메뉴 건너뛰기




Volumn 729, Issue , 2017, Pages 13-24

Intrusion detection based on self-adaptive differential evolution extreme learning machine with gaussian kernel

Author keywords

Differential evolution extreme learning machines; Extreme learning machines; Intrusion detection; Network security; Self adaptive differential evolution extreme learning machines

Indexed keywords

EVOLUTIONARY ALGORITHMS; FEEDFORWARD NEURAL NETWORKS; INTRUSION DETECTION; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; LEARNING SYSTEMS; MERCURY (METAL); NETWORK ARCHITECTURE; NETWORK LAYERS; OPTIMIZATION; PARALLEL ARCHITECTURES; SECURITY OF DATA;

EID: 85031418758     PISSN: 18650929     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-981-10-6442-5_2     Document Type: Conference Paper
Times cited : (5)

References (27)
  • 1
    • 0029267472 scopus 로고
    • State transition analysis: A rule-based intrusion detection approach
    • Ilgun, K., Kemmerer, R.A., Porras, P.A.: State transition analysis: a rule-based intrusion detection approach. IEEE Trans. Softw. Eng. 21(3), 181–199 (1995)
    • (1995) IEEE Trans. Softw. Eng. , vol.21 , Issue.3 , pp. 181-199
    • Ilgun, K.1    Kemmerer, R.A.2    Porras, P.A.3
  • 2
    • 84978100714 scopus 로고    scopus 로고
    • Improving accuracy of intrusion detection model using PCA and optimized SVM[J]
    • Ikram, S.T., Cherukuri, A.K.: Improving accuracy of intrusion detection model using PCA and optimized SVM[J]. CIT. J. Comput. Inf. Technol. 24(2), 133–148 (2016)
    • (2016) CIT. J. Comput. Inf. Technol. , vol.24 , Issue.2 , pp. 133-148
    • Ikram, S.T.1    Cherukuri, A.K.2
  • 4
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501
    • Neurocomputing , vol.70 , Issue.13 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 6
    • 85028098285 scopus 로고    scopus 로고
    • Parametric methods for anomaly detection in aggregate traffic
    • Thatte, G., Mitra, U., Heidemann, J.: Parametric methods for anomaly detection in aggregate traffic. IEEE/ACM Trans. Netw. 19(2), 512–525 (2011)
    • (2011) IEEE/ACM Trans. Netw. , vol.19 , Issue.2 , pp. 512-525
    • Thatte, G.1    Mitra, U.2    Heidemann, J.3
  • 7
    • 18844388178 scopus 로고    scopus 로고
    • Frequent episode rules for internet anomaly detection
    • Qin, M., Hwang, K.: Frequent episode rules for internet anomaly detection. In: Proceedings of the Network Computing and Applications, Third IEEE International Symposium. Washington, DC, USA: IEEE Computer Society, pp. 161–168 (2004)
    • (2004) Proceedings of the Network Computing and Applications , pp. 161-168
    • Qin, M.1    Hwang, K.2
  • 8
    • 58549115037 scopus 로고    scopus 로고
    • Remote detection of bottleneck links using spectral and statistical methods
    • He, X., Papadopoulos, C., Heidemann, J., Mitra, U., Riaz, U.: Remote detection of bottleneck links using spectral and statistical methods. Comput. Netw. 53, 279–298 (2009)
    • (2009) Comput. Netw. , vol.53 , pp. 279-298
    • He, X.1    Papadopoulos, C.2    Heidemann, J.3    Mitra, U.4    Riaz, U.5
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 36849030790 scopus 로고    scopus 로고
    • Weighting versus pruning in rule validation for detecting network and host anomalies
    • Tandon, G.: Weighting versus pruning in rule validation for detecting network and host anomalies. In: Proceedings of the 13th ACM SIGKDD international. ACM Press (2007)
    • (2007) Proceedings of the 13Th ACM SIGKDD International
    • Tandon, G.1
  • 13
    • 0036321445 scopus 로고    scopus 로고
    • Use of k-nearest neighbor classifier for intrusion detection
    • Liao, Y., Vemuri, V.R.: Use of k-nearest neighbor classifier for intrusion detection. Comput. Secur. 25, 439–448 (2002)
    • (2002) Comput. Secur , vol.25 , pp. 439-448
    • Liao, Y.1    Vemuri, V.R.2
  • 14
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
    • Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (2004)
    • (2004) J. Glob. Optim , vol.11 , Issue.4 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 15
    • 0037312458 scopus 로고    scopus 로고
    • Differential evolution training algorithm for feedforward neural networks
    • Ilonen, J., Kamarainen, J.I., Lampinen, J.: Differential evolution training algorithm for feedforward neural networks. Neural Process. Lett. 17, 93–105 (2003)
    • (2003) Neural Process. Lett , vol.17 , pp. 93-105
    • Ilonen, J.1    Kamarainen, J.I.2    Lampinen, J.3
  • 16
    • 42449127855 scopus 로고    scopus 로고
    • Differential evolution and levenberg marquardt trained neural network scheme for nonlinear system identification
    • Subudhi, B., Jena, D.: Differential evolution and levenberg marquardt trained neural network scheme for nonlinear system identification. Neural Process. Lett. 27, 285–296 (2008)
    • (2008) Neural Process. Lett. , vol.27 , pp. 285-296
    • Subudhi, B.1    Jena, D.2
  • 18
    • 85031416901 scopus 로고    scopus 로고
    • KDDCUPdataset: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (1999)
    • (1999)
  • 21
    • 24944586818 scopus 로고    scopus 로고
    • Network-Based Intrusion Detection with Support Vector Machines
    • Kahng, H.-K. (ed.), Springer, Heidelberg
    • Kim, D.S., Park, J.S.: Network-Based Intrusion Detection with Support Vector Machines. In: Kahng, H.-K. (ed.) ICOIN 2003. LNCS, vol. 2662, pp. 747–756. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45235-5_73
    • (2003) ICOIN 2003. LNCS , vol.2662 , pp. 747-756
    • Kim, D.S.1    Park, J.S.2
  • 23
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang, G.-B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.K.3
  • 24
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces
    • Storn, R., Price, K.: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)
    • (1997) J. Global Optim , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 25
    • 33847199831 scopus 로고    scopus 로고
    • Self-adapting control parameters in differential evolution: A comprehensive study on numerical benchmark problems
    • Brest, J., Greiner, S., Bŏskovíc, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: A comprehensive study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)
    • (2006) IEEE Trans. Evol. Comput. , vol.10 , pp. 646-657
    • Brest, J.1    Greiner, S.2    Bŏskovíc, B.3    Mernik, M.4    Žumer, V.5
  • 26
    • 79957639096 scopus 로고    scopus 로고
    • Attribute weighting via differential evolution algorithm for attribute weighted naive bayes (WNB
    • Wu, J., Cai, Z.H.: Attribute weighting via differential evolution algorithm for attribute weighted naive bayes (WNB). J. Comput. Inf. Syst. 7, 1672–1679 (2011)
    • (2011) J. Comput. Inf. Syst , vol.7 , pp. 1672-1679
    • Wu, J.1    Cai, Z.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.