메뉴 건너뛰기




Volumn 56, Issue 4, 2018, Pages 2337-2348

Rotation-insensitive and context-augmented object detection in remote sensing images

Author keywords

Convolutional neural networks (CNNs); Object detection; Remote sensing images; Restricted Boltzmann machine (RBM)

Indexed keywords

DEEP LEARNING; NEURAL NETWORKS; OBJECT RECOGNITION; REMOTE SENSING;

EID: 85040060192     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2017.2778300     Document Type: Article
Times cited : (413)

References (57)
  • 2
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards realtime object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards realtime object detection with region proposal networks," in Proc. Adv. Neural Inform. Process. Syst., 2015, pp. 91-99.
    • (2015) Proc. Adv. Neural Inform. Process. Syst. , pp. 91-99
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 3
    • 85018479379 scopus 로고    scopus 로고
    • Co-saliency detection via a self-paced multiple-instance learning framework
    • May
    • D. Zhang, D. Meng, and J. Han, "Co-saliency detection via a self-paced multiple-instance learning framework," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 5, pp. 865-878, May 2017.
    • (2017) IEEE Trans. Pattern Anal. Mach. Intell. , vol.39 , Issue.5 , pp. 865-878
    • Zhang, D.1    Meng, D.2    Han, J.3
  • 4
    • 85044339474 scopus 로고    scopus 로고
    • Cross-view image matching for geolocalization in urban environments
    • Jul
    • Y. Tian, C. Chen, and M. Shah, "Cross-view image matching for geolocalization in urban environments," in Proc. Int. Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 3608-3616.
    • (2017) Proc. Int. Conf. Comput. Vis. Pattern Recognit. , pp. 3608-3616
    • Tian, Y.1    Chen, C.2    Shah, M.3
  • 5
    • 85038262495 scopus 로고    scopus 로고
    • Duplex metric learning for image set classification
    • Jan
    • G. Cheng, P. Zhou, and J. Han, "Duplex metric learning for image set classification," IEEE Trans. Image Process., vol. 27, no. 1, pp. 281-292, Jan. 2018.
    • (2018) IEEE Trans. Image Process. , vol.27 , Issue.1 , pp. 281-292
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 6
    • 85015810136 scopus 로고    scopus 로고
    • Revealing event saliency in unconstrained video collection
    • D. Zhang, J. Han, L. Jiang, S. Ye, and X. Chang, "Revealing event saliency in unconstrained video collection," IEEE Trans. Image Process., vol. 26, no. 4, pp. 1746-1758, 2017.
    • (2017) IEEE Trans. Image Process. , vol.26 , Issue.4 , pp. 1746-1758
    • Zhang, D.1    Han, J.2    Jiang, L.3    Ye, S.4    Chang, X.5
  • 8
    • 85027047340 scopus 로고    scopus 로고
    • Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
    • Dec
    • G. Cheng, P. Zhou, and J. Han, "Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 7405-7415, Dec. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.12 , pp. 7405-7415
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 9
    • 85026497771 scopus 로고    scopus 로고
    • Remote sensing scene classification by unsupervised representation learning
    • Sep
    • X. Lu, X. Zheng, and Y. Yuan, "Remote sensing scene classification by unsupervised representation learning," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 9, pp. 5148-5157, Sep. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.9 , pp. 5148-5157
    • Lu, X.1    Zheng, X.2    Yuan, Y.3
  • 10
    • 85029149794 scopus 로고    scopus 로고
    • Remote sensing image scene classification using bag of convolutional features
    • Oct
    • G. Cheng, Z. Li, X. Yao, L. Guo, and Z. Wei, "Remote sensing image scene classification using bag of convolutional features," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1735-1739, Oct. 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.10 , pp. 1735-1739
    • Cheng, G.1    Li, Z.2    Yao, X.3    Guo, L.4    Wei, Z.5
  • 11
    • 84977566735 scopus 로고    scopus 로고
    • Local structure learning in high resolution remote sensing image retrieval
    • Sep
    • Z. Du, X. Li, and X. Lu, "Local structure learning in high resolution remote sensing image retrieval," Neurocomputing, vol. 207, pp. 813-822, Sep. 2016.
    • (2016) Neurocomputing , vol.207 , pp. 813-822
    • Du, Z.1    Li, X.2    Lu, X.3
