메뉴 건너뛰기




Volumn 56, Issue 5, 2018, Pages 2811-2821

When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs

Author keywords

Convolutional neural networks (CNNs); deep learning; discriminative CNNs (D CNNs); metric learning; remote sensing image scene classification

Indexed keywords

COMPUTER ARCHITECTURE; CONVOLUTION; FEATURE EXTRACTION; IMAGE CLASSIFICATION; IMAGE ENHANCEMENT; LEARNING SYSTEMS; MEASUREMENT; NEURAL NETWORKS; REMOTE SENSING;

EID: 85044717760     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2017.2783902     Document Type: Article
Times cited : (1167)

References (65)
  • 1
    • 85017152027 scopus 로고    scopus 로고
    • Remote sensing image scene classification: Benchmark and state of the art
    • Oct.
    • G. Cheng, J. Han, and X. Lu, "Remote sensing image scene classification: Benchmark and state of the art," Proc. IEEE, vol. 105, no. 10, pp. 1865-1883, Oct. 2017.
    • (2017) Proc. IEEE , vol.105 , Issue.10 , pp. 1865-1883
    • Cheng, G.1    Han, J.2    Lu, X.3
  • 2
    • 85018642692 scopus 로고    scopus 로고
    • AID: A benchmark data set for performance evaluation of aerial scene classification
    • Jul.
    • G.-S. Xia et al., "AID: A benchmark data set for performance evaluation of aerial scene classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3965-3981, Jul. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.7 , pp. 3965-3981
    • Xia, G.-S.1
  • 3
    • 84961970561 scopus 로고    scopus 로고
    • A survey on object detection in optical remote sensing images
    • Jul.
    • G. Cheng and J. Han, "A survey on object detection in optical remote sensing images," ISPRS J. Photogramm. Remote Sens., vol. 117, pp. 11-28, Jul. 2016.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.117 , pp. 11-28
    • Cheng, G.1    Han, J.2
  • 4
    • 85028166694 scopus 로고    scopus 로고
    • Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
    • Jun.
    • J. Han, D. Zhang, G. Cheng, L. Guo, and J. Ren, "Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3325-3337, Jun. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.6 , pp. 3325-3337
    • Han, J.1    Zhang, D.2    Cheng, G.3    Guo, L.4    Ren, J.5
  • 5
    • 84893418304 scopus 로고    scopus 로고
    • Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding
    • Mar.
    • J. Han et al., "Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding," ISPRS J. Photogramm. Remote Sens., vol. 89, pp. 37-48, Mar. 2014.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.89 , pp. 37-48
    • Han, J.1
  • 7
    • 85020105528 scopus 로고    scopus 로고
    • Deep feature fusion for VHR remote sensing scene classification
    • Aug.
    • S. Chaib, H. Liu, Y. Gu, and H. Yao, "Deep feature fusion for VHR remote sensing scene classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 8, pp. 4775-4784, Aug. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.8 , pp. 4775-4784
    • Chaib, S.1    Liu, H.2    Gu, Y.3    Yao, H.4
  • 9
    • 84945898896 scopus 로고    scopus 로고
    • Scene classification via a gradient boosting random convolutional network framework
    • Mar.
    • F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1793-1802
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 10
    • 85027047340 scopus 로고    scopus 로고
    • Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
    • Dec.
    • G. Cheng, P. Zhou, and J. Han, "Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 7405-7415, Dec. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.12 , pp. 7405-7415
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 11
    • 85023777322 scopus 로고    scopus 로고
    • Integrating multilayer features of convolutional neural networks for remote sensing scene classification
    • Oct.
    • E. Li, J. Xia, P. Du, C. Lin, and A. Samat, "Integrating multilayer features of convolutional neural networks for remote sensing scene classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 10, pp. 5653-5665, Oct. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.10 , pp. 5653-5665
    • Li, E.1    Xia, J.2    Du, P.3    Lin, C.4    Samat, A.5
  • 12
    • 85020074308 scopus 로고    scopus 로고
    • Aggregating rich hierarchical features for scene classification in remote sensing imagery
    • Sep.
    • G. Wang, B. Fan, S. Xiang, and C. Pan, "Aggregating rich hierarchical features for scene classification in remote sensing imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 9, pp. 4104-4115, Sep. 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.9 , pp. 4104-4115
    • Wang, G.1    Fan, B.2    Xiang, S.3    Pan, C.4
  • 13
    • 85029149794 scopus 로고    scopus 로고
    • Remote sensing image scene classification using bag of convolutional features
    • Oct.
