메뉴 건너뛰기




Volumn 2, Issue 19, 2017, Pages

DOCK8 regulates fitness and function of regulatory T cells through modulation of IL-2 signaling

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85044825289     PISSN: None     EISSN: 23793708     Source Type: Journal    
DOI: 10.1172/jci.insight.94275     Document Type: Article
Times cited : (35)

References (58)
  • 1
    • 0347785480 scopus 로고    scopus 로고
    • Control of regulatory T cell development by the transcription factor Foxp3
    • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–1061.
    • (2003) Science , vol.299 , Issue.5609 , pp. 1057-1061
    • Hori, S1    Nomura, T2    Sakaguchi, S.3
  • 2
    • 0037385330 scopus 로고    scopus 로고
    • Foxp3 programs the development and function of CD4+CD25+ regulatory T cells
    • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–336.
    • (2003) Nat Immunol , vol.4 , Issue.4 , pp. 330-336
    • Fontenot, JD1    Gavin, MA2    Rudensky, AY.3
  • 3
    • 0037385314 scopus 로고    scopus 로고
    • An essential role for Scurfin in CD4+CD25+ T regulatory cells
    • Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003;4(4):337–342.
    • (2003) Nat Immunol , vol.4 , Issue.4 , pp. 337-342
    • Khattri, R1    Cox, T2    Yasayko, SA3    Ramsdell, F.4
  • 4
    • 43949105866 scopus 로고    scopus 로고
    • Regulatory T cells and immune tolerance
    • Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–787.
    • (2008) Cell , vol.133 , Issue.5 , pp. 775-787
    • Sakaguchi, S1    Yamaguchi, T2    Nomura, T3    Ono, M.4
  • 5
    • 0034084162 scopus 로고    scopus 로고
    • Regulatory T cells in autoimmmunity*
    • Shevach EM. Regulatory T cells in autoimmmunity*. Annu Rev Immunol. 2000;18:423–449.
    • (2000) Annu Rev Immunol , vol.18 , pp. 423-449
    • Shevach, EM.1
  • 6
    • 33847651713 scopus 로고    scopus 로고
    • Thymic development and peripheral homeostasis of regulatory T cells
    • Liston A, Rudensky AY. Thymic development and peripheral homeostasis of regulatory T cells. Curr Opin Immunol. 2007;19(2):176–185.
    • (2007) Curr Opin Immunol , vol.19 , Issue.2 , pp. 176-185
    • Liston, A1    Rudensky, AY.2
  • 7
    • 0035162560 scopus 로고    scopus 로고
    • Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse
    • Brunkow ME, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001;27(1):68–73.
    • (2001) Nat Genet , vol.27 , Issue.1 , pp. 68-73
    • Brunkow, ME1
  • 8
    • 0035163909 scopus 로고    scopus 로고
    • X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy
    • Wildin RS, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001;27(1):18–20.
    • (2001) Nat Genet , vol.27 , Issue.1 , pp. 18-20
    • Wildin, RS1
  • 9
    • 0035167967 scopus 로고    scopus 로고
    • The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3
    • Bennett CL, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27(1):20–21.
    • (2001) Nat Genet , vol.27 , Issue.1 , pp. 20-21
    • Bennett, CL1
  • 10
    • 84859416933 scopus 로고    scopus 로고
    • Regulatory T cells: mechanisms of differentiation and function
    • Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–564.
    • (2012) Annu Rev Immunol , vol.30 , pp. 531-564
    • Josefowicz, SZ1    Lu, LF2    Rudensky, AY.3
  • 11
    • 27544481941 scopus 로고    scopus 로고
    • A function for interleukin 2 in Foxp3-expressing regulatory T cells
    • Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 2005;6(11):1142–1151.
    • (2005) Nat Immunol , vol.6 , Issue.11 , pp. 1142-1151
    • Fontenot, JD1    Rasmussen, JP2    Gavin, MA3    Rudensky, AY.4
  • 12
    • 15444374646 scopus 로고    scopus 로고
    • Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization
    • Setoguchi R, Hori S, Takahashi T, Sakaguchi S. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med. 2005;201(5):723–735.
    • (2005) J Exp Med , vol.201 , Issue.5 , pp. 723-735
    • Setoguchi, R1    Hori, S2    Takahashi, T3    Sakaguchi, S.4
  • 13
    • 0141920630 scopus 로고    scopus 로고
    • Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance
    • Antov A, Yang L, Vig M, Baltimore D, Van Parijs L. Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J Immunol. 2003;171(7):3435–3441.