  • 12
    • 85028468404 scopus 로고    scopus 로고
    • Multi-modal feature fusion for geographic image annotation
    • Jan
    • K. Li, C. Zou, S. Bu, Y. Liang, J. Zhang, and M. Gong, "Multi-modal feature fusion for geographic image annotation," Pattern Recognit., vol. 73, pp. 1-14, Jan. 2018.
    • (2018) Pattern Recognit. , vol.73 , pp. 1-14
    • Li, K.1    Zou, C.2    Bu, S.3    Liang, Y.4    Zhang, J.5    Gong, M.6
  • 13
    • 85017152027 scopus 로고    scopus 로고
    • Remote sensing image scene classification: Benchmark and state of the art
    • Oct
    • G. Cheng, J. Han, and X. Lu, "Remote sensing image scene classification: Benchmark and state of the art," Proc. IEEE, vol. 105, no. 10, pp. 1865-1883, Oct. 2017.
    • (2017) Proc. IEEE , vol.105 , Issue.10 , pp. 1865-1883
    • Cheng, G.1    Han, J.2    Lu, X.3
  • 14
    • 85011036695 scopus 로고    scopus 로고
    • Generating object proposals for improved object detection in aerial images
    • Oct
    • L. W. Sommer, T. Schuchert, and J. Beyerer, "Generating object proposals for improved object detection in aerial images," in Proc. SPIE Secur. + Defence, Oct. 2016, p. 99880N.
    • (2016) Proc. SPIE Secur. + Defence , pp. 99880N
    • Sommer, L.W.1    Schuchert, T.2    Beyerer, J.3
  • 15
    • 85010214408 scopus 로고    scopus 로고
    • Accurate object localization in remote sensing images based on convolutional neural networks
    • May
    • Y. Long, Y. Gong, Z. Xiao, and Q. Liu, "Accurate object localization in remote sensing images based on convolutional neural networks," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2486-2498, May 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.5 , pp. 2486-2498
    • Long, Y.1    Gong, Y.2    Xiao, Z.3    Liu, Q.4
  • 17
    • 85021759951 scopus 로고    scopus 로고
    • Revisiting co-saliency detection: A novel approach based on two-stage multi-view spectral rotation co-clustering
    • Jul
    • X. Yao, J. Han, D. Zhang, and F. Nie, "Revisiting co-saliency detection: A novel approach based on two-stage multi-view spectral rotation co-clustering," IEEE Trans. Image Process., vol. 26, no. 7, pp. 3196-3209, Jul. 2017.
    • (2017) IEEE Trans. Image Process. , vol.26 , Issue.7 , pp. 3196-3209
    • Yao, X.1    Han, J.2    Zhang, D.3    Nie, F.4
  • 18
    • 85041907672 scopus 로고    scopus 로고
    • Tube convolutional neural network (TCNN) for action detection in videos
    • Oct
    • R. Hou, C. Chen, and M. Shah, "Tube convolutional neural network (TCNN) for action detection in videos," in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 5822-5831.
    • (2017) Proc. IEEE Int. Conf. Comput. Vis. , pp. 5822-5831
    • Hou, R.1    Chen, C.2    Shah, M.3
  • 19
    • 85012254070 scopus 로고    scopus 로고
    • Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining
    • T. Tang, S. Zhou, Z. Deng, H. Zou, and L. Lei, "Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining," Sensors, vol. 17, no. 2, p. E336, 2017.
    • (2017) Sensors , vol.17 , Issue.2 , pp. E336
    • Tang, T.1    Zhou, S.2    Deng, Z.3    Zou, H.4    Lei, L.5
  • 20
    • 85021837035 scopus 로고    scopus 로고
    • M-FCN: Effective fully convolutional network-based airplane detection framework
    • Aug
    • Y. Yang, Y. Zhuang, F. Bi, H. Shi, and Y. Xie, "M-FCN: Effective fully convolutional network-based airplane detection framework," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 8, pp. 1293-1297, Aug. 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.8 , pp. 1293-1297
    • Yang, Y.1    Zhuang, Y.2    Bi, F.3    Shi, H.4    Xie, Y.5
  • 21
    • 85028166694 scopus 로고    scopus 로고
    • Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
    • Jun
    • J. Han, D. Zhang, G. Cheng, L. Guo, and J. Ren, "Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3325-3337, Jun. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.6 , pp. 3325-3337
    • Han, J.1    Zhang, D.2    Cheng, G.3    Guo, L.4    Ren, J.5
  • 22
    • 84872002790 scopus 로고    scopus 로고
    • Semisupervised learning of hyperspectral data with unknown land-cover classes
    • Jan
    • G. Jun and J. Ghosh, "Semisupervised learning of hyperspectral data with unknown land-cover classes," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 273-282, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 273-282
