-
1
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. Adv. Neural Inform. Process. Syst., 2012, pp. 1097-1105.
-
(2012)
Proc. Adv. Neural Inform. Process. Syst.
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
2
-
-
84960980241
-
Faster R-CNN: Towards realtime object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards realtime object detection with region proposal networks," in Proc. Adv. Neural Inform. Process. Syst., 2015, pp. 91-99.
-
(2015)
Proc. Adv. Neural Inform. Process. Syst.
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
3
-
-
85018479379
-
Co-saliency detection via a self-paced multiple-instance learning framework
-
May
-
D. Zhang, D. Meng, and J. Han, "Co-saliency detection via a self-paced multiple-instance learning framework," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 5, pp. 865-878, May 2017.
-
(2017)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.39
, Issue.5
, pp. 865-878
-
-
Zhang, D.1
Meng, D.2
Han, J.3
-
4
-
-
85044339474
-
Cross-view image matching for geolocalization in urban environments
-
Jul
-
Y. Tian, C. Chen, and M. Shah, "Cross-view image matching for geolocalization in urban environments," in Proc. Int. Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 3608-3616.
-
(2017)
Proc. Int. Conf. Comput. Vis. Pattern Recognit.
, pp. 3608-3616
-
-
Tian, Y.1
Chen, C.2
Shah, M.3
-
5
-
-
85038262495
-
Duplex metric learning for image set classification
-
Jan
-
G. Cheng, P. Zhou, and J. Han, "Duplex metric learning for image set classification," IEEE Trans. Image Process., vol. 27, no. 1, pp. 281-292, Jan. 2018.
-
(2018)
IEEE Trans. Image Process.
, vol.27
, Issue.1
, pp. 281-292
-
-
Cheng, G.1
Zhou, P.2
Han, J.3
-
6
-
-
85015810136
-
Revealing event saliency in unconstrained video collection
-
D. Zhang, J. Han, L. Jiang, S. Ye, and X. Chang, "Revealing event saliency in unconstrained video collection," IEEE Trans. Image Process., vol. 26, no. 4, pp. 1746-1758, 2017.
-
(2017)
IEEE Trans. Image Process.
, vol.26
, Issue.4
, pp. 1746-1758
-
-
Zhang, D.1
Han, J.2
Jiang, L.3
Ye, S.4
Chang, X.5
-
8
-
-
85027047340
-
Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
-
Dec
-
G. Cheng, P. Zhou, and J. Han, "Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 7405-7415, Dec. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.12
, pp. 7405-7415
-
-
Cheng, G.1
Zhou, P.2
Han, J.3
-
9
-
-
85026497771
-
Remote sensing scene classification by unsupervised representation learning
-
Sep
-
X. Lu, X. Zheng, and Y. Yuan, "Remote sensing scene classification by unsupervised representation learning," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 9, pp. 5148-5157, Sep. 2017.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.9
, pp. 5148-5157
-
-
Lu, X.1
Zheng, X.2
Yuan, Y.3
-
10
-
-
85029149794
-
Remote sensing image scene classification using bag of convolutional features
-
Oct
-
G. Cheng, Z. Li, X. Yao, L. Guo, and Z. Wei, "Remote sensing image scene classification using bag of convolutional features," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1735-1739, Oct. 2017.
-
(2017)
IEEE Geosci. Remote Sens. Lett.
, vol.14
, Issue.10
, pp. 1735-1739
-
-
Cheng, G.1
Li, Z.2
Yao, X.3
Guo, L.4
Wei, Z.5
-
11
-
-
84977566735
-
Local structure learning in high resolution remote sensing image retrieval
-
Sep
-
Z. Du, X. Li, and X. Lu, "Local structure learning in high resolution remote sensing image retrieval," Neurocomputing, vol. 207, pp. 813-822, Sep. 2016.