    • G. Cheng, Z. Li, X. Yao, L. Guo, and Z. Wei, "Remote sensing image scene classification using bag of convolutional features," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1735-1739, Oct. 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.10 , pp. 1735-1739
    • Cheng, G.1    Li, Z.2    Yao, X.3    Guo, L.4    Wei, Z.5
  • 14
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in Proc. Int. Conf. Learn. Represent., 2015, pp. 1-13.
    • (2015) Proc. Int. Conf. Learn. Represent. , pp. 1-13
    • Simonyan, K.1    Zisserman, A.2
  • 16
    • 85018971855 scopus 로고    scopus 로고
    • Fusing local and global features for high-resolution scene classification
    • Jun.
    • X. Bian, C. Chen, L. Tian, and Q. Du, "Fusing local and global features for high-resolution scene classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 6, pp. 2889-2901, Jun. 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.6 , pp. 2889-2901
    • Bian, X.1    Chen, C.2    Tian, L.3    Du, Q.4
  • 17
    • 84974807312 scopus 로고    scopus 로고
    • Remote sensing image scene classification using multi-scale completed local binary patterns and Fisher vectors
    • L. Huang, C. Chen, W. Li, and Q. Du, "Remote sensing image scene classification using multi-scale completed local binary patterns and Fisher vectors," Remote Sens., vol. 8, no. 6, p. 483, 2016.
    • (2016) Remote Sens. , vol.8 , Issue.6 , pp. 483
    • Huang, L.1    Chen, C.2    Li, W.3    Du, Q.4
  • 18
    • 84938519282 scopus 로고    scopus 로고
    • Land-use scene classification using multi-scale completed local binary patterns
    • C. Chen, B. Zhang, H. Su, W. Li, and L. Wang, "Land-use scene classification using multi-scale completed local binary patterns," Signal, Image Video Process., vol. 10, no. 4, pp. 745-752, 2016.
    • (2016) Signal, Image Video Process. , vol.10 , Issue.4 , pp. 745-752
    • Chen, C.1    Zhang, B.2    Su, H.3    Li, W.4    Wang, L.5
  • 19
    • 84942017110 scopus 로고    scopus 로고
    • Auto-encoder-based shared mid-level visual dictionary learning for scene classification using very high resolution remote sensing images
    • Oct.
    • G. Cheng, P. Zhou, J. Han, L. Guo, and J. Han, "Auto-encoder-based shared mid-level visual dictionary learning for scene classification using very high resolution remote sensing images," IET Comput. Vis., vol. 9, no. 5, pp. 639-647, Oct. 2015.
    • (2015) IET Comput. Vis. , vol.9 , Issue.5 , pp. 639-647
    • Cheng, G.1    Zhou, P.2    Han, J.3    Guo, L.4    Han, J.5
  • 20
    • 85028158057 scopus 로고    scopus 로고
    • Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images
    • Aug.
    • G. Cheng, J. Han, L. Guo, Z. Liu, S. Bu, and J. Ren, "Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8, pp. 4238-4249, Aug. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.8 , pp. 4238-4249
    • Cheng, G.1    Han, J.2    Guo, L.3    Liu, Z.4    Bu, S.5    Ren, J.6
  • 21
    • 84909977972 scopus 로고    scopus 로고
    • Multi-class geospatial object detection and geographic image classification based on collection of part detectors
    • Dec.
    • G. Cheng, J. Han, P. Zhou, and L. Guo, "Multi-class geospatial object detection and geographic image classification based on collection of part detectors," ISPRS J. Photogramm. Remote Sens., vol. 98, pp. 119-132, Dec. 2014.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.98 , pp. 119-132
    • Cheng, G.1    Han, J.2    Zhou, P.3    Guo, L.4
  • 22
    • 84959199957 scopus 로고    scopus 로고
    • Learning coarse-to-fine sparselets for efficient object detection and scene classification
    • Jun.
    • G. Cheng, J. Han, L. Guo, and T. Liu, "Learning coarse-to-fine sparselets for efficient object detection and scene classification," in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1173-1181.
