-
1
-
-
0347785480
-
Control of regulatory T cell development by the transcription factor Foxp3
-
Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–1061.
-
(2003)
Science
, vol.299
, Issue.5609
, pp. 1057-1061
-
-
Hori, S1
Nomura, T2
Sakaguchi, S.3
-
2
-
-
0037385330
-
Foxp3 programs the development and function of CD4+CD25+ regulatory T cells
-
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–336.
-
(2003)
Nat Immunol
, vol.4
, Issue.4
, pp. 330-336
-
-
Fontenot, JD1
Gavin, MA2
Rudensky, AY.3
-
3
-
-
0037385314
-
An essential role for Scurfin in CD4+CD25+ T regulatory cells
-
Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003;4(4):337–342.
-
(2003)
Nat Immunol
, vol.4
, Issue.4
, pp. 337-342
-
-
Khattri, R1
Cox, T2
Yasayko, SA3
Ramsdell, F.4
-
4
-
-
43949105866
-
Regulatory T cells and immune tolerance
-
Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–787.
-
(2008)
Cell
, vol.133
, Issue.5
, pp. 775-787
-
-
Sakaguchi, S1
Yamaguchi, T2
Nomura, T3
Ono, M.4
-
5
-
-
0034084162
-
Regulatory T cells in autoimmmunity*
-
Shevach EM. Regulatory T cells in autoimmmunity*. Annu Rev Immunol. 2000;18:423–449.
-
(2000)
Annu Rev Immunol
, vol.18
, pp. 423-449
-
-
Shevach, EM.1
-
6
-
-
33847651713
-
Thymic development and peripheral homeostasis of regulatory T cells
-
Liston A, Rudensky AY. Thymic development and peripheral homeostasis of regulatory T cells. Curr Opin Immunol. 2007;19(2):176–185.
-
(2007)
Curr Opin Immunol
, vol.19
, Issue.2
, pp. 176-185
-
-
Liston, A1
Rudensky, AY.2
-
7
-
-
0035162560
-
Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse
-
Brunkow ME, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001;27(1):68–73.
-
(2001)
Nat Genet
, vol.27
, Issue.1
, pp. 68-73
-
-
Brunkow, ME1
-
8
-
-
0035163909
-
X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy
-
Wildin RS, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001;27(1):18–20.
-
(2001)
Nat Genet
, vol.27
, Issue.1
, pp. 18-20
-
-
Wildin, RS1
-
9
-
-
0035167967
-
The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3
-
Bennett CL, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27(1):20–21.
-
(2001)
Nat Genet
, vol.27
, Issue.1
, pp. 20-21
-
-
Bennett, CL1
-
10
-
-
84859416933
-
Regulatory T cells: mechanisms of differentiation and function
-
Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–564.
-
(2012)
Annu Rev Immunol
, vol.30
, pp. 531-564
-
-
Josefowicz, SZ1
Lu, LF2
Rudensky, AY.3
-
11
-
-
27544481941
-
A function for interleukin 2 in Foxp3-expressing regulatory T cells
-
Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 2005;6(11):1142–1151.
-
(2005)
Nat Immunol
, vol.6
, Issue.11
, pp. 1142-1151
-
-
Fontenot, JD1
Rasmussen, JP2
Gavin, MA3
Rudensky, AY.4
-
12
-
-
15444374646
-
Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization
-
Setoguchi R, Hori S, Takahashi T, Sakaguchi S. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med. 2005;201(5):723–735.
-
(2005)
J Exp Med
, vol.201
, Issue.5
, pp. 723-735
-
-
Setoguchi, R1
Hori, S2
Takahashi, T3
Sakaguchi, S.4
-
13
-
-
0141920630
-
Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance
-
Antov A, Yang L, Vig M, Baltimore D, Van Parijs L. Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J Immunol. 2003;171(7):3435–3441.
-
(2003)
J Immunol
, vol.171
, Issue.7
, pp. 3435-3441
-
-
Antov, A1
Yang, L2
Vig, M3
Baltimore, D4
Van Parijs, L.5
-
14
-
-
79954559096
-
T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells
-
Cheng G, Yu A, Malek TR. T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol Rev. 2011;241(1):63–76.
