메뉴 건너뛰기




Volumn , Issue , 2014, Pages 477-518

Machine learning

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84956518831     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-1-4614-6940-7_17     Document Type: Chapter
Times cited : (8)

References (90)
  • 1
    • 0028257732 scopus 로고
    • Democracy in neural nets: Voting schemes for classification
    • Battiti R, Colla AM (1994) Democracy in neural nets: voting schemes for classification. Neural Netw 7:691-707
    • (1994) Neural Netw , vol.7 , pp. 691-707
    • Battiti, R.1    Colla, A.M.2
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24:123-140
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 4
    • 32544450795 scopus 로고    scopus 로고
    • Ensemble learning using multi-objective evolutionary algorithms
    • Chandra A, Yao X (2006) Ensemble learning using multi-objective evolutionary algorithms. J Math Model Algorithms 5:417-445
    • (2006) J Math Model Algorithms , vol.5 , pp. 417-445
    • Chandra, A.1    Yao, X.2
  • 5
    • 72149122081 scopus 로고    scopus 로고
    • Regularized negative correlation learning for neural network ensembles
    • Chen H, Yao X (2009) Regularized negative correlation learning for neural network ensembles. IEEE Trans Neural Netw 20:1962-1979
    • (2009) IEEE Trans Neural Netw , vol.20 , pp. 1962-1979
    • Chen, H.1    Yao, X.2
  • 6
    • 78149249078 scopus 로고    scopus 로고
    • Multiobjective neural network ensembles based on regularized negative correlation Learning
    • Chen H, Yao X (2010) Multiobjective neural network ensembles based on regularized negative correlation Learning. IEEE Trans Knowl Data Eng 22:1738-1751
    • (2010) IEEE Trans Knowl Data Eng , vol.22 , pp. 1738-1751
    • Chen, H.1    Yao, X.2
  • 7
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An information-theory based approach
    • Cheng J, Greiner R, Kelly J, Bell DA, Liu W (2002) Learning Bayesian networks from data: an information-theory based approach. Artif Intell 137:43-90
    • (2002) Artif Intell , vol.137 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.A.4    Liu, W.5
  • 8
    • 0022023946 scopus 로고
    • Limits for the precision and value of information from dependent sources
    • Clemen RT, Winkler RL (1985) Limits for the precision and value of information from dependent sources. Oper Res 33:427-442
    • (1985) Oper Res , vol.33 , pp. 427-442
    • Clemen, R.T.1    Winkler, R.L.2
  • 9
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: Four current directions
    • Dietterich TG (1997) Machine-learning research: four current directions. AI Mag 18:97-136
    • (1997) AI Mag , vol.18 , pp. 97-136
    • Dietterich, T.G.1
  • 10
    • 0002419948 scopus 로고    scopus 로고
    • Beyond indpendence: Conditions for the optimality of the simple Bayesian classifier
    • Saitta L, Morgan Kaufmann, San Mateo
    • Domingos P, Pazzani M (1996) Beyond indpendence: conditions for the optimality of the simple Bayesian classifier. In: Saitta L (ed) Proceedings of the 13th international conference on machine learning, Bari. Morgan Kaufmann, San Mateo, pp 105-112
    • (1996) Proceedings of the 13Th International Conference on Machine Learning, Bari , pp. 105-112
    • Domingos, P.1    Pazzani, M.2
  • 11
    • 0002552358 scopus 로고
    • Improving performance in neural networks using a boosting algorithm
    • Hanson SJ et al, Morgan Kaufmann, San Mateo
    • Drucker H, Schapire R, Simard P (1993) Improving performance in neural networks using a boosting algorithm. In: Hanson SJ et al (eds) Advances in neural information processing systems 5. Morgan Kaufmann, San Mateo, pp 42-49
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 42-49
    • Drucker, H.1    Schapire, R.2    Simard, P.3
  • 15
    • 85060724532 scopus 로고
    • Proceedings of the western joint computer conference, Los Angeles
    • Feigenbaum EA (1961) The simulation of verbal learning behavior. In: Proceedings of the western joint computer conference, Los Angeles, pp 121-131
    • (1961) The Simulation of Verbal Learning Behavior , pp. 121-131
    • Feigenbaum, E.A.1
  • 19
  • 22
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • Jordan MI
    • Heckerman D (1998) A tutorial on learning with Bayesian networks. In: Jordan MI (ed) Learning in graphical models. Kluwer