    • (2003) J Immunol , vol.171 , Issue.7 , pp. 3435-3441
    • Antov, A1    Yang, L2    Vig, M3    Baltimore, D4    Van Parijs, L.5
  • 14
    • 79954559096 scopus 로고    scopus 로고
    • T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells
    • Cheng G, Yu A, Malek TR. T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol Rev. 2011;241(1):63–76.
    • (2011) Immunol Rev , vol.241 , Issue.1 , pp. 63-76
    • Cheng, G1    Yu, A2    Malek, TR.3
  • 15
    • 33845935950 scopus 로고    scopus 로고
    • IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells
    • Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol. 2007;178(1):280–290.
    • (2007) J Immunol , vol.178 , Issue.1 , pp. 280-290
    • Burchill, MA1    Yang, J2    Vogtenhuber, C3    Blazar, BR4    Farrar, MA.5
  • 16
    • 34247564147 scopus 로고    scopus 로고
    • Nonredundant roles for Stat5a/b in directly regulating Foxp3
    • Yao Z, et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood. 2007;109(10):4368–4375.
    • (2007) Blood , vol.109 , Issue.10 , pp. 4368-4375
    • Yao, Z1
  • 17
    • 78650649691 scopus 로고    scopus 로고
    • The essential role of DOCK8 in humoral immunity
    • Randall KL, Lambe T, Goodnow CC, Cornall RJ. The essential role of DOCK8 in humoral immunity. Dis Markers. 2010;29(3–4):141–150.
    • (2010) Dis Markers , vol.29 , Issue.3–4 , pp. 141-150
    • Randall, KL1    Lambe, T2    Goodnow, CC3    Cornall, RJ.4
  • 18
    • 78449249501 scopus 로고    scopus 로고
    • Dedicator of cytokinesis 8 (DOCK8) deficiency
    • Su HC. Dedicator of cytokinesis 8 (DOCK8) deficiency. Curr Opin Allergy Clin Immunol. 2010;10(6):515–520.
    • (2010) Curr Opin Allergy Clin Immunol , vol.10 , Issue.6 , pp. 515-520
    • Su, HC.1
  • 20
    • 84887595223 scopus 로고    scopus 로고
    • DOCK8 is critical for the survival and function of NKT cells
    • Crawford G, et al. DOCK8 is critical for the survival and function of NKT cells. Blood. 2013;122(12):2052–2061.
    • (2013) Blood , vol.122 , Issue.12 , pp. 2052-2061
    • Crawford, G1
  • 21
    • 84861078339 scopus 로고    scopus 로고
    • DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses
    • Harada Y, et al. DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood. 2012;119(19):4451–4461.
    • (2012) Blood , vol.119 , Issue.19 , pp. 4451-4461
    • Harada, Y1
  • 22
    • 84861236002 scopus 로고    scopus 로고
    • DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation
    • Jabara HH, et al. DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nat Immunol. 2012;13(6):612–620.
    • (2012) Nat Immunol , vol.13 , Issue.6 , pp. 612-620
    • Jabara, HH1
  • 23
    • 82255181388 scopus 로고    scopus 로고
    • DOCK8 is essential for T-cell survival and the maintenance of CD8+ T-cell memory
    • Lambe T, et al. DOCK8 is essential for T-cell survival and the maintenance of CD8+ T-cell memory. Eur J Immunol. 2011;41(12):3423–3435.
    • (2011) Eur J Immunol , vol.41 , Issue.12 , pp. 3423-3435
    • Lambe, T1
  • 24
    • 80055107954 scopus 로고    scopus 로고
    • DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice
    • Randall KL, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med. 2011;208(11):2305–2320.
    • (2011) J Exp Med , vol.208 , Issue.11 , pp. 2305-2320
    • Randall, KL1
  • 25
    • 70449718702 scopus 로고    scopus 로고
    • Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production
    • Randall KL, et al. Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat Immunol. 2009;10(12):1283–1291.
    • (2009) Nat Immunol , vol.10 , Issue.12 , pp. 1283-1291
    • Randall, KL1
  • 26
    • 84924283592 scopus 로고    scopus 로고
    • DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity
    • Zhang Q, et al. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. J Exp Med. 2014;211(13):2549–2566.