-
(2011)
Immunol Rev
, vol.241
, Issue.1
, pp. 63-76
-
-
Cheng, G1
Yu, A2
Malek, TR.3
-
15
-
-
33845935950
-
IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells
-
Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol. 2007;178(1):280–290.
-
(2007)
J Immunol
, vol.178
, Issue.1
, pp. 280-290
-
-
Burchill, MA1
Yang, J2
Vogtenhuber, C3
Blazar, BR4
Farrar, MA.5
-
16
-
-
34247564147
-
Nonredundant roles for Stat5a/b in directly regulating Foxp3
-
Yao Z, et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood. 2007;109(10):4368–4375.
-
(2007)
Blood
, vol.109
, Issue.10
, pp. 4368-4375
-
-
Yao, Z1
-
17
-
-
78650649691
-
The essential role of DOCK8 in humoral immunity
-
Randall KL, Lambe T, Goodnow CC, Cornall RJ. The essential role of DOCK8 in humoral immunity. Dis Markers. 2010;29(3–4):141–150.
-
(2010)
Dis Markers
, vol.29
, Issue.3–4
, pp. 141-150
-
-
Randall, KL1
Lambe, T2
Goodnow, CC3
Cornall, RJ.4
-
18
-
-
78449249501
-
Dedicator of cytokinesis 8 (DOCK8) deficiency
-
Su HC. Dedicator of cytokinesis 8 (DOCK8) deficiency. Curr Opin Allergy Clin Immunol. 2010;10(6):515–520.
-
(2010)
Curr Opin Allergy Clin Immunol
, vol.10
, Issue.6
, pp. 515-520
-
-
Su, HC.1
-
20
-
-
84887595223
-
DOCK8 is critical for the survival and function of NKT cells
-
Crawford G, et al. DOCK8 is critical for the survival and function of NKT cells. Blood. 2013;122(12):2052–2061.
-
(2013)
Blood
, vol.122
, Issue.12
, pp. 2052-2061
-
-
Crawford, G1
-
21
-
-
84861078339
-
DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses
-
Harada Y, et al. DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood. 2012;119(19):4451–4461.
-
(2012)
Blood
, vol.119
, Issue.19
, pp. 4451-4461
-
-
Harada, Y1
-
22
-
-
84861236002
-
DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation
-
Jabara HH, et al. DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nat Immunol. 2012;13(6):612–620.
-
(2012)
Nat Immunol
, vol.13
, Issue.6
, pp. 612-620
-
-
Jabara, HH1
-
23
-
-
82255181388
-
DOCK8 is essential for T-cell survival and the maintenance of CD8+ T-cell memory
-
Lambe T, et al. DOCK8 is essential for T-cell survival and the maintenance of CD8+ T-cell memory. Eur J Immunol. 2011;41(12):3423–3435.
-
(2011)
Eur J Immunol
, vol.41
, Issue.12
, pp. 3423-3435
-
-
Lambe, T1
-
24
-
-
80055107954
-
DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice
-
Randall KL, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med. 2011;208(11):2305–2320.
-
(2011)
J Exp Med
, vol.208
, Issue.11
, pp. 2305-2320
-
-
Randall, KL1
-
25
-
-
70449718702
-
Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production
-
Randall KL, et al. Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat Immunol. 2009;10(12):1283–1291.
-
(2009)
Nat Immunol
, vol.10
, Issue.12
, pp. 1283-1291
-
-
Randall, KL1
-
26
-
-
84924283592
-
DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity
-
Zhang Q, et al. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. J Exp Med. 2014;211(13):2549–2566.
-
(2014)
J Exp Med
, vol.211
, Issue.13
, pp. 2549-2566
-
-
Zhang, Q1
-
27
-
-
84907336842
-
DOCK8 regulates protective immunity by controlling the function and survival of RORγt+ ILCs
-
Singh AK, Eken A, Fry M, Bettelli E, Oukka M. DOCK8 regulates protective immunity by controlling the function and survival of RORγt+ ILCs. Nat Commun. 2014;5:4603.