    • (1998) Learning in Graphical Models
    • Heckerman, D.1
  • 23
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Dordrecht Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci USA 79:2554-2558
    • (1982) Proc Nat Acad Sci USA , vol.79 , pp. 2554-2558
    • Dordrecht Hopfield, J.J.1
  • 24
    • 0021835689 scopus 로고
    • Neural computation of decisions in optimization problems
    • Hopfield JJ, Tank DW (1985) Neural computation of decisions in optimization problems. Biol Cybern 52:141-152
    • (1985) Biol Cybern , vol.52 , pp. 141-152
    • Hopfield, J.J.1    Tank, D.W.2
  • 26
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • Islam MM, Yao X, Murase K (2003) A constructive algorithm for training cooperative neural network ensembles. IEEE Trans Neural Netw 14:820-834
    • (2003) IEEE Trans Neural Netw , vol.14 , pp. 820-834
    • Islam, M.M.1    Yao, X.2    Murase, K.3
  • 27
    • 0031568357 scopus 로고    scopus 로고
    • Bias/variance analyses of mixture-of-experts architectures
    • Jacobs RA (1997) Bias/variance analyses of mixture-of-experts architectures. Neural Comput 9:369-383
    • (1997) Neural Comput , vol.9 , pp. 369-383
    • Jacobs, R.A.1
  • 28
    • 0001683059 scopus 로고
    • Task decomposition through competition in a modular connectionist architecture: The what and where vision task
    • Jacobs RA, Jordan MI, Barto AG (1991a) Task decomposition through competition in a modular connectionist architecture: the what and where vision task. Cogn Sci 15:219-250
    • (1991) Cogn Sci , vol.15 , pp. 219-250
    • Jacobs, R.A.1    Jordan, M.I.2    Barto, A.G.3
  • 30
    • 0000262562 scopus 로고
    • Hierarchical mixtures-of-experts and the EM algorithm
    • Jordan MI, Jacobs RA (1994) Hierarchical mixtures-of-experts and the EM algorithm. Neural Comput 6:181-214
    • (1994) Neural Comput , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 32
    • 0029313010 scopus 로고
    • Ensemble competitive learning neural networks with reduced input dimensions
    • Kim J, Ahn J, Cho S (1995) Ensemble competitive learning neural networks with reduced input dimensions. Int J Neural Syst 6:133-142
    • (1995) Int J Neural Syst , vol.6 , pp. 133-142
    • Kim, J.1    Ahn, J.2    Cho, S.3
  • 34
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Tesauro G et al, MIT, Cambridge
    • San Mateo Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and active learning. In: Tesauro G et al (eds) Advances in neural information processing systems 7. MIT, Cambridge, pp 231-238
    • (1995) Advances in Neural Information processing systems , vol.7 , pp. 231-238
    • San Mateo Krogh, A.1    Vedelsby, J.2
  • 36
    • 0029407395 scopus 로고
    • Applications of machine learning and rule induction
    • Langley P, Simon H (1995) Applications of machine learning and rule induction. Commun ACM 38:54-64
    • (1995) Commun ACM , vol.38 , pp. 54-64
    • Langley, P.1    Simon, H.2
  • 38
    • 0000086449 scopus 로고    scopus 로고
    • Negatively correlated neural networks can produce best ensembles
    • Liu Y, Yao X (1998a) Negatively correlated neural networks can produce best ensembles. Aust J Intell Inf Process Syst 4:176-185
    • (1998) Aust J Intell Inf Process Syst , vol.4 , pp. 176-185
    • Liu, Y.1    Yao, X.2
  • 39
    • 0031642255 scopus 로고    scopus 로고
    • A cooperative ensemble learning system
    • IEEE, Piscataway
    • Liu Y, Yao X (1998b) A cooperative ensemble learning system. In: Proceedings of the IJCNN 1998, Anchorage. IEEE, Piscataway, pp 2202-2207
    • (1998) Proceedings of the IJCNN 1998, Anchorage , pp. 2202-2207
    • Liu, Y.1    Yao, X.2
  • 40
    • 0033280266 scopus 로고    scopus 로고
    • Simultaneous training of negatively correlated neural networks in an ensemble
    • Liu Y, Yao X (1999a) Simultaneous training of negatively correlated neural networks in an ensemble. IEEE Trans Syst Man Cybern B 29:716-725
    • (1999) IEEE Trans Syst Man Cybern B , vol.29 , pp. 716-725
    • Liu, Y.1    Yao, X.2
  • 41
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Liu Y, Yao X (1999b) Ensemble learning via negative correlation. Neural Netw 12:1399-1404
    • (1999) Neural Netw , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 42
