메뉴 건너뛰기




Volumn 30, Issue 5, 2015, Pages 2706-2715

An Advanced Approach for Construction of Optimal Wind Power Prediction Intervals

Author keywords

Ensemble empirical mode decomposition; extreme learning machine; prediction intervals; sample entropy; wind power

Indexed keywords

ELECTRIC UTILITIES; ENTROPY; FORECASTING; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; MACHINE COMPONENTS; WIND POWER;

EID: 85027943440     PISSN: 08858950     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPWRS.2014.2363873     Document Type: Article
Times cited : (89)

References (40)
  • 1
    • 34548047478 scopus 로고    scopus 로고
    • Trading wind generation from short-term probabilistic forecasts of wind power
    • Aug.
    • P. Pinson, C. Chevallier, and G. N. Kariniotakis, "Trading wind generation from short-term probabilistic forecasts of wind power," IEEE Trans. Power Syst., vol. 22, no. 3, pp. 1148-1156, Aug. 2007.
    • (2007) IEEE Trans. Power Syst. , vol.22 , Issue.3 , pp. 1148-1156
    • Pinson, P.1    Chevallier, C.2    Kariniotakis, G.N.3
  • 2
    • 79961126223 scopus 로고    scopus 로고
    • Current methods and advances in forecasting of wind power generation
    • Jan.
    • A. M. Foley, P. G. Leahy, A. Marvuqlia, and E. J. McKeogh, "Current methods and advances in forecasting of wind power generation," Renew. Energy, vol. 37, no. 1, pp. 1-8, Jan. 2012.
    • (2012) Renew. Energy , vol.37 , Issue.1 , pp. 1-8
    • Foley, A.M.1    Leahy, P.G.2    Marvuqlia, A.3    McKeogh, E.J.4
  • 3
    • 33947303690 scopus 로고    scopus 로고
    • An advanced statistical method for wind power forecasting
    • Feb.
    • G. Sideratos and N. D. Hatziargyriou, "An advanced statistical method for wind power forecasting," IEEE Trans. Power Syst., vol. 22, no. 1, pp. 258-265, Feb. 2007.
    • (2007) IEEE Trans. Power Syst. , vol.22 , Issue.1 , pp. 258-265
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 4
  • 5
    • 19144369129 scopus 로고    scopus 로고
    • On the uncertainty of wind power predictions-Analysis of the forecast accuracy and statistical distribution of errors
    • May
    • M. Lange, "On the uncertainty of wind power predictions-Analysis of the forecast accuracy and statistical distribution of errors," J. Sol. Energy Eng., vol. 127, no. 2, pp. 177-184, May 2005.
    • (2005) J. Sol. Energy Eng. , vol.127 , Issue.2 , pp. 177-184
    • Lange, M.1
  • 6
    • 84870589631 scopus 로고    scopus 로고
    • Versatile distribution of wind power output for a given forecast value
    • San Diego, CA, USA
    • Z. S. Zhang, Y. Z. Sun, J. Lin, L. Cheng, and G. J. Li, "Versatile distribution of wind power output for a given forecast value," in Proc. IEEE PES General Meeting, San Diego, CA, USA, 2012, pp. 22-26.
    • (2012) Proc. IEEE PES General Meeting , pp. 22-26
    • Zhang, Z.S.1    Sun, Y.Z.2    Lin, J.3    Cheng, L.4    Li, G.J.5
  • 7
    • 77958487600 scopus 로고    scopus 로고
    • Conditional prediction intervals of wind power generation
    • Nov.
    • P. Pinson and G. Kariniotakis, "Conditional prediction intervals of wind power generation," IEEE Trans. Power Syst., vol. 25, no. 4, pp. 1845-1856, Nov. 2010.
    • (2010) IEEE Trans. Power Syst. , vol.25 , Issue.4 , pp. 1845-1856
    • Pinson, P.1    Kariniotakis, G.2
  • 8
    • 0040428297 scopus 로고    scopus 로고
    • Prediction intervals for artificial neural networks
    • Jun.
    • J. T. G. Hwang and A. A. Ding, "Prediction intervals for artificial neural networks," J. Amer. Statist. Assoc., vol. 92, no. 438, pp. 748-757, Jun. 1997.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , Issue.438 , pp. 748-757
    • Hwang, J.T.G.1    Ding, A.A.2
  • 10
    • 0028739205 scopus 로고
    • Estimating the mean and variance of the target probability distribution
    • Orlando, FL, USA
    • D. A. Nix and A. S. Weigend, "Estimating the mean and variance of the target probability distribution," in Proc. IEEE Int. Conf. Neural Netw., Orlando, FL, USA, 1994, pp. 55-60.
    • (1994) Proc. IEEE Int. Conf. Neural Netw. , pp. 55-60
    • Nix, D.A.1    Weigend, A.S.2
  • 11
    • 84899566603 scopus 로고    scopus 로고