    • (2015) Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. , pp. 1173-1181
    • Cheng, G.1    Han, J.2    Guo, L.3    Liu, T.4
  • 23
    • 84959386343 scopus 로고    scopus 로고
    • Scene classification using local and global features with collaborative representation fusion
    • Jun.
    • J. Zou, W. Li, C. Chen, and Q. Du, "Scene classification using local and global features with collaborative representation fusion," Inf. Sci., vol. 348, pp. 209-226, Jun. 2016.
    • (2016) Inf. Sci. , vol.348 , pp. 209-226
    • Zou, J.1    Li, W.2    Chen, C.3    Du, Q.4
  • 24
    • 85027941803 scopus 로고    scopus 로고
    • Semi-supervised multitask learning for scene recognition
    • Sep.
    • X. Lu, X. Li, and L. Mou, "Semi-supervised multitask learning for scene recognition," IEEE Trans. Cybern., vol. 45, no. 9, pp. 1967-1976, Sep. 2015.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.9 , pp. 1967-1976
    • Lu, X.1    Li, X.2    Mou, L.3
  • 25
    • 85019936471 scopus 로고    scopus 로고
    • Learning a discriminative distance metric with label consistency for scene classification
    • Aug.
    • Y. Wang et al., "Learning a discriminative distance metric with label consistency for scene classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 8, pp. 4427-4440, Aug. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.8 , pp. 4427-4440
    • Wang, Y.1
  • 26
    • 84890425279 scopus 로고    scopus 로고
    • Unsupervised feature learning for aerial scene classification
    • Jan.
    • A. M. Cheriyadat, "Unsupervised feature learning for aerial scene classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 439-451, Jan. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 439-451
    • Cheriyadat, A.M.1
  • 27
    • 84863271556 scopus 로고    scopus 로고
    • High-resolution satellite scene classification using a sparse coding based multiple feature combination
    • G. Sheng, W. Yang, T. Xu, and H. Sun, "High-resolution satellite scene classification using a sparse coding based multiple feature combination," Int. J. Remote Sens., vol. 33, no. 8, pp. 2395-2412, 2012.
    • (2012) Int. J. Remote Sens. , vol.33 , Issue.8 , pp. 2395-2412
    • Sheng, G.1    Yang, W.2    Xu, T.3    Sun, H.4
  • 28
    • 78650941566 scopus 로고    scopus 로고
    • Satellite image classification via two-layer sparse coding with biased image representation
    • Jan.
    • D. Dai and W. Yang, "Satellite image classification via two-layer sparse coding with biased image representation," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 1, pp. 173-176, Jan. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.1 , pp. 173-176
    • Dai, D.1    Yang, W.2
  • 29
    • 84940766118 scopus 로고    scopus 로고
    • High-resolution remotesensing imagery retrieval using sparse features by auto-encoder
    • W. Zhou, Z. Shao, C. Diao, and Q. Cheng, "High-resolution remotesensing imagery retrieval using sparse features by auto-encoder," Remote Sens. Lett., vol. 6, no. 10, pp. 775-783, 2015.
    • (2015) Remote Sens. Lett. , vol.6 , Issue.10 , pp. 775-783
    • Zhou, W.1    Shao, Z.2    Diao, C.3    Cheng, Q.4
  • 30
    • 84970897366 scopus 로고    scopus 로고
    • Unsupervised multilayer feature learning for satellite image scene classification
    • Feb.
    • Y. Li, C. Tao, Y. Tan, K. Shang, and J. Tian, "Unsupervised multilayer feature learning for satellite image scene classification," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 2, pp. 157-161, Feb. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.2 , pp. 157-161
    • Li, Y.1    Tao, C.2    Tan, Y.3    Shang, K.4    Tian, J.5
  • 31
    • 84908032942 scopus 로고    scopus 로고
    • Saliency-guided unsupervised feature learning for scene classification
    • Apr.
    • F. Zhang, B. Du, and L. Zhang, "Saliency-guided unsupervised feature learning for scene classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 2175-2184, Apr. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.4 , pp. 2175-2184
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 32
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • Mar.
    • A. Romero, C. Gatta, and G. Camps-Valls, "Unsupervised deep feature extraction for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1349-1362, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 33
    • 85027941942 scopus 로고    scopus 로고
    • Land-use classification with compressive sensing multifeature fusion
    • Oct.