    • Jun, G.1    Ghosh, J.2
  • 23
    • 84961970561 scopus 로고    scopus 로고
    • A survey on object detection in optical remote sensing images
    • Jul
    • G. Cheng and J. Han, "A survey on object detection in optical remote sensing images," ISPRS J. Photogramm. Remote Sens., vol. 117, pp. 11-28, Jul. 2016.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.117 , pp. 11-28
    • Cheng, G.1    Han, J.2
  • 25
    • 84861335581 scopus 로고    scopus 로고
    • CPMC: Automatic object segmentation using constrained parametric min-cuts
    • Jul
    • J. Carreira and C. Sminchisescu, "CPMC: Automatic object segmentation using constrained parametric min-cuts," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1312-1328, Jul. 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.7 , pp. 1312-1328
    • Carreira, J.1    Sminchisescu, C.2
  • 28
    • 84906489617 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • C. L. Zitnick and P. Dollár, "Edge boxes: Locating object proposals from edges," in Proc. Eur. Conf. Comput. Vis., 2014, pp. 391-405.
    • (2014) Proc. Eur. Conf. Comput. Vis. , pp. 391-405
    • Zitnick, C.L.1    Dollár, P.2
  • 31
    • 84973861966 scopus 로고    scopus 로고
    • DeepBox: Learning objectness with convolutional networks
    • Dec
    • W. Kuo, B. Hariharan, and J. Malik, "DeepBox: Learning objectness with convolutional networks," in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 2479-2487.
    • (2015) Proc. IEEE Int. Conf. Comput. Vis. , pp. 2479-2487
    • Kuo, W.1    Hariharan, B.2    Malik, J.3
  • 32
    • 84973571837 scopus 로고    scopus 로고
    • Weakly supervised learning based on coupled convolutional neural networks for aircraft detection
    • Sep
    • F. Zhang, B. Du, L. Zhang, and M. Xu, "Weakly supervised learning based on coupled convolutional neural networks for aircraft detection," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 9, pp. 5553-5563, Sep. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.9 , pp. 5553-5563
    • Zhang, F.1    Du, B.2    Zhang, L.3    Xu, M.4
  • 33
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 35
    • 84938519282 scopus 로고    scopus 로고
    • Land-use scene classification using multi-scale completed local binary patterns
    • C. Chen, B. Zhang, H. Su, W. Li, and L. Wang, "Land-use scene classification using multi-scale completed local binary patterns," Signal, Image Video Process., vol. 10, no. 4, pp. 745-752, 2016.
    • (2016) Signal, Image Video Process. , vol.10 , Issue.4 , pp. 745-752
    • Chen, C.1    Zhang, B.2    Su, H.3    Li, W.4    Wang, L.5
  • 36
    • 84974807312 scopus 로고    scopus 로고
    • Remote sensing image scene classification using multi-scale completed local binary patterns and fisher vectors
    • L. Huang, C. Chen, W. Li, and Q. Du, "Remote sensing image scene classification using multi-scale completed local binary patterns and fisher vectors," Remote Sens., vol. 8, no. 6, p. 483, 2016.
    • (2016) Remote Sens. , vol.8 , Issue.6 , pp. 483
    • Huang, L.1    Chen, C.2    Li, W.3    Du, Q.4
  • 37
    • 85020105528 scopus 로고    scopus 로고
    • Deep feature fusion for VHR remote sensing scene classification
    • Aug
    • S. Chaib, H. Liu, Y. Gu, and H. Yao, "Deep feature fusion for VHR remote sensing scene classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 8, pp. 4775-4784, Aug. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.8 , pp. 4775-4784
    • Chaib, S.1    Liu, H.2    Gu, Y.3    Yao, H.4
  • 38
    • 85018971855 scopus 로고    scopus 로고
    • Fusing local and global features for high-resolution scene classification
    • Jun
    • X. Bian, C. Chen, L. Tian, and Q. Du, "Fusing local and global features for high-resolution scene classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 6, pp. 2889-2901, Jun. 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.6 , pp. 2889-2901
    • Bian, X.1    Chen, C.2    Tian, L.3    Du, Q.4
  • 39
    • 84891274311 scopus 로고    scopus 로고
    • Multiresolution imaging
    • Jan
    • X. Lu and X. Li, "Multiresolution imaging," IEEE Trans. Cybern., vol. 44, no. 1, pp. 149-160, Jan. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.1 , pp. 149-160