    • Probabilistic forecasting of wind power generation using extreme learning machine
    • May
    • C. Wan, Z. Xu, P. Pinson, Z. Y. Dong, and K. P. Wong, "Probabilistic forecasting of wind power generation using extreme learning machine," IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1033-1044, May 2014.
    • (2014) IEEE Trans. Power Syst. , vol.29 , Issue.3 , pp. 1033-1044
    • Wan, C.1    Xu, Z.2    Pinson, P.3    Dong, Z.Y.4    Wong, K.P.5
  • 12
    • 70049094192 scopus 로고    scopus 로고
    • Wind power density forecasting using ensemble predictions and time series models
    • Sep.
    • J. W. Taylor, P. E. McSharry, and R. Buizza, "Wind power density forecasting using ensemble predictions and time series models," IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 775-782, Sep. 2009.
    • (2009) IEEE Trans. Energy Convers. , vol.24 , Issue.3 , pp. 775-782
    • Taylor, J.W.1    McSharry, P.E.2    Buizza, R.3
  • 13
    • 14344255817 scopus 로고    scopus 로고
    • Probabilistic wind power forecasts using local quantile regression
    • Mar.
    • J. B. Bremnes, "Probabilistic wind power forecasts using local quantile regression," Wind Energy, vol. 7, no. 1, pp. 47-54, Mar. 2004.
    • (2004) Wind Energy , vol.7 , Issue.1 , pp. 47-54
    • Bremnes, J.B.1
  • 14
    • 84867988966 scopus 로고    scopus 로고
    • Probabilistic wind power forecasting using radial basis function neural networks
    • Nov.
    • G. Sideratos and N. D. Hatziargyriou, "Probabilistic wind power forecasting using radial basis function neural networks," IEEE Trans. Power Syst., vol. 27, no. 4, pp. 1788-1796, Nov. 2012.
    • (2012) IEEE Trans. Power Syst. , vol.27 , Issue.4 , pp. 1788-1796
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 15
    • 84875298242 scopus 로고    scopus 로고
    • Probabilistic short-term wind power forecasting based on kernel density estimators
    • J. Juban, L. Fugon, and G. Kariniotakis, "Probabilistic short-term wind power forecasting based on kernel density estimators," in Proc. European Wind Energy Conf., 2007, pp. 1-8.
    • (2007) Proc. European Wind Energy Conf. , pp. 1-8
    • Juban, J.1    Fugon, L.2    Kariniotakis, G.3
  • 16
    • 84859596365 scopus 로고    scopus 로고
    • Using conditional kernel density estimation for wind power density forecasting
    • Mar.
    • J. Jeon and J. W. Taylor, "Using conditional kernel density estimation for wind power density forecasting," J. Amer. Statist. Assoc., vol. 107, no. 497, pp. 66-79, Mar. 2012.
    • (2012) J. Amer. Statist. Assoc. , vol.107 , Issue.497 , pp. 66-79
    • Jeon, J.1    Taylor, J.W.2
  • 17
    • 80755122841 scopus 로고    scopus 로고
    • Time-Adaptive quantile-copula for wind power probabilistic forecasting
    • Apr.
    • R. J. Bessa, V. Miranda, A. Botterud, Z. Zhou, and J. Wang, "Time-Adaptive quantile-copula for wind power probabilistic forecasting," Renew. Energy, vol. 40, no. 1, pp. 29-39, Apr. 2012.
    • (2012) Renew. Energy , vol.40 , Issue.1 , pp. 29-39
    • Bessa, R.J.1    Miranda, V.2    Botterud, A.3    Zhou, Z.4    Wang, J.5
  • 18
    • 79952186591 scopus 로고    scopus 로고
    • Lower upper bound estimation method for construction of neural network-based prediction intervals
    • Mar.
    • A. Khosravi, S. Nahavandi, D. Creighton, and A. Atiya, "Lower upper bound estimation method for construction of neural network-based prediction intervals," IEEE Trans. Neural Netw., vol. 22, no. 3, pp. 337-346, Mar. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.3 , pp. 337-346
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3    Atiya, A.4
  • 19
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Dec.
    • G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, no. 1-3, pp. 489-501, Dec. 2006.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 20
    • 84886086025 scopus 로고    scopus 로고
    • Direct interval forecasting of wind power
    • Nov.
    • C. Wan, Z. Xu, and P. Pinson, "Direct interval forecasting of wind power," IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4877-4878, Nov. 2013.
    • (2013) IEEE Trans. Power Syst. , vol.28 , Issue.4 , pp. 4877-4878
    • Wan, C.1    Xu, Z.2    Pinson, P.3
  • 21