-
(2014)
Nat Commun
, vol.5
, pp. 4603
-
-
Singh, AK1
Eken, A2
Fry, M3
Bettelli, E4
Oukka, M.5
-
28
-
-
84908440532
-
Dedicator of cytokinesis 8-deficient patients have a breakdown in peripheral B-cell tolerance and defective regulatory T cells
-
Janssen E, et al. Dedicator of cytokinesis 8-deficient patients have a breakdown in peripheral B-cell tolerance and defective regulatory T cells. J Allergy Clin Immunol. 2014;134(6):1365–1374.
-
(2014)
J Allergy Clin Immunol
, vol.134
, Issue.6
, pp. 1365-1374
-
-
Janssen, E1
-
29
-
-
41549159660
-
Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces
-
Rubtsov YP, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546–558.
-
(2008)
Immunity
, vol.28
, Issue.4
, pp. 546-558
-
-
Rubtsov, YP1
-
30
-
-
1642580757
-
Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1
-
Matloubian M, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427(6972):355–360.
-
(2004)
Nature
, vol.427
, Issue.6972
, pp. 355-360
-
-
Matloubian, M1
-
31
-
-
78649807427
-
Coordination of IL-7 receptor and T-cell receptor signaling by cell-division cycle 42 in T-cell homeostasis
-
Guo F, Hildeman D, Tripathi P, Velu CS, Grimes HL, Zheng Y. Coordination of IL-7 receptor and T-cell receptor signaling by cell-division cycle 42 in T-cell homeostasis. Proc Natl Acad Sci U S A. 2010;107(43):18505–18510.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.43
, pp. 18505-18510
-
-
Guo, F1
Hildeman, D2
Tripathi, P3
Velu, CS4
Grimes, HL5
Zheng, Y.6
-
32
-
-
23844478869
-
Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system
-
McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol. 2005;175(5):3025–3032.
-
(2005)
J Immunol
, vol.175
, Issue.5
, pp. 3025-3032
-
-
McGeachy, MJ1
Stephens, LA2
Anderton, SM.3
-
33
-
-
85008471270
-
LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis
-
Xu X, et al. LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. J Exp Med. 2017;214(1):209–226.
-
(2017)
J Exp Med
, vol.214
, Issue.1
, pp. 209-226
-
-
Xu, X1
-
34
-
-
85119970012
-
CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science. 2009;326(5955):986–991. 35. Kerdiles YM, et al. Foxo transcription factors control regulatory T cell development and function
-
2010;33(6):890–904
-
Chaudhry A, et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science. 2009;326(5955):986–991. 35. Kerdiles YM, et al. Foxo transcription factors control regulatory T cell development and function. Immunity. 2010;33(6):890–904.
-
Immunity
-
-
Chaudhry, A1
-
35
-
-
70349741295
-
Indispensable role of the Runx1-Cbfβ transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells
-
Kitoh A, et al. Indispensable role of the Runx1-Cbfβ transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity. 2009;31(4):609–620.
-
(2009)
Immunity
, vol.31
, Issue.4
, pp. 609-620
-
-
Kitoh, A1
-
36
-
-
65749103365
-
The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation
-
Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol. 2009;10(6):595–602.
-
(2009)
Nat Immunol
, vol.10
, Issue.6
, pp. 595-602
-
-
Koch, MA1
Tucker-Heard, G2
Perdue, NR3
Killebrew, JR4
Urdahl, KB5
Campbell, DJ.6
-
37
-
-
77953811224
-
Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells
-
Ouyang W, Beckett O, Ma Q, Paik JH, DePinho RA, Li MO. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol. 2010;11(7):618–627.
-
(2010)
Nat Immunol
, vol.11
, Issue.7
, pp. 618-627
-
-
Ouyang, W1
Beckett, O2
Ma, Q3
Paik, JH4
DePinho, RA5
Li, MO.6
-
38
-
-
84869872964
-
Novel Foxo1-dependent transcriptional programs control T(reg) cell function
-
Ouyang W, et al. Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature. 2012;491(7425):554–559.
