Trans. Res. Part C: Emerg. Technol., vol. 17, no. 5, pp. 498-509, Oct. 2009.
    • (2009) Trans. Res. Part C: Emerg. Technol. , vol.17 , Issue.5 , pp. 498-509
    • Van Hinsbergen, C.P.I.J.1    Van Lint, J.W.C.2    Van Zuylen, H.J.3
  • 2
    • 34547516812 scopus 로고    scopus 로고
    • Forecasting the semiconductor industry cycles by bootstrap prediction intervals
    • DOI 10.1080/00036840600706995, PII 779367434
    • W.-H. Liu, "Forecasting the semiconductor industry cycles by bootstrap prediction intervals," Appl. Econ., vol. 39, no. 13, pp. 1731-1742, 2007. (Pubitemid 47180432)
    • (2007) Applied Economics , vol.39 , Issue.13 , pp. 1731-1742
    • Liu, W.-H.1
  • 3
    • 70449526290 scopus 로고    scopus 로고
    • A prediction intervalbased approach to determine optimal structures of neural network metamodels
    • Mar.
    • A. Khosravi, S. Nahavandi, and D. Creighton, "A prediction intervalbased approach to determine optimal structures of neural network metamodels," Expert Syst. Appl., vol. 37, no. 3, pp. 2377-2387, Mar. 2010.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.3 , pp. 2377-2387
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 5
    • 33645987256 scopus 로고    scopus 로고
    • Machine learning approaches for estimation of prediction interval for the model output
    • Mar.
    • D. L. Shrestha and D. P. Solomatine, "Machine learning approaches for estimation of prediction interval for the model output," Neural Netw., vol. 19, no. 2, pp. 225-235, Mar. 2006.
    • (2006) Neural Netw. , vol.19 , Issue.2 , pp. 225-235
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 6
    • 0035493759 scopus 로고    scopus 로고
    • Neural network modeling with confidence bounds: A case study on the solder paste deposition process
    • DOI 10.1109/6104.980042, PII S1521334X01113261
    • S. L. Ho, M. Xie, L. C. Tang, K. Xu, and T. N. Goh, "Neural network modeling with confidence bounds: A case study on the solder paste deposition process," IEEE Trans. Electron. Packag. Manufact., vol. 24, no. 4, pp. 323-332, Oct. 2001. (Pubitemid 34126202)
    • (2001) IEEE Transactions on Electronics Packaging Manufacturing , vol.24 , Issue.4 , pp. 323-332
    • Ho, S.L.1    Xie, M.2    Tang, L.C.3    Xu, K.4    Goh, T.N.5
  • 7
    • 43849113102 scopus 로고    scopus 로고
    • A statistical approach for interval forecasting of the electricity price
    • DOI 10.1109/TPWRS.2008.919309
    • J. H. Zhao, Z. Y. Dong, Z. Xu, and K. P. Wong, "A statistical approach for interval forecasting of the electricity price," IEEE Trans. Power Syst., vol. 23, no. 2, pp. 267-276, May 2008. (Pubitemid 351695804)
    • (2008) IEEE Transactions on Power Systems , vol.23 , Issue.2 , pp. 267-276
    • Zhao, J.H.1    Dong, Z.Y.2    Xu, Z.3    Wong, K.P.4
  • 8
    • 77954834717 scopus 로고    scopus 로고
    • Construction of optimal prediction intervals for load forecasting problems
    • Aug.
    • A. Khosravi, S. Nahavandi, and D. Creighton, "Construction of optimal prediction intervals for load forecasting problems," IEEE Trans. Power Syst., vol. 25, no. 3, pp. 1496-1503, Aug. 2010.
    • (2010) IEEE Trans. Power Syst. , vol.25 , Issue.3 , pp. 1496-1503
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 9
    • 44549086803 scopus 로고    scopus 로고
    • Uncertainty analysis of a neural network used for fatigue lifetime prediction
    • Aug.
    • S. G. Pierce, K. Worden, and A. Bezazi, "Uncertainty analysis of a neural network used for fatigue lifetime prediction," Mech. Syst. Signal Process., vol. 22, no. 6, pp. 1395-1411, Aug. 2008.