    • M. L. Mekhalfi, F. Melgani, Y. Bazi, and N. Alajlan, "Land-use classification with compressive sensing multifeature fusion," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 10, pp. 2155-2159, Oct. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.10 , pp. 2155-2159
    • Mekhalfi, M.L.1    Melgani, F.2    Bazi, Y.3    Alajlan, N.4
  • 34
    • 85026497771 scopus 로고    scopus 로고
    • Remote sensing scene classification by unsupervised representation learning
    • Sep.
    • X. Lu, X. Zheng, and Y. Yuan, "Remote sensing scene classification by unsupervised representation learning," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 9, pp. 5148-5157, Sep. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.9 , pp. 5148-5157
    • Lu, X.1    Zheng, X.2    Yuan, Y.3
  • 35
    • 85009844389 scopus 로고    scopus 로고
    • Unsupervised feature learning for land-use scene recognition
    • Apr.
    • J. Fan, T. Chen, and S. Lu, "Unsupervised feature learning for land-use scene recognition," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 4, pp. 2250-2261, Apr. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.4 , pp. 2250-2261
    • Fan, J.1    Chen, T.2    Lu, S.3
  • 36
    • 84946950059 scopus 로고    scopus 로고
    • Anomaly detection in hyperspectral images based on low-rank and sparse representation
    • Apr.
    • Y. Xu, Z. Wu, J. Li, A. Plaza, and Z. Wei, "Anomaly detection in hyperspectral images based on low-rank and sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 4, pp. 1990-2000, Apr. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.4 , pp. 1990-2000
    • Xu, Y.1    Wu, Z.2    Li, J.3    Plaza, A.4    Wei, Z.5
  • 37
    • 84976243077 scopus 로고    scopus 로고
    • Semantic annotation of high-resolution satellite images via weakly supervised learning
    • Jun.
    • X. Yao, J. Han, G. Cheng, X. Qian, and L. Guo, "Semantic annotation of high-resolution satellite images via weakly supervised learning," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3660-3671, Jun. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3660-3671
    • Yao, X.1    Han, J.2    Cheng, G.3    Qian, X.4    Guo, L.5
  • 38
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • F. Hu, G.-S. Xia, J. Hu, and L. Zhang, "Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery," Remote Sens., vol. 7, no. 11, pp. 14680-14707, 2015.
    • (2015) Remote Sens. , vol.7 , Issue.11 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 39
    • 84979619476 scopus 로고    scopus 로고
    • Scene classification using multi-scale deeply described visual words
    • W. Zhao and S. Du, "Scene classification using multi-scale deeply described visual words," Int. J. Remote Sens., vol. 37, no. 17, pp. 4119-4131, 2016.
    • (2016) Int. J. Remote Sens. , vol.37 , Issue.17 , pp. 4119-4131
    • Zhao, W.1    Du, S.2
  • 41
    • 84949921276 scopus 로고    scopus 로고
    • Deep learning earth observation classification using ImageNet pretrained networks
    • Jan.
    • D. Marmanis, M. Datcu, T. Esch, and U. Stilla, "Deep learning earth observation classification using ImageNet pretrained networks," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 1, pp. 105-109, Jan. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.1 , pp. 105-109
    • Marmanis, D.1    Datcu, M.2    Esch, T.3    Stilla, U.4
  • 42
    • 84979775123 scopus 로고    scopus 로고
    • Towards better exploiting convolutional neural networks for remote sensing scene classification
    • Jan.
    • K. Nogueira, O. A. B. Penatti, and J. A. dos Santos, "Towards better exploiting convolutional neural networks for remote sensing scene classification," Pattern Recognit., vol. 61, pp. 539-556, Jan. 2017.
    • (2017) Pattern Recognit. , vol.61 , pp. 539-556
    • Nogueira, K.1    Penatti, O.A.B.2    Dos Santos, J.A.3
  • 43
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the art
    • Jun.
    • L. Zhang, L. Zhang, and B. Du, "Deep learning for remote sensing data: A technical tutorial on the state of the art," IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 22-40, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , Issue.2 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 44
    • 84962019145 scopus 로고    scopus 로고
    • Joint dictionary learning for multispectral change detection
    • Apr.
    • X. Lu, Y. Yuan, and X. Zheng, "Joint dictionary learning for multispectral change detection," IEEE Trans. Cybern., vol. 47, no. 4, pp. 884-897, Apr. 2017.