    • (2014) J Exp Med , vol.211 , Issue.13 , pp. 2549-2566
    • Zhang, Q1
  • 27
    • 84907336842 scopus 로고    scopus 로고
    • DOCK8 regulates protective immunity by controlling the function and survival of RORγt+ ILCs
    • Singh AK, Eken A, Fry M, Bettelli E, Oukka M. DOCK8 regulates protective immunity by controlling the function and survival of RORγt+ ILCs. Nat Commun. 2014;5:4603.
    • (2014) Nat Commun , vol.5 , pp. 4603
    • Singh, AK1    Eken, A2    Fry, M3    Bettelli, E4    Oukka, M.5
  • 28
    • 84908440532 scopus 로고    scopus 로고
    • Dedicator of cytokinesis 8-deficient patients have a breakdown in peripheral B-cell tolerance and defective regulatory T cells
    • Janssen E, et al. Dedicator of cytokinesis 8-deficient patients have a breakdown in peripheral B-cell tolerance and defective regulatory T cells. J Allergy Clin Immunol. 2014;134(6):1365–1374.
    • (2014) J Allergy Clin Immunol , vol.134 , Issue.6 , pp. 1365-1374
    • Janssen, E1
  • 29
    • 41549159660 scopus 로고    scopus 로고
    • Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces
    • Rubtsov YP, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546–558.
    • (2008) Immunity , vol.28 , Issue.4 , pp. 546-558
    • Rubtsov, YP1
  • 30
    • 1642580757 scopus 로고    scopus 로고
    • Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1
    • Matloubian M, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427(6972):355–360.
    • (2004) Nature , vol.427 , Issue.6972 , pp. 355-360
    • Matloubian, M1
  • 31
    • 78649807427 scopus 로고    scopus 로고
    • Coordination of IL-7 receptor and T-cell receptor signaling by cell-division cycle 42 in T-cell homeostasis
    • Guo F, Hildeman D, Tripathi P, Velu CS, Grimes HL, Zheng Y. Coordination of IL-7 receptor and T-cell receptor signaling by cell-division cycle 42 in T-cell homeostasis. Proc Natl Acad Sci U S A. 2010;107(43):18505–18510.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.43 , pp. 18505-18510
    • Guo, F1    Hildeman, D2    Tripathi, P3    Velu, CS4    Grimes, HL5    Zheng, Y.6
  • 32
    • 23844478869 scopus 로고    scopus 로고
    • Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system
    • McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol. 2005;175(5):3025–3032.
    • (2005) J Immunol , vol.175 , Issue.5 , pp. 3025-3032
    • McGeachy, MJ1    Stephens, LA2    Anderton, SM.3
  • 33
    • 85008471270 scopus 로고    scopus 로고
    • LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis
    • Xu X, et al. LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. J Exp Med. 2017;214(1):209–226.
    • (2017) J Exp Med , vol.214 , Issue.1 , pp. 209-226
    • Xu, X1
  • 34
    • 85119970012 scopus 로고    scopus 로고
    • CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science. 2009;326(5955):986–991. 35. Kerdiles YM, et al. Foxo transcription factors control regulatory T cell development and function
    • 2010;33(6):890–904
    • Chaudhry A, et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science. 2009;326(5955):986–991. 35. Kerdiles YM, et al. Foxo transcription factors control regulatory T cell development and function. Immunity. 2010;33(6):890–904.
    • Immunity
    • Chaudhry, A1
  • 35
    • 70349741295 scopus 로고    scopus 로고
    • Indispensable role of the Runx1-Cbfβ transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells
    • Kitoh A, et al. Indispensable role of the Runx1-Cbfβ transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity. 2009;31(4):609–620.
    • (2009) Immunity , vol.31 , Issue.4 , pp. 609-620
    • Kitoh, A1
  • 36
    • 65749103365 scopus 로고    scopus 로고
    • The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation
    • Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol. 2009;10(6):595–602.
    • (2009) Nat Immunol , vol.10 , Issue.6 , pp. 595-602
    • Koch, MA1    Tucker-Heard, G2    Perdue, NR3    Killebrew, JR4    Urdahl, KB5    Campbell, DJ.6
  • 37
    • 77953811224 scopus 로고    scopus 로고
    • Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells
    • Ouyang W, Beckett O, Ma Q, Paik JH, DePinho RA, Li MO. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol. 2010;11(7):618–627.