    • (2008) Mech. Syst. Signal Process. , vol.22 , Issue.6 , pp. 1395-1411
    • Pierce, S.G.1    Worden, K.2    Bezazi, A.3
  • 10
    • 67349144993 scopus 로고    scopus 로고
    • Benefits of quantile regression for the analysis of customer lifetime value in a contractual setting: An application in financial services
    • Sep.
    • D. F. Benoit and D. Van den Poel, "Benefits of quantile regression for the analysis of customer lifetime value in a contractual setting: An application in financial services," Expert Syst. Appl., vol. 36, no. 7, pp. 10475-10484, Sep. 2009.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.7 , pp. 10475-10484
    • Benoit, D.F.1    Van Den Poel, D.2
  • 11
    • 84979403954 scopus 로고
    • Prediction intervals for growth curve forecasts
    • Sep.
    • N. Meade and T. Islam, "Prediction intervals for growth curve forecasts," J. Forecast., vol. 14, no. 5, pp. 413-430, Sep. 1995.
    • (1995) J. Forecast. , vol.14 , Issue.5 , pp. 413-430
    • Meade, N.1    Islam, T.2
  • 12
    • 84898947879 scopus 로고    scopus 로고
    • Practical confidence and prediction intervals
    • T. P. M. Mozer and M. Jordan, Eds. Cambridge, MA: MIT Press
    • T. Heskes, "Practical confidence and prediction intervals," in Advances in Neural Information Processing Systems, vol. 9, T. P. M. Mozer and M. Jordan, Eds. Cambridge, MA: MIT Press, 1997, pp. 176-182.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 176-182
    • Heskes, T.1
  • 13
    • 33745952342 scopus 로고    scopus 로고
    • 25 years of time series forecasting
    • DOI 10.1016/j.ijforecast.2006.01.001, PII S0169207006000021, Twenty Five Years of Forecasting
    • J. G. De Gooijer and R. J. Hyndman, "25 years of time series forecasting," Int. J. Forecast., vol. 22, no. 3, pp. 443-473, 2006. (Pubitemid 44057710)
    • (2006) International Journal of Forecasting , vol.22 , Issue.3 , pp. 443-473
    • De Gooijer, J.G.1    Hyndman, R.J.2
  • 14
    • 0029756425 scopus 로고    scopus 로고
    • Confidence interval prediction for neural network models
    • PII S1045922796001695
    • G. Chryssolouris, M. Lee, and A. Ramsey, "Confidence interval prediction for neural network models," IEEE Trans. Neural Netw., vol. 7, no. 1, pp. 229-232, Jan. 1996. (Pubitemid 126811745)
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.1 , pp. 229-232
    • Chryssolouris, G.1    Lee, M.2    Ramsey, A.3
  • 15
    • 0040428297 scopus 로고    scopus 로고
    • Prediction intervals for artificial neural networks
    • Jun.
    • J. T. G. Hwang and A. A. Ding, "Prediction intervals for artificial neural networks," J. Amer. Stat. Assoc., vol. 92, no. 438, pp. 748-757, Jun. 1997.
    • (1997) J. Amer. Stat. Assoc. , vol.92 , Issue.438 , pp. 748-757
    • Hwang, J.T.G.1    Ding, A.A.2
  • 17
    • 0037360099 scopus 로고    scopus 로고
    • Backpropagation of pseudo-errors: Neural networks that are adaptive to heterogeneous noise
    • Mar.
    • A. A. Ding and X. He, "Backpropagation of pseudo-errors: Neural networks that are adaptive to heterogeneous noise," IEEE Trans. Neural Netw., vol. 14, no. 2, pp. 253-262, Mar. 2003.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.2 , pp. 253-262
    • Ding, A.A.1    He, X.2
  • 18
    • 0032202770 scopus 로고    scopus 로고
    • Prediction intervals for neural networks via nonlinear regression
    • R. D. De Veaux, J. Schumi, J. Schweinsberg, and L. H. Ungar, "Prediction intervals for neural networks via nonlinear regression," Technometrics, vol. 40, no. 4, pp. 273-282, Nov. 1998. (Pubitemid 128631254)
    • (1998) Technometrics , vol.40 , Issue.4 , pp. 273-282
    • De Veaux, R.D.1    Schweinsberg, J.2    Schumi, J.3    Ungar, L.H.4
  • 19
    • 63049115986 scopus 로고    scopus 로고
    • Prediction of indoor temperature and relative humidity using neural network models: Model comparison
    • Mar.