-
(2016)
Neurocomputing
, vol.207
, pp. 813-822
-
-
Du, Z.1
Li, X.2
Lu, X.3
-
12
-
-
85028468404
-
Multi-modal feature fusion for geographic image annotation
-
Jan
-
K. Li, C. Zou, S. Bu, Y. Liang, J. Zhang, and M. Gong, "Multi-modal feature fusion for geographic image annotation," Pattern Recognit., vol. 73, pp. 1-14, Jan. 2018.
-
(2018)
Pattern Recognit.
, vol.73
, pp. 1-14
-
-
Li, K.1
Zou, C.2
Bu, S.3
Liang, Y.4
Zhang, J.5
Gong, M.6
-
13
-
-
85017152027
-
Remote sensing image scene classification: Benchmark and state of the art
-
Oct
-
G. Cheng, J. Han, and X. Lu, "Remote sensing image scene classification: Benchmark and state of the art," Proc. IEEE, vol. 105, no. 10, pp. 1865-1883, Oct. 2017.
-
(2017)
Proc. IEEE
, vol.105
, Issue.10
, pp. 1865-1883
-
-
Cheng, G.1
Han, J.2
Lu, X.3
-
14
-
-
85011036695
-
Generating object proposals for improved object detection in aerial images
-
Oct
-
L. W. Sommer, T. Schuchert, and J. Beyerer, "Generating object proposals for improved object detection in aerial images," in Proc. SPIE Secur. + Defence, Oct. 2016, p. 99880N.
-
(2016)
Proc. SPIE Secur. + Defence
, pp. 99880N
-
-
Sommer, L.W.1
Schuchert, T.2
Beyerer, J.3
-
15
-
-
85010214408
-
Accurate object localization in remote sensing images based on convolutional neural networks
-
May
-
Y. Long, Y. Gong, Z. Xiao, and Q. Liu, "Accurate object localization in remote sensing images based on convolutional neural networks," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2486-2498, May 2017.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.5
, pp. 2486-2498
-
-
Long, Y.1
Gong, Y.2
Xiao, Z.3
Liu, Q.4
-
17
-
-
85021759951
-
Revisiting co-saliency detection: A novel approach based on two-stage multi-view spectral rotation co-clustering
-
Jul
-
X. Yao, J. Han, D. Zhang, and F. Nie, "Revisiting co-saliency detection: A novel approach based on two-stage multi-view spectral rotation co-clustering," IEEE Trans. Image Process., vol. 26, no. 7, pp. 3196-3209, Jul. 2017.
-
(2017)
IEEE Trans. Image Process.
, vol.26
, Issue.7
, pp. 3196-3209
-
-
Yao, X.1
Han, J.2
Zhang, D.3
Nie, F.4
-
18
-
-
85041907672
-
Tube convolutional neural network (TCNN) for action detection in videos
-
Oct
-
R. Hou, C. Chen, and M. Shah, "Tube convolutional neural network (TCNN) for action detection in videos," in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 5822-5831.
-
(2017)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 5822-5831
-
-
Hou, R.1
Chen, C.2
Shah, M.3
-
19
-
-
85012254070
-
Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining
-
T. Tang, S. Zhou, Z. Deng, H. Zou, and L. Lei, "Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining," Sensors, vol. 17, no. 2, p. E336, 2017.
-
(2017)
Sensors
, vol.17
, Issue.2
, pp. E336
-
-
Tang, T.1
Zhou, S.2
Deng, Z.3
Zou, H.4
Lei, L.5
-
20
-
-
85021837035
-
M-FCN: Effective fully convolutional network-based airplane detection framework
-
Aug
-
Y. Yang, Y. Zhuang, F. Bi, H. Shi, and Y. Xie, "M-FCN: Effective fully convolutional network-based airplane detection framework," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 8, pp. 1293-1297, Aug. 2017.
-
(2017)
IEEE Geosci. Remote Sens. Lett.