    • (2010) Nat Immunol , vol.11 , Issue.7 , pp. 618-627
    • Ouyang, W1    Beckett, O2    Ma, Q3    Paik, JH4    DePinho, RA5    Li, MO.6
  • 38
    • 84869872964 scopus 로고    scopus 로고
    • Novel Foxo1-dependent transcriptional programs control T(reg) cell function
    • Ouyang W, et al. Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature. 2012;491(7425):554–559.
    • (2012) Nature , vol.491 , Issue.7425 , pp. 554-559
    • Ouyang, W1
  • 39
    • 70350451993 scopus 로고    scopus 로고
    • Runx-CBFβ complexes control expression of the transcription factor Foxp3 in regulatory T cells
    • Rudra D, Egawa T, Chong MM, Treuting P, Littman DR, Rudensky AY. Runx-CBFβ complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol. 2009;10(11):1170–1177.
    • (2009) Nat Immunol , vol.10 , Issue.11 , pp. 1170-1177
    • Rudra, D1    Egawa, T2    Chong, MM3    Treuting, P4    Littman, DR5    Rudensky, AY.6
  • 40
    • 80053130719 scopus 로고    scopus 로고
    • An essential role of the transcription factor GATA-3 for the function of regulatory T cells
    • Wang Y, Su MA, Wan YY. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity. 2011;35(3):337–348.
    • (2011) Immunity , vol.35 , Issue.3 , pp. 337-348
    • Wang, Y1    Su, MA2    Wan, YY.3
  • 41
    • 62649165369 scopus 로고    scopus 로고
    • Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses
    • Zheng Y, et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature. 2009;458(7236):351–356.
    • (2009) Nature , vol.458 , Issue.7236 , pp. 351-356
    • Zheng, Y1
  • 42
    • 2442637772 scopus 로고    scopus 로고
    • Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function
    • Thornton AM, Donovan EE, Piccirillo CA, Shevach EM. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J Immunol. 2004;172(11):6519–6523.
    • (2004) J Immunol , vol.172 , Issue.11 , pp. 6519-6523
    • Thornton, AM1    Donovan, EE2    Piccirillo, CA3    Shevach, EM.4
  • 43
    • 70349512606 scopus 로고    scopus 로고
    • Regulatory T cells: how do they suppress immune responses?
    • Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T cells: how do they suppress immune responses? Int Immunol. 2009;21(10):1105–1111.
    • (2009) Int Immunol , vol.21 , Issue.10 , pp. 1105-1111
    • Sakaguchi, S1    Wing, K2    Onishi, Y3    Prieto-Martin, P4    Yamaguchi, T.5
  • 44
    • 36248976097 scopus 로고    scopus 로고
    • CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells
    • Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007;8(12):1353–1362.
    • (2007) Nat Immunol , vol.8 , Issue.12 , pp. 1353-1362
    • Pandiyan, P1    Zheng, L2    Ishihara, S3    Reed, J4    Lenardo, MJ.5
  • 45
    • 84949546369 scopus 로고    scopus 로고
    • Immune homeostasis enforced by co-localized effector and regulatory T cells
    • Liu Z, Gerner MY, Van Panhuys N, Levine AG, Rudensky AY, Germain RN. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature. 2015;528(7581):225–230.
    • (2015) Nature , vol.528 , Issue.7581 , pp. 225-230
    • Liu, Z1    Gerner, MY2    Van Panhuys, N3    Levine, AG4    Rudensky, AY5    Germain, RN.6
  • 46
    • 84946094731 scopus 로고    scopus 로고
    • IL-2Rα mediates temporal regulation of IL-2 signaling and enhances immunotherapy
    • Su EW, et al. IL-2Rα mediates temporal regulation of IL-2 signaling and enhances immunotherapy. Sci Transl Med. 2015;7(311):311ra170.
    • (2015) Sci Transl Med , vol.7 , Issue.311 , pp. 311ra170
    • Su, EW1
  • 47
    • 0035996454 scopus 로고    scopus 로고
    • Possible mechanism for the alpha subunit of the interleukin-2 receptor (CD25) to influence interleukin-2 receptor signal transduction
    • Ellery JM, Nicholls PJ. Possible mechanism for the alpha subunit of the interleukin-2 receptor (CD25) to influence interleukin-2 receptor signal transduction. Immunol Cell Biol. 2002;80(4):351–357.
