메뉴 건너뛰기




Volumn 28, Issue 4, 2013, Pages 4877-4878

Direct interval forecasting of wind power

Author keywords

Extreme learning machine; Forecasting; Particle swarm optimization; Prediction interval; Wind power

Indexed keywords

COVERAGE PROBABILITIES; DIRECT OPTIMIZATION; EXTREME LEARNING MACHINE; FORECASTING ERROR; HIGH POTENTIAL; INTERVAL FORECASTING; PREDICTION INTERVAL; PRIOR KNOWLEDGE;

EID: 84886086025     PISSN: 08858950     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPWRS.2013.2258824     Document Type: Article
Times cited : (129)

References (4)
  • 1
    • 33244496469 scopus 로고    scopus 로고
    • Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts
    • H. A. Nielsen, H. Madsen, and T. S. Nielsen, "Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts," Wind Energy, vol. 9, no. 1-2, pp. 95-108, 2006.
    • (2006) Wind Energy , vol.9 , Issue.1-2 , pp. 95-108
    • Nielsen, H.A.1    Madsen, H.2    Nielsen, T.S.3
  • 2
    • 77958487600 scopus 로고    scopus 로고
    • Conditional prediction intervals of wind power generation
    • Nov.
    • P. Pinson and G. Kariniotakis, "Conditional prediction intervals of wind power generation," IEEE Trans. Power Syst., vol. 25, no. 4, pp. 1845-1856, Nov. 2010.
    • (2010) IEEE Trans. Power Syst. , vol.25 , Issue.4 , pp. 1845-1856
    • Pinson, P.1    Kariniotakis, G.2
  • 3
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Dec.
    • G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, no. 1-3, pp. 489-501, Dec. 2006.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.