, vol.14
, Issue.8
, pp. 1293-1297
-
-
Yang, Y.1
Zhuang, Y.2
Bi, F.3
Shi, H.4
Xie, Y.5
-
21
-
-
85028166694
-
Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
-
Jun
-
J. Han, D. Zhang, G. Cheng, L. Guo, and J. Ren, "Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3325-3337, Jun. 2015.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.6
, pp. 3325-3337
-
-
Han, J.1
Zhang, D.2
Cheng, G.3
Guo, L.4
Ren, J.5
-
22
-
-
84872002790
-
Semisupervised learning of hyperspectral data with unknown land-cover classes
-
Jan
-
G. Jun and J. Ghosh, "Semisupervised learning of hyperspectral data with unknown land-cover classes," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 273-282, Jan. 2013.
-
(2013)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, Issue.1
, pp. 273-282
-
-
Jun, G.1
Ghosh, J.2
-
23
-
-
84961970561
-
A survey on object detection in optical remote sensing images
-
Jul
-
G. Cheng and J. Han, "A survey on object detection in optical remote sensing images," ISPRS J. Photogramm. Remote Sens., vol. 117, pp. 11-28, Jul. 2016.
-
(2016)
ISPRS J. Photogramm. Remote Sens.
, vol.117
, pp. 11-28
-
-
Cheng, G.1
Han, J.2
-
25
-
-
84861335581
-
CPMC: Automatic object segmentation using constrained parametric min-cuts
-
Jul
-
J. Carreira and C. Sminchisescu, "CPMC: Automatic object segmentation using constrained parametric min-cuts," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1312-1328, Jul. 2012.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.7
, pp. 1312-1328
-
-
Carreira, J.1
Sminchisescu, C.2
-
26
-
-
84881160857
-
Selective search for object recognition
-
Apr
-
J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders, "Selective search for object recognition," Int. J. Comput. Vis., vol. 104, no. 2, pp. 154-171, Apr. 2013.
-
(2013)
Int. J. Comput. Vis.
, vol.104
, Issue.2
, pp. 154-171
-
-
Uijlings, J.R.R.1
Van De Sande, K.E.A.2
Gevers, T.3
Smeulders, A.W.M.4
-
27
-
-
84911456915
-
BING: Binarized normed gradients for objectness estimation at 300 fps
-
M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr, "BING: Binarized normed gradients for objectness estimation at 300 fps," in Proc. Int. Conf. Comput. Vis. Pattern Recognit., 2014, pp. 3286-3293.
-
(2014)
Proc. Int. Conf. Comput. Vis. Pattern Recognit.
, pp. 3286-3293
-
-
Cheng, M.-M.1
Zhang, Z.2
Lin, W.-Y.3
Torr, P.4
-
28
-
-
84906489617
-
Edge boxes: Locating object proposals from edges
-
C. L. Zitnick and P. Dollár, "Edge boxes: Locating object proposals from edges," in Proc. Eur. Conf. Comput. Vis., 2014, pp. 391-405.
-
(2014)
Proc. Eur. Conf. Comput. Vis.
, pp. 391-405
-
-
Zitnick, C.L.1
Dollár, P.2
-
29
-
-
84962336509
-
-
C. Szegedy, S. Reed, D. Erhan, D. Anguelov, and S. Ioffe. (2014). "Scalable, high-quality object detection." [Online]. Available: https://arxiv.org/abs/1412.1441
-
(2014)
Scalable, High-quality Object Detection
-
-
Szegedy, C.1
Reed, S.2
Erhan, D.3
Anguelov, D.4
Ioffe, S.5
-
30
-
-
84965114050
-
Learning to segment object candidates
-
P. O. Pinheiro, R. Collobert, and P. Dollár, "Learning to segment object candidates," in Proc. Adv. Neural Inform. Process. Syst., 2015, pp. 1990-1998.
-
(2015)
Proc. Adv. Neural Inform. Process. Syst.