    • (2017) IEEE Trans. Cybern. , vol.47 , Issue.4 , pp. 884-897
    • Lu, X.1    Yuan, Y.2    Zheng, X.3
  • 45
    • 84966587897 scopus 로고    scopus 로고
    • Bag-of-visualwords scene classifier with local and global features for high spatial resolution remote sensing imagery
    • Jun.
    • Q. Zhu, Y. Zhong, B. Zhao, G.-S. Xia, and L. Zhang, "Bag-of-visualwords scene classifier with local and global features for high spatial resolution remote sensing imagery," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 6, pp. 747-751, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.6 , pp. 747-751
    • Zhu, Q.1    Zhong, Y.2    Zhao, B.3    Xia, G.-S.4    Zhang, L.5
  • 46
    • 84868112918 scopus 로고    scopus 로고
    • Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA
    • G. Cheng, L. Guo, T. Zhao, J. Han, H. Li, and J. Fang, "Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA," Int. J. Remote Sens., vol. 34, no. 1, pp. 45-59, 2013.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.1 , pp. 45-59
    • Cheng, G.1    Guo, L.2    Zhao, T.3    Han, J.4    Li, H.5    Fang, J.6
  • 47
    • 84947869374 scopus 로고    scopus 로고
    • Land-use scene classification in high-resolution remote sensing images using improved correlatons
    • Dec.
    • K. Qi, H. Wu, C. Shen, and J. Gong, "Land-use scene classification in high-resolution remote sensing images using improved correlatons," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 12, pp. 2403-2407, Dec. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.12 , pp. 2403-2407
    • Qi, K.1    Wu, H.2    Shen, C.3    Gong, J.4
  • 48
    • 85028163050 scopus 로고    scopus 로고
    • Land-use scene classification using a concentric circle-structured multiscale bag-of-visual-words model
    • Dec.
    • L.-J. Zhao, P. Tang, and L.-Z. Huo, "Land-use scene classification using a concentric circle-structured multiscale bag-of-visual-words model," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 12, pp. 4620-4631, Dec. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.12 , pp. 4620-4631
    • Zhao, L.-J.1    Tang, P.2    Huo, L.-Z.3
  • 49
    • 84908027761 scopus 로고    scopus 로고
    • Pyramid of spatial relatons for scene-level land use classification
    • Apr.
    • S. Chen and Y. Tian, "Pyramid of spatial relatons for scene-level land use classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 1947-1957, Apr. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.4 , pp. 1947-1957
    • Chen, S.1    Tian, Y.2
  • 50
    • 84962585158 scopus 로고    scopus 로고
    • A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery
    • Jun.
    • B. Zhao, Y. Zhong, and L. Zhang, "A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery," ISPRS J. Photogramm. Remote Sens., vol. 116, pp. 73-85, Jun. 2016.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.116 , pp. 73-85
    • Zhao, B.1    Zhong, Y.2    Zhang, L.3
  • 51
    • 85031812286 scopus 로고    scopus 로고
    • GPU parallel implementation of spatially adaptive hyperspectral image classification
    • to be published
    • Z. Wu et al., "GPU parallel implementation of spatially adaptive hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., to be published, doi: 10.1109/JSTARS.2017.2755639.
    • IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
    • Wu, Z.1
  • 52
    • 84979493621 scopus 로고    scopus 로고
    • Parallel and distributed dimensionality reduction of hyperspectral data on cloud computing architectures
    • Jun.
    • Z. Wu, Y. Li, A. Plaza, J. Li, F. Xiao, and Z. Wei, "Parallel and distributed dimensionality reduction of hyperspectral data on cloud computing architectures," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 6, pp. 2270-2278, Jun. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.9 , Issue.6 , pp. 2270-2278
    • Wu, Z.1    Li, Y.2    Plaza, A.3    Li, J.4    Xiao, F.5    Wei, Z.6
  • 53
    • 85041907672 scopus 로고    scopus 로고
    • Tube convolutional neural network (T-CNN) for action detection in videos
    • Oct.
    • R. Hou, C. Chen, and M. Shah, "Tube convolutional neural network (T-CNN) for action detection in videos," in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 5822-5831.
    • (2017) Proc. IEEE Int. Conf. Comput. Vis. , pp. 5822-5831
    • Hou, R.1    Chen, C.2    Shah, M.3
  • 54
    • 85021759951 scopus 로고    scopus 로고
    • Revisiting co-saliency detection: A novel approach based on two-stage multi-view spectral rotation co-clustering
    • Jul.