    • T. Lu and M. Viljanen, "Prediction of indoor temperature and relative humidity using neural network models: Model comparison," Neural Comput. & Appl., vol. 18, no. 4, pp. 345-357, Mar. 2009.
    • (2009) Neural Comput. & Appl. , vol.18 , Issue.4 , pp. 345-357
    • Lu, T.1    Viljanen, M.2
  • 20
    • 76249109711 scopus 로고    scopus 로고
    • Improving prediction interval quality: A genetic algorithm-based method applied to neural networks
    • A. Khosravi, S. Nahavandi, and D. Creighton, "Improving prediction interval quality: A genetic algorithm-based method applied to neural networks," in Proc. 16th Int. Conf. Neural Inf. Process.: Part II, vol. 5864. 2009, pp. 141-149.
    • (2009) Proc. 16th Int. Conf. Neural Inf. Process.: Part II , vol.5864 , pp. 141-149
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 21
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • Sep.
    • D. J. C. MacKay, "The evidence framework applied to classification networks," Neural Comput., vol. 4, no. 5, pp. 720-736, Sep. 1992.
    • (1992) Neural Comput. , vol.4 , Issue.5 , pp. 720-736
    • MacKay, D.J.C.1
  • 22
    • 8644262601 scopus 로고    scopus 로고
    • Confidence intervals and prediction intervals for feed-forward neural networks
    • R. Dybowski and V. Gant, Eds. Cambridge, U.K.: Cambridge Univ. Press
    • R. Dybowski and S. J. Roberts, "Confidence intervals and prediction intervals for feed-forward neural networks," in Clinical Applications of Artificial Neural Networks, R. Dybowski and V. Gant, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2001, pp. 298-326.
    • (2001) Clinical Applications of Artificial Neural Networks , pp. 298-326
    • Dybowski, R.1    Roberts, S.J.2
  • 24
    • 33746375347 scopus 로고    scopus 로고
    • A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes
    • DOI 10.1109/TNS.2006.871662, 1645061
    • E. Zio, "A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes," IEEE Trans. Nucl. Sci., vol. 53, no. 3, pp. 1460-1478, Jun. 2006. (Pubitemid 44109454)
    • (2006) IEEE Transactions on Nuclear Science , vol.53 , Issue.3 , pp. 1460-1478
    • Zio, E.1
  • 25
    • 33947654893 scopus 로고    scopus 로고
    • Forecasting nonlinear time series with neural network sieve bootstrap
    • DOI 10.1016/j.csda.2006.03.003, PII S0167947306000740
    • F. Giordano, M. La Rocca, and C. Perna, "Forecasting nonlinear time series with neural network sieve bootstrap," Comput. Stat. & Data Anal., vol. 51, no. 8, pp. 3871-3884, May 2007. (Pubitemid 46497476)
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.8 , pp. 3871-3884
    • Giordano, F.1    La Rocca, M.2    Perna, C.3
  • 26
    • 33947162515 scopus 로고    scopus 로고
    • Error bounds for data-driven models of dynamical systems
    • DOI 10.1016/j.compbiomed.2006.06.005, PII S0010482506000898
    • N. O. Oleng', A. Gribok, and J. Reifman, "Error bounds for data-driven models of dynamical systems," Comput. Biol. Med., vol. 37, no. 5, pp. 670-679, May 2007. (Pubitemid 46400622)
    • (2007) Computers in Biology and Medicine , vol.37 , Issue.5 , pp. 670-679
    • Oleng, N.O.1    Gribok, A.2    Reifman, J.3
  • 27
    • 0028739205 scopus 로고
    • Estimating the mean and variance of the target probability distribution
    • Orlando, FL, Jun.-Jul.