    • (2002) Immunol Cell Biol , vol.80 , Issue.4 , pp. 351-357
    • Ellery, JM1    Nicholls, PJ.2
  • 48
    • 78650662845 scopus 로고    scopus 로고
    • DOCK8 immune deficiency as a model for primary cytoskeletal dysfunction
    • McGhee SA, Chatila TA. DOCK8 immune deficiency as a model for primary cytoskeletal dysfunction. Dis Markers. 2010;29(3–4):151–156.
    • (2010) Dis Markers , vol.29 , Issue.3–4 , pp. 151-156
    • McGhee, SA1    Chatila, TA.2
  • 49
    • 84992723964 scopus 로고    scopus 로고
    • Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions
    • Martins R, et al. Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions. Nat Immunol. 2016;17(12):1361–1372.
    • (2016) Nat Immunol , vol.17 , Issue.12 , pp. 1361-1372
    • Martins, R1
  • 50
    • 84973517700 scopus 로고    scopus 로고
    • Breaking free of control: how conventional T cells overcome regulatory T cell suppression
    • Mercadante ER, Lorenz UM. Breaking free of control: how conventional T cells overcome regulatory T cell suppression. Front Immunol. 2016;7:193.
    • (2016) Front Immunol , vol.7 , pp. 193
    • Mercadante, ER1    Lorenz, UM.2
  • 51
    • 84994545621 scopus 로고    scopus 로고
    • Dedicator of cytokinesis 8-deficient CD4(+) T cells are biased to a TH2 effector fate at the expense of TH1 and TH17 cells
    • Tangye SG, et al. Dedicator of cytokinesis 8-deficient CD4(+) T cells are biased to a TH2 effector fate at the expense of TH1 and TH17 cells. J Allergy Clin Immunol. 2017;139(3):933–949.
    • (2017) J Allergy Clin Immunol , vol.139 , Issue.3 , pp. 933-949
    • Tangye, SG1
  • 52
    • 71149115670 scopus 로고    scopus 로고
    • Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome
    • e4
    • Engelhardt KR, et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol. 2009;124(6):1289–302.e4.
    • (2009) J Allergy Clin Immunol , vol.124 , Issue.6 , pp. 1289-1302
    • Engelhardt, KR1
  • 53
    • 84863985331 scopus 로고    scopus 로고
    • Additional diverse findings expand the clinical presentation of DOCK8 deficiency
    • Sanal O, et al. Additional diverse findings expand the clinical presentation of DOCK8 deficiency. J Clin Immunol. 2012;32(4):698–708.
    • (2012) J Clin Immunol , vol.32 , Issue.4 , pp. 698-708
    • Sanal, O1
  • 54
    • 70949098060 scopus 로고    scopus 로고
    • Combined immunodeficiency associated with DOCK8 mutations
    • Zhang Q, et al. Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med. 2009;361(21):2046–2055.
    • (2009) N Engl J Med , vol.361 , Issue.21 , pp. 2046-2055
    • Zhang, Q1
  • 55
    • 33644751815 scopus 로고    scopus 로고
    • Cdc42 controls progenitor cell differentiation and beta-catenin turnover in skin
    • Wu X, et al. Cdc42 controls progenitor cell differentiation and beta-catenin turnover in skin. Genes Dev. 2006;20(5):571–585.
    • (2006) Genes Dev , vol.20 , Issue.5 , pp. 571-585
    • Wu, X1
  • 56
    • 0242411518 scopus 로고    scopus 로고
    • G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation
    • Allende ML, Yamashita T, Proia RL. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood. 2003;102(10):3665–3667.
    • (2003) Blood , vol.102 , Issue.10 , pp. 3665-3667
    • Allende, ML1    Yamashita, T2    Proia, RL.3
  • 57
    • 34250336452 scopus 로고    scopus 로고
    • Altering the distribution of Foxp3(+) regulatory T cells results in tissue-specific inflammatory disease
    • Sather BD, et al. Altering the distribution of Foxp3(+) regulatory T cells results in tissue-specific inflammatory disease. J Exp Med. 2007;204(6):1335–1347.
    • (2007) J Exp Med , vol.204 , Issue.6 , pp. 1335-1347
    • Sather, BD1
  • 58
    • 84969245659 scopus 로고    scopus 로고
    • B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6
    • Jackson SW, et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med. 2016;213(5):733–750.
    • (2016) J Exp Med , vol.213 , Issue.5 , pp. 733-750
    • Jackson, SW1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.