    • X. Yao, J. Han, D. Zhang, and F. Nie, "Revisiting co-saliency detection: A novel approach based on two-stage multi-view spectral rotation co-clustering," IEEE Trans. Image Process., vol. 26, no. 7, pp. 3196-3209, Jul. 2017.
    • (2017) IEEE Trans. Image Process. , vol.26 , Issue.7 , pp. 3196-3209
    • Yao, X.1    Han, J.2    Zhang, D.3    Nie, F.4
  • 55
    • 85030698243 scopus 로고    scopus 로고
    • Hierarchical recurrent neural hashing for image retrieval with hierarchical convolutional features
    • Jan.
    • X. Lu, Y. Chen, and X. Li, "Hierarchical recurrent neural hashing for image retrieval with hierarchical convolutional features," IEEE Trans. Image Process., vol. 27, no. 1, pp. 106-120, Jan. 2018.
    • (2018) IEEE Trans. Image Process. , vol.27 , Issue.1 , pp. 106-120
    • Lu, X.1    Chen, Y.2    Li, X.3
  • 56
    • 85040060192 scopus 로고    scopus 로고
    • Rotation-insensitive and context augmented object detection in remote sensing images
    • Apr.
    • K. Li, G. Cheng, S. Bu, and X. You, "Rotation-insensitive and context augmented object detection in remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 56, no. 4, Apr. 2018, doi: 10.1109/TGRS.2017.2778300.
    • (2018) IEEE Trans. Geosci. Remote Sens. , vol.56 , Issue.4
    • Li, K.1    Cheng, G.2    Bu, S.3    You, X.4
  • 57
    • 85034068786 scopus 로고    scopus 로고
    • CNNs-based RGB-D saliency detection via cross-view transfer and multiview fusion
    • to be published
    • J. Han, H. Chen, N. Liu, C. Yan, and X. Li, "CNNs-based RGB-D saliency detection via cross-view transfer and multiview fusion," IEEE Trans. Cybern., to be published, doi: 10.1109/TCYB.2017.2761775.
    • IEEE Trans. Cybern.
    • Han, J.1    Chen, H.2    Liu, N.3    Yan, C.4    Li, X.5
  • 58
    • 85015810136 scopus 로고    scopus 로고
    • Revealing event saliency in unconstrained video collection
    • Apr.
    • D. Zhang, J. Han, L. Jiang, S. Ye, and X. Chang, "Revealing event saliency in unconstrained video collection," IEEE Trans. Image Process., vol. 26, no. 4, pp. 1746-1758, Apr. 2017.
    • (2017) IEEE Trans. Image Process. , vol.26 , Issue.4 , pp. 1746-1758
    • Zhang, D.1    Han, J.2    Jiang, L.3    Ye, S.4    Chang, X.5
  • 59
    • 85018479379 scopus 로고    scopus 로고
    • Co-saliency detection via a self-paced multiple-instance learning framework
    • May
    • D. Zhang, D. Meng, and J. Han, "Co-saliency detection via a self-paced multiple-instance learning framework," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 5, pp. 865-878, May 2017.
    • (2017) IEEE Trans. Pattern Anal. Mach. Intell. , vol.39 , Issue.5 , pp. 865-878
    • Zhang, D.1    Meng, D.2    Han, J.3
  • 62
    • 85038262495 scopus 로고    scopus 로고
    • Duplex metric learning for image set classification
    • Jan.
    • G. Cheng, P. Zhou, and J. Han, "Duplex metric learning for image set classification," IEEE Trans. Image Process., vol. 27, no. 1, pp. 281-292, Jan. 2018.
    • (2018) IEEE Trans. Image Process. , vol.27 , Issue.1 , pp. 281-292
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 63
    • 85053984868 scopus 로고    scopus 로고
    • A unified metric learning-based framework for co-saliency detection
    • to be published
    • J. Han, G. Cheng, Z. Li, and D. Zhang, "A unified metric learning-based framework for co-saliency detection," IEEE Trans. Circuits Syst. Video Technol., to be published, doi: 10.1109/TCSVT.2017.2706264.
    • IEEE Trans. Circuits Syst. Video Technol.
    • Han, J.1    Cheng, G.2    Li, Z.3    Zhang, D.4
  • 64


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.