-
(2012)
Nature
, vol.491
, Issue.7425
, pp. 554-559
-
-
Ouyang, W1
-
39
-
-
70350451993
-
Runx-CBFβ complexes control expression of the transcription factor Foxp3 in regulatory T cells
-
Rudra D, Egawa T, Chong MM, Treuting P, Littman DR, Rudensky AY. Runx-CBFβ complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol. 2009;10(11):1170–1177.
-
(2009)
Nat Immunol
, vol.10
, Issue.11
, pp. 1170-1177
-
-
Rudra, D1
Egawa, T2
Chong, MM3
Treuting, P4
Littman, DR5
Rudensky, AY.6
-
40
-
-
80053130719
-
An essential role of the transcription factor GATA-3 for the function of regulatory T cells
-
Wang Y, Su MA, Wan YY. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity. 2011;35(3):337–348.
-
(2011)
Immunity
, vol.35
, Issue.3
, pp. 337-348
-
-
Wang, Y1
Su, MA2
Wan, YY.3
-
41
-
-
62649165369
-
Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses
-
Zheng Y, et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature. 2009;458(7236):351–356.
-
(2009)
Nature
, vol.458
, Issue.7236
, pp. 351-356
-
-
Zheng, Y1
-
42
-
-
2442637772
-
Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function
-
Thornton AM, Donovan EE, Piccirillo CA, Shevach EM. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J Immunol. 2004;172(11):6519–6523.
-
(2004)
J Immunol
, vol.172
, Issue.11
, pp. 6519-6523
-
-
Thornton, AM1
Donovan, EE2
Piccirillo, CA3
Shevach, EM.4
-
43
-
-
70349512606
-
Regulatory T cells: how do they suppress immune responses?
-
Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T cells: how do they suppress immune responses? Int Immunol. 2009;21(10):1105–1111.
-
(2009)
Int Immunol
, vol.21
, Issue.10
, pp. 1105-1111
-
-
Sakaguchi, S1
Wing, K2
Onishi, Y3
Prieto-Martin, P4
Yamaguchi, T.5
-
44
-
-
36248976097
-
CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells
-
Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007;8(12):1353–1362.
-
(2007)
Nat Immunol
, vol.8
, Issue.12
, pp. 1353-1362
-
-
Pandiyan, P1
Zheng, L2
Ishihara, S3
Reed, J4
Lenardo, MJ.5
-
45
-
-
84949546369
-
Immune homeostasis enforced by co-localized effector and regulatory T cells
-
Liu Z, Gerner MY, Van Panhuys N, Levine AG, Rudensky AY, Germain RN. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature. 2015;528(7581):225–230.
-
(2015)
Nature
, vol.528
, Issue.7581
, pp. 225-230
-
-
Liu, Z1
Gerner, MY2
Van Panhuys, N3
Levine, AG4
Rudensky, AY5
Germain, RN.6
-
46
-
-
84946094731
-
IL-2Rα mediates temporal regulation of IL-2 signaling and enhances immunotherapy
-
Su EW, et al. IL-2Rα mediates temporal regulation of IL-2 signaling and enhances immunotherapy. Sci Transl Med. 2015;7(311):311ra170.
-
(2015)
Sci Transl Med
, vol.7
, Issue.311
, pp. 311ra170
-
-
Su, EW1
-
47
-
-
0035996454
-
Possible mechanism for the alpha subunit of the interleukin-2 receptor (CD25) to influence interleukin-2 receptor signal transduction
-
Ellery JM, Nicholls PJ. Possible mechanism for the alpha subunit of the interleukin-2 receptor (CD25) to influence interleukin-2 receptor signal transduction. Immunol Cell Biol. 2002;80(4):351–357.