, pp. 1990-1998
-
-
Pinheiro, P.O.1
Collobert, R.2
Dollár, P.3
-
31
-
-
84973861966
-
DeepBox: Learning objectness with convolutional networks
-
Dec
-
W. Kuo, B. Hariharan, and J. Malik, "DeepBox: Learning objectness with convolutional networks," in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 2479-2487.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 2479-2487
-
-
Kuo, W.1
Hariharan, B.2
Malik, J.3
-
32
-
-
84973571837
-
Weakly supervised learning based on coupled convolutional neural networks for aircraft detection
-
Sep
-
F. Zhang, B. Du, L. Zhang, and M. Xu, "Weakly supervised learning based on coupled convolutional neural networks for aircraft detection," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 9, pp. 5553-5563, Sep. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.9
, pp. 5553-5563
-
-
Zhang, F.1
Du, B.2
Zhang, L.3
Xu, M.4
-
33
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
-
(2004)
Int. J. Comput. Vis.
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
34
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
Jun
-
N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2005, vol. 1. no. 1, pp. 886-893.
-
(2005)
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
, vol.1
, Issue.1
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
-
35
-
-
84938519282
-
Land-use scene classification using multi-scale completed local binary patterns
-
C. Chen, B. Zhang, H. Su, W. Li, and L. Wang, "Land-use scene classification using multi-scale completed local binary patterns," Signal, Image Video Process., vol. 10, no. 4, pp. 745-752, 2016.
-
(2016)
Signal, Image Video Process.
, vol.10
, Issue.4
, pp. 745-752
-
-
Chen, C.1
Zhang, B.2
Su, H.3
Li, W.4
Wang, L.5
-
36
-
-
84974807312
-
Remote sensing image scene classification using multi-scale completed local binary patterns and fisher vectors
-
L. Huang, C. Chen, W. Li, and Q. Du, "Remote sensing image scene classification using multi-scale completed local binary patterns and fisher vectors," Remote Sens., vol. 8, no. 6, p. 483, 2016.
-
(2016)
Remote Sens.
, vol.8
, Issue.6
, pp. 483
-
-
Huang, L.1
Chen, C.2
Li, W.3
Du, Q.4
-
37
-
-
85020105528
-
Deep feature fusion for VHR remote sensing scene classification
-
Aug
-
S. Chaib, H. Liu, Y. Gu, and H. Yao, "Deep feature fusion for VHR remote sensing scene classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 8, pp. 4775-4784, Aug. 2017.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.8
, pp. 4775-4784
-
-
Chaib, S.1
Liu, H.2
Gu, Y.3
Yao, H.4
-
38
-
-
85018971855
-
Fusing local and global features for high-resolution scene classification
-
Jun
-
X. Bian, C. Chen, L. Tian, and Q. Du, "Fusing local and global features for high-resolution scene classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 6, pp. 2889-2901, Jun. 2017.
-
(2017)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.10
, Issue.6
, pp. 2889-2901
-
-
Bian, X.1
Chen, C.2
Tian, L.3
Du, Q.4
-
39
-
-
84891274311
-
Multiresolution imaging
-
Jan
-
X. Lu and X. Li, "Multiresolution imaging," IEEE Trans. Cybern., vol. 44, no. 1, pp. 149-160, Jan. 2014.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.1
, pp. 149-160
-
-
Lu, X.1
Li, X.2
-
40
-
-
84896837053
-
Alternatively constrained dictionary learning for image superresolution
-
Mar
-
X. Lu, Y. Yuan, and P. Yan, "Alternatively constrained dictionary learning for image superresolution," IEEE Trans. Cybern., vol. 44, no. 3, pp. 366-377, Mar. 2014.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.3
, pp. 366-377
-
-
Lu, X.1
Yuan, Y.2
Yan, P.3
-
41
-
-
84959233955
-
SegDeepM: Exploiting segmentation and context in deep neural networks for object detection
-
Jun
-
Y. Zhu, R. Urtasun, R. Salakhutdinov, and S. Fidler, "segDeepM: Exploiting segmentation and context in deep neural networks for object detection," in Proc. Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 4703-4711.
-
(2015)
Proc. Int. Conf. Comput. Vis. Pattern Recognit.
, pp. 4703-4711
-
-
Zhu, Y.1
Urtasun, R.2
Salakhutdinov, R.3
Fidler, S.4
-
42
-
-
84973864191
-
Object detection via a multi-region and semantic segmentation-aware CNN model
-
Dec
-
S. Gidaris and N. Komodakis, "