    • 0034315099 scopus 로고    scopus 로고
    • Evolutionary ensembles with negative correlation learning
    • Liu Y, Yao X, Higuchi T (2000) Evolutionary ensembles with negative correlation learning. IEEE Trans Evol Comput 4:380-387
    • (2000) IEEE Trans Evol Comput , vol.4 , pp. 380-387
    • Liu, Y.1    Yao, X.2    Higuchi, T.3
  • 44
    • 0036075902 scopus 로고    scopus 로고
    • An experimental comparison of neural network ensemble learning methods on decision boundaries
    • Honolulu. IEEE, Piscataway
    • Liu Y, Yao X, Zhao Q, Higuchi T (2002) An experimental comparison of neural network ensemble learning methods on decision boundaries. In: Proceedings of the IJCNN 2002, Honolulu. IEEE, Piscataway, pp 221-226
    • (2002) Proceedings of the IJCNN , vol.2002 , pp. 221-226
    • Liu, Y.1    Yao, X.2    Zhao, Q.3    Higuchi, T.4
  • 45
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115-137
    • (1943) Bull Math Biophys , vol.5 , pp. 115-137
    • McCulloch, W.S.1    Pitts, W.2
  • 46
    • 85153941282 scopus 로고
    • Bias, variance, and the combination of least squares estimators
    • Tesauro G, Touretzky DS, Leen TK, MIT, Cambridge
    • Meir R (1995) Bias, variance, and the combination of least squares estimators. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information processing systems 7. MIT, Cambridge, pp 295-302
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 295-302
    • Meir, R.1
  • 50
    • 77949913486 scopus 로고    scopus 로고
    • The impact of diversity on on-line ensemble learning in the presence of concept drift
    • London Minku LL, White A, Yao X (2010) The impact of diversity on on-line ensemble learning in the presence of concept drift. IEEE Trans Knowl Data Eng 22:730-742
    • (2010) IEEE Trans Knowl Data Eng , vol.22 , pp. 730-742
    • London Minku, L.L.1    White, A.2    Yao, X.3
  • 53
    • 77951503082 scopus 로고
    • Inverse entailment and progol
    • Muggleton SH (1995) Inverse entailment and progol. New Gener Comput13:245-286
    • (1995) New Gener Comput , vol.13 , pp. 245-286
    • Muggleton, S.H.1
  • 55
    • 0030356238 scopus 로고    scopus 로고
    • Actively searching for an effective neural network ensemble
    • Opitz DW, Shavlik JW (1996) Actively searching for an effective neural network ensemble. Connect Sci 8:337-353
    • (1996) Connect Sci , vol.8 , pp. 337-353
    • Opitz, D.W.1    Shavlik, J.W.2
  • 56
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • Mammone RJ, Chapman and Hall, London
    • Perrone MP, Cooper LN (1993) When networks disagree: ensemble methods for hybrid neural networks. In: Mammone RJ (ed) Neural networks for speech and image processing. Chapman and Hall, London
    • (1993) Neural Networks for Speech and image Processing
    • Perrone, M.P.1    Cooper, L.N.2
  • 58
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • Quinlan JR (1990) Learning logical definitions from relations. Mach Learn 5:239-266
    • (1990) Mach Learn , vol.5 , pp. 239-266
    • Quinlan, J.R.1
  • 60
    • 0030374103 scopus 로고    scopus 로고
    • Bootstrapping with noise: An effective regularization technique
    • Raviv Y, Intrator N (1996) Bootstrapping with noise: an effective regularization technique. Connect Sci 8:355-372
    • (1996) Connect Sci , vol.8 , pp. 355-372
    • Raviv, Y.1    Intrator, N.2
  • 61
    • 0027961797 scopus 로고
    • Combining the results of several neural networks classifiers
    • Rogova G (1994) Combining the results of several neural networks classifiers. Neural Netw 7:777-781
    • (1994) Neural Netw , vol.7 , pp. 777-781
    • Rogova, G.1
  • 62
    • 0030367578 scopus 로고    scopus 로고
    • Ensemble learning using decorrelated neural networks
    • Rosen BE (1996) Ensemble learning using decorrelated neural networks. Connect Sci 8:373-383
    • (1996) Connect Sci , vol.8 , pp. 373-383
    • Rosen, B.E.1
  • 67
    • 0001201756 scopus 로고
    • Some studies in machine learning using the game of checkers
    • Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3:210-229
    • (1959) IBM J Res Dev , vol.3 , pp. 210-229
    • Samuel, A.L.1
  • 68
    • 0030149064 scopus 로고    scopus 로고
    • Randomness in generalization ability: A source to improve it
    • Sarkar D (1996) Randomness in generalization ability: a source to improve it. IEEE Trans Neural Netw 7:676-685