-
(2002)
Immunol Cell Biol
, vol.80
, Issue.4
, pp. 351-357
-
-
Ellery, JM1
Nicholls, PJ.2
-
48
-
-
78650662845
-
DOCK8 immune deficiency as a model for primary cytoskeletal dysfunction
-
McGhee SA, Chatila TA. DOCK8 immune deficiency as a model for primary cytoskeletal dysfunction. Dis Markers. 2010;29(3–4):151–156.
-
(2010)
Dis Markers
, vol.29
, Issue.3–4
, pp. 151-156
-
-
McGhee, SA1
Chatila, TA.2
-
49
-
-
84992723964
-
Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions
-
Martins R, et al. Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions. Nat Immunol. 2016;17(12):1361–1372.
-
(2016)
Nat Immunol
, vol.17
, Issue.12
, pp. 1361-1372
-
-
Martins, R1
-
50
-
-
84973517700
-
Breaking free of control: how conventional T cells overcome regulatory T cell suppression
-
Mercadante ER, Lorenz UM. Breaking free of control: how conventional T cells overcome regulatory T cell suppression. Front Immunol. 2016;7:193.
-
(2016)
Front Immunol
, vol.7
, pp. 193
-
-
Mercadante, ER1
Lorenz, UM.2
-
51
-
-
84994545621
-
Dedicator of cytokinesis 8-deficient CD4(+) T cells are biased to a TH2 effector fate at the expense of TH1 and TH17 cells
-
Tangye SG, et al. Dedicator of cytokinesis 8-deficient CD4(+) T cells are biased to a TH2 effector fate at the expense of TH1 and TH17 cells. J Allergy Clin Immunol. 2017;139(3):933–949.
-
(2017)
J Allergy Clin Immunol
, vol.139
, Issue.3
, pp. 933-949
-
-
Tangye, SG1
-
52
-
-
71149115670
-
Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome
-
e4
-
Engelhardt KR, et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol. 2009;124(6):1289–302.e4.
-
(2009)
J Allergy Clin Immunol
, vol.124
, Issue.6
, pp. 1289-1302
-
-
Engelhardt, KR1
-
53
-
-
84863985331
-
Additional diverse findings expand the clinical presentation of DOCK8 deficiency
-
Sanal O, et al. Additional diverse findings expand the clinical presentation of DOCK8 deficiency. J Clin Immunol. 2012;32(4):698–708.
-
(2012)
J Clin Immunol
, vol.32
, Issue.4
, pp. 698-708
-
-
Sanal, O1
-
54
-
-
70949098060
-
Combined immunodeficiency associated with DOCK8 mutations
-
Zhang Q, et al. Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med. 2009;361(21):2046–2055.
-
(2009)
N Engl J Med
, vol.361
, Issue.21
, pp. 2046-2055
-
-
Zhang, Q1
-
55
-
-
33644751815
-
Cdc42 controls progenitor cell differentiation and beta-catenin turnover in skin
-
Wu X, et al. Cdc42 controls progenitor cell differentiation and beta-catenin turnover in skin. Genes Dev. 2006;20(5):571–585.
-
(2006)
Genes Dev
, vol.20
, Issue.5
, pp. 571-585
-
-
Wu, X1
-
56
-
-
0242411518
-
G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation
-
Allende ML, Yamashita T, Proia RL. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood. 2003;102(10):3665–3667.
-
(2003)
Blood
, vol.102
, Issue.10
, pp. 3665-3667
-
-
Allende, ML1
Yamashita, T2
Proia, RL.3
-
57
-
-
34250336452
-
Altering the distribution of Foxp3(+) regulatory T cells results in tissue-specific inflammatory disease
-
Sather BD, et al. Altering the distribution of Foxp3(+) regulatory T cells results in tissue-specific inflammatory disease. J Exp Med. 2007;204(6):1335–1347.
-
(2007)
J Exp Med
, vol.204
, Issue.6
, pp. 1335-1347
-
-
Sather, BD1
-
58
-
-
84969245659
-
B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6
-
Jackson SW, et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med. 2016;213(5):733–750.
-
(2016)
J Exp Med
, vol.213
, Issue.5
, pp. 733-750
-
-
Jackson, SW1
|