    • Lu, X.1    Li, X.2
  • 40
    • 84896837053 scopus 로고    scopus 로고
    • Alternatively constrained dictionary learning for image superresolution
    • Mar
    • X. Lu, Y. Yuan, and P. Yan, "Alternatively constrained dictionary learning for image superresolution," IEEE Trans. Cybern., vol. 44, no. 3, pp. 366-377, Mar. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.3 , pp. 366-377
    • Lu, X.1    Yuan, Y.2    Yan, P.3
  • 42
    • 84973864191 scopus 로고    scopus 로고
    • Object detection via a multi-region and semantic segmentation-aware CNN model
    • Dec
    • S. Gidaris and N. Komodakis, "Object detection via a multi-region and semantic segmentation-aware CNN model," in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 1134-1142.
    • (2015) Proc. IEEE Int. Conf. Comput. Vis. , pp. 1134-1142
    • Gidaris, S.1    Komodakis, N.2
  • 43
    • 84940765289 scopus 로고    scopus 로고
    • A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery
    • Oct
    • L. Zhang, Z. Shi, and J. Wu, "A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 10, pp. 4895-4909, Oct. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.10 , pp. 4895-4909
    • Zhang, L.1    Shi, Z.2    Wu, J.3
  • 44
    • 84986259967 scopus 로고    scopus 로고
    • Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks
    • Jun
    • S. Bell, C. L. Zitnick, K. Bala, and R. Girshick, "Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks," in Proc. Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2874-2883.
    • (2016) Proc. Int. Conf. Comput. Vis. Pattern Recognit. , pp. 2874-2883
    • Bell, S.1    Zitnick, C.L.2    Bala, K.3    Girshick, R.4
  • 45
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 46
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 48
    • 84954133710 scopus 로고    scopus 로고
    • Efficient saliency-based object detection in remote sensing images using deep belief networks
    • Feb
    • W. Diao, X. Sun, X. Zheng, F. Dou, H. Wang, and K. Fu, "Efficient saliency-based object detection in remote sensing images using deep belief networks," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 2, pp. 137-141, Feb. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.2 , pp. 137-141
    • Diao, W.1    Sun, X.2    Zheng, X.3    Dou, F.4    Wang, H.5    Fu, K.6
  • 49
    • 85016393818 scopus 로고    scopus 로고
    • Learning to diversify deep belief networks for hyperspectral image classification
    • Jun
    • P. Zhong, Z. Gong, S. Li, and C.-B. Schönlieb, "Learning to diversify deep belief networks for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 6, pp. 3516-3530, Jun. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.6 , pp. 3516-3530
    • Zhong, P.1    Gong, Z.2    Li, S.3    Schönlieb, C.-B.4
  • 51
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in Proc. Eur. Conf. Comput. Vis., 2014, pp. 818-833.
    • (2014) Proc. Eur. Conf. Comput. Vis. , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 53
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Proc. Int. Conf. Mach. Learn., 2009, pp. 609-616.
    • (2009) Proc. Int. Conf. Mach. Learn. , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 55
    • 84859473821 scopus 로고    scopus 로고
    • Learning algorithms for the classification restricted Boltzmann machine
    • Mar
    • H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio, "Learning algorithms for the classification restricted Boltzmann machine," J. Mach. Learn. Res., vol. 13, pp. 643-669, Mar. 2012.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 643-669
    • Larochelle, H.1    Mandel, M.2    Pascanu, R.3    Bengio, Y.4
  • 57
    • 84909977972 scopus 로고    scopus 로고
    • Multi-class geospatial object detection and geographic image classification based on collection of part detectors
    • Dec
    • G. Cheng, J. Han, P. Zhou, and L. Guo, "Multi-class geospatial object detection and geographic image classification based on collection of part detectors," ISPRS J. Photogramm. Remote Sens., vol. 98, pp. 119-132, Dec. 2014.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.98 , pp. 119-132
    • Cheng, G.1    Han, J.2    Zhou, P.3    Guo, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.