    • (1996) IEEE Trans Neural Netw , vol.7 , pp. 676-685
    • Sarkar, D.1
  • 69
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire RE (1990) The strength of weak learnability. Mach Learn 5:197-227
    • (1990) Mach Learn , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 74
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J RStatSoc 36:111-147
    • (1974) J Rstatsoc , vol.36 , pp. 111-147
    • Stone, M.1
  • 76
    • 78149452320 scopus 로고    scopus 로고
    • Selective negative correlation learning approach to incremental learning
    • Tang K, Lin M, Minku FL, Yao X (2009) Selective negative correlation learning approach to incremental learning. Neurocomputing 72:2796-2805
    • (2009) Neurocomputing , vol.72 , pp. 2796-2805
    • Tang, K.1    Lin, M.2    Minku, F.L.3    Yao, X.4
  • 77
    • 0002988210 scopus 로고
    • Computing machinery and intelligence
    • Turing A (1950) Computing machinery and intelligence. Mind 59:433-460
    • (1950) Mind , vol.59 , pp. 433-460
    • Turing, A.1
  • 79
    • 77951201336 scopus 로고    scopus 로고
    • Theoretical study of the relationship between diversity and single-class measures for class imbalance learning
    • IEEE Computer Society, Washington, DC
    • Wang S, Yao X (2009a) Theoretical study of the relationship between diversity and single-class measures for class imbalance learning. In: Proceedings of the IEEE international conference on data mining workshops, Miami. IEEE Computer Society, Washington, DC, pp 76-81
    • (2009) Proceedings of the IEEE International Conference on Data Mining Workshops, Miami , pp. 76-81
    • Wang, S.1    Yao, X.2
  • 80
    • 70449404908 scopus 로고    scopus 로고
    • Diversity exploration and negative correlation learning on imbalanced data sets
    • Wang S, Yao X (2009b) Diversity exploration and negative correlation learning on imbalanced data sets. In: Proceedings of the IJCNN 2009, Atlanta, pp 3259-3266
    • (2009) Proceedings of the IJCNN 2009, Atlanta , pp. 3259-3266
    • Wang, S.1    Yao, X.2
  • 83
    • 0027574256 scopus 로고
    • A review of evolutionary artificial neural networks
    • Yao X (1993a) A review of evolutionary artificial neural networks. Int J Intell Syst 8:539-567
    • (1993) Int J Intell Syst , vol.8 , pp. 539-567
    • Yao, X.1
  • 84
    • 0027657414 scopus 로고
    • An empirical study of genetic operators in genetic algorithms
    • Yao X (1993b) An empirical study of genetic operators in genetic algorithms. Microprocess Microprogr 38:707-714
    • (1993) Microprocess Microprogr , vol.38 , pp. 707-714
    • Yao, X.1
  • 85
    • 23644450422 scopus 로고
    • The evolution of connectionist networks
    • Dartnall T, Kluwer, Dordrecht
    • Yao X (1994) The evolution of connectionist networks. In: Dartnall T (ed) Artificial intelligence and creativity. Kluwer, Dordrecht, pp 233-243
    • (1994) Artificial Intelligence and Creativity , pp. 233-243
    • Yao, X.1
  • 86
    • 0000675237 scopus 로고
    • Evolutionary artificial neural networks
    • Kent A, Williams JG, Dekker, New York
    • Yao X (1995) Evolutionary artificial neural networks. In: Kent A, Williams JG (eds) Encyclopedia of computer science and technology 33. Dekker, New York, pp 137-170
    • (1995) Encyclopedia of Computer Science and Technology , vol.33 , pp. 137-170
    • Yao, X.1
  • 87
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X (1999) Evolving artificial neural networks. Proc IEEE 87:1423-1447
    • (1999) Proc IEEE , vol.87 , pp. 1423-1447
    • Yao, X.1
  • 88
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • Yao X, Liu Y (1997) A new evolutionary system for evolving artificial neural networks. IEEE Trans Neural Netw 8:694-713
    • (1997) IEEE Trans Neural Netw , vol.8 , pp. 694-713
    • Yao, X.1    Liu, Y.2
  • 89
    • 0032095527 scopus 로고    scopus 로고
    • Making use of population information in evolutionary artificial neural networks
    • Yao X, Liu Y (1998) Making use of population information in evolutionary artificial neural networks. IEEE Trans Syst Man Cybern B 28:417-425
    • (1998) IEEE Trans Syst Man Cybern B , vol.28 , pp. 417-425
    • Yao, X.1    Liu, Y.2
  • 90


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.