    • 84893303261 scopus 로고    scopus 로고
    • Optimal prediction intervals of wind power generation
    • May
    • C. Wan, Z. Xu, P. Pinson, Z. Y. Dong, and K. P. Wong, "Optimal prediction intervals of wind power generation," IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1166-1174, May 2014.
    • (2014) IEEE Trans. Power Syst. , vol.29 , Issue.3 , pp. 1166-1174
    • Wan, C.1    Xu, Z.2    Pinson, P.3    Dong, Z.Y.4    Wong, K.P.5
  • 22
    • 84859036543 scopus 로고    scopus 로고
    • Awnn-Assisted wind power forecasting using feed-forward neural network
    • Apr.
    • K. Bhaskar and S. N. Singh, "AWNN-Assisted wind power forecasting using feed-forward neural network," IEEE Trans. Sustain. Energy, vol. 3, no. 2, pp. 306-315, Apr. 2012.
    • (2012) IEEE Trans. Sustain. Energy , vol.3 , Issue.2 , pp. 306-315
    • Bhaskar, K.1    Singh, S.N.2
  • 23
    • 29144431556 scopus 로고    scopus 로고
    • Wavelet-based combined signal filtering and prediction
    • Dec.
    • O. Renaud, J. L. Starck, and F. Murtagh, "Wavelet-based combined signal filtering and prediction," IEEE Tran. Syst., Man, Cybern. B: Cybern., vol. 35, no. 6, pp. 1241-1251, Dec. 2005.
    • (2005) IEEE Tran. Syst., Man, Cybern. B: Cybern. , vol.35 , Issue.6 , pp. 1241-1251
    • Renaud, O.1    Starck, J.L.2    Murtagh, F.3
  • 24
    • 37249056968 scopus 로고    scopus 로고
    • Emd-based signal filtering
    • Dec.
    • A. O. Boudraa and J. C. Cexus, "EMD-based signal filtering," IEEE Trans. Instrum. Meas., vol. 56, no. 6, pp. 2196-2202, Dec. 2007.
    • (2007) IEEE Trans. Instrum. Meas. , vol.56 , Issue.6 , pp. 2196-2202
    • Boudraa, A.O.1    Cexus, J.C.2
  • 25
    • 84863508830 scopus 로고    scopus 로고
    • A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
    • Dec.
    • H. Liu, C. Chen, H. Q. Tian, and Y. F. Li, "A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks," Renew. Energy, vol. 48, pp. 545-556, Dec. 2012.
    • (2012) Renew. Energy , vol.48 , pp. 545-556
    • Liu, H.1    Chen, C.2    Tian, H.Q.3    Li, Y.F.4
  • 26
    • 80052078099 scopus 로고    scopus 로고
    • Ensember empirical mode decomposition: A noise-Assisted data analysis method
    • Jan.
    • Z. H. Wu and N. E. Huang, "Ensember empirical mode decomposition: A noise-Assisted data analysis method," Adv. Adapt. Data Anal., vol. 1, no. 1, pp. 1-41, Jan. 2009.
    • (2009) Adv. Adapt. Data Anal. , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.H.1    Huang, N.E.2
  • 27
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy and sample entropy
    • Jun.
    • J. S. Richman and J. R. Moorman, "Physiological time-series analysis using approximate entropy and sample entropy," Amer. J. Physiol.-Heat Circulat. Phys., vol. 278, no. 6, pp. 2039-2049, Jun. 2000.
    • (2000) Amer. J. Physiol.-Heat Circulat. Phys. , vol.278 , Issue.6 , pp. 2039-2049
    • Richman, J.S.1    Moorman, J.R.2
  • 28
    • 4344586511 scopus 로고    scopus 로고
    • Particle swarm optimization with particles having quantum behavior
    • J. Sun, B. Feng, and W. B. Xu, "Particle swarm optimization with particles having quantum behavior," in Proc. IEEE Congr. Evolutionary Computation, 2004, pp. 325-331.
    • (2004) Proc. IEEE Congr. Evolutionary Computation , pp. 325-331
    • Sun, J.1    Feng, B.2    Xu, W.B.3
  • 29
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
    • N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," inProc. R. Soc. LondonA, 1998, vol. 454, no. 1971, pp. 903-995.
    • (1998) Proc. R. Soc. LondonA , vol.454 , Issue.1971 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3    Wu, M.C.4    Shih, H.H.5    Zheng, Q.6    Yen, N.C.7    Tung, C.C.8    Liu, H.H.9
  • 30
    • 84863174734 scopus 로고    scopus 로고
    • Emd revisited: A new understanding of the envelope and resolving the mode-mixing problem in am-fm signals
    • Mar.
    • X. Hu, S. Peng, and W. Hwang, "EMD revisited: A new understanding of the envelope and resolving the mode-mixing problem in AM-FM signals," IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1075-1086, Mar. 2012.
    • (2012) IEEE Trans. Signal Process. , vol.60 , Issue.3 , pp. 1075-1086
    • Hu, X.1    Peng, S.2    Hwang, W.3