    • D. A. Nix and A. S. Weigend, "Estimating the mean and variance of the target probability distribution," in Proc. IEEE Int. Conf. Neural Netw. World Congr. Comput. Intell., vol. 1. Orlando, FL, Jun.-Jul. 1994, pp. 55-60.
    • (1994) Proc. IEEE Int. Conf. Neural Netw. World Congr. Comput. Intell. , vol.1 , pp. 55-60
    • Nix, D.A.1    Weigend, A.S.2
  • 28
    • 0343090467 scopus 로고    scopus 로고
    • Construction of confidence intervals for neural networks based on least squares estimation
    • DOI 10.1016/S0893-6080(99)00080-5, PII S0893608099000805
    • I. Rivals and L. Personnaz, "Construction of confidence intervals for neural networks based on least squares estimation," Neural Netw., vol. 13, nos. 4-5, pp. 463-484, Jun. 2000. (Pubitemid 30447431)
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 463-484
    • Rivals, I.1    Personnaz, L.2
  • 29
    • 0035505634 scopus 로고    scopus 로고
    • Confidence estimation methods for neural networks: A practical comparison
    • DOI 10.1109/72.963764, PII S1045922701095042
    • G. Papadopoulos, P. J. Edwards, and A. F. Murray, "Confidence estimation methods for neural networks: A practical comparison," IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1278-1287, Nov. 2001. (Pubitemid 33106033)
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1278-1287
    • Papadopoulos, G.1    Edwards, P.J.2    Murray, A.F.3
  • 32
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • May
    • S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, no. 4598, pp. 671-680, May 1983.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt Jr., C.D.2    Vecchi, M.P.3
  • 33
    • 0031171679 scopus 로고    scopus 로고
    • Optimal linear combinations of neural networks
    • DOI 10.1016/S0893-6080(96)00098-6, PII S0893608096000986
    • S. Hashem, "Optimal linear combinations of neural networks," Neural Netw., vol. 10, no. 4, pp. 599-614, Jun. 1997. (Pubitemid 27357174)
    • (1997) Neural Networks , vol.10 , Issue.4 , pp. 599-614
    • Hashem, S.1
  • 34
    • 1942454824 scopus 로고    scopus 로고
    • New training strategies for constructive neural networks with application to regression problems
    • DOI 10.1016/j.neunet.2004.02.002, PII S0893608004000279
    • L. Ma and K. Khorasani, "New training strategies for constructive neural networks with application to regression problems," Neural Netw., vol. 17, no. 4, pp. 589-609, May 2004. (Pubitemid 38510341)
    • (2004) Neural Networks , vol.17 , Issue.4 , pp. 589-609
    • Ma, L.1    Khorasani, K.2
  • 35
    • 70449440498 scopus 로고    scopus 로고
    • Constructing prediction intervals for neural network metamodels of complex systems
    • Atlanta, GA, Jun.
    • A. Khosravi, S. Nahavandi, and D. Creighton, "Constructing prediction intervals for neural network metamodels of complex systems," in Proc. Int. Joint Conf. Neural Netw., Atlanta, GA, Jun. 2009, pp. 1576-1582.
    • (2009) Proc. Int. Joint Conf. Neural Netw. , pp. 1576-1582
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 36
    • 84870538169 scopus 로고    scopus 로고
    • (Jan. 10). [Online]
    • P. Vlachos. (2010, Jan. 10). StatLib Datasets Archive [Online]. Available: http://lib.stat.cmu.edu/datasets
    • (2010) StatLib Datasets Archive
    • Vlachos, P.1
  • 37
    • 0038927293 scopus 로고    scopus 로고
    • (Jan. 10)., Dept. Elect. Eng., ESAT/SISTA, Katholieke Univ. Leuven, Leuven, Belgium [Online]
    • B. De Moor. (2010, Jan. 10). DaISy: Database for the Identification of Systems. Dept. Elect. Eng., ESAT/SISTA, Katholieke Univ. Leuven, Leuven, Belgium [Online]. Available: http://homes.esat.kuleuven.be/smc/daisy/
    • (2010) DaISy: Database for the Identification of Systems
    • De Moor, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.