  • 31
    • 80052280842 scopus 로고    scopus 로고
    • Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation
    • Jan.
    • B. P. Tang, S. J. Dong, and T. Song, "Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation," Signal Proceess., vol. 92, no. 1, pp. 248-258, Jan. 2012.
    • (2012) Signal Proceess. , vol.92 , Issue.1 , pp. 248-258
    • Tang, B.P.1    Dong, S.J.2    Song, T.3
  • 32
    • 84861423084 scopus 로고    scopus 로고
    • Comparing the applications of emd and eemd on time-frequency analysis of seismic signal
    • Aug.
    • T. Wang, M. C. Zhang, and Q. H. Yu, "Comparing the applications of EMD and EEMD on time-frequency analysis of seismic signal," J. Appl. Geophys., vol. 83, pp. 29-34, Aug. 2012.
    • (2012) J. Appl. Geophys. , vol.83 , pp. 29-34
    • Wang, T.1    Zhang, M.C.2    Yu, Q.H.3
  • 33
    • 77955569587 scopus 로고    scopus 로고
    • Performance enhancement of ensemble empirical mode decomposition
    • Oct.
    • J. Zhang, R. Yan, R. X. Gao, and Z. Feng, "Performance enhancement of ensemble empirical mode decomposition," Mech. Syst. Signal Process., vol. 24, no. 7, pp. 2104-2123, Oct. 2010.
    • (2010) Mech. Syst. Signal Process. , vol.24 , Issue.7 , pp. 2104-2123
    • Zhang, J.1    Yan, R.2    Gao, R.X.3    Feng, Z.4
  • 34
    • 0001263361 scopus 로고
    • Approximate entropy (apen) as a complexity measure
    • S. Pincus, "Approximate entropy (ApEn) as a complexity measure," Chaos, vol. 5, no. 1, pp. 110-117, 1995.
    • (1995) Chaos , vol.5 , Issue.1 , pp. 110-117
    • Pincus, S.1
  • 35
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy and sample entropy
    • Jun.
    • J. S. Richman and J. R. Moorman, "Physiological time-series analysis using approximate entropy and sample entropy," Amer. J. Physiol. Heart Circulat. Physiol., vol. 278, no. 6, pp. 2039-2049, Jun. 2000.
    • (2000) Amer. J. Physiol. Heart Circulat. Physiol. , vol.278 , Issue.6 , pp. 2039-2049
    • Richman, J.S.1    Moorman, J.R.2
  • 36
    • 84893641491 scopus 로고    scopus 로고
    • Short-term load and wind power forecasting using neural network-based prediction intervals
    • Feb.
    • H. Quan, D. Srinivasan, and A. Khosravi, "Short-term load and wind power forecasting using neural network-based prediction intervals," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 2, pp. 303-315, Feb. 2014.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.2 , pp. 303-315
    • Quan, H.1    Srinivasan, D.2    Khosravi, A.3
  • 37
    • 31944448941 scopus 로고    scopus 로고
    • A study of particle swarm optimization particle trajectories
    • Apr.
    • F. Van den Bergh and A. P. Engelbrecht, "A study of particle swarm optimization particle trajectories," Inf. Sci., vol. 176, no. 8, pp. 937-971, Apr. 2006.
    • (2006) Inf. Sci. , vol.176 , Issue.8 , pp. 937-971
    • Bergh Den F.Van1    Engelbrecht, A.P.2
  • 38
    • 84880255073 scopus 로고    scopus 로고
    • Prediction intervals for short-term wind farm power generation
    • Jul.
    • A. Khosravi, S. Nahavandi, and D. Creighton, "Prediction intervals for short-term wind farm power generation," IEEE Trans. Sustain. Energy, vol. 4, no. 3, pp. 602-610, Jul. 2013.
    • (2013) IEEE Trans. Sustain. Energy , vol.4 , Issue.3 , pp. 602-610
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 39
    • 0038665928 scopus 로고    scopus 로고
    • Eastern Wind Integration and Transmission Study [Online] Available
    • Eastern Wind Integration and Transmission Study, National Renewable Energy Laboratory [Online]. Available: http://www.nrel.gov/electricity/transmission/eastern-wind-dataset.htm
    • National Renewable Energy Laboratory
  • 40
    • 78650045524 scopus 로고    scopus 로고
    • A review of wind power and wind speed forecasting methods with different time horizons
    • S. S. Soman, H. Zareipour, O. Malik, and P. Mandal, "A review of wind power and wind speed forecasting methods with different time horizons," in Proc. North Amer. Power Symp., 2010, pp. 1-8.
    • (2010) Proc. North Amer. Power Symp. , pp. 1-8
    • Soman, S.S.1    Zareipour, H.2    Malik, O.3    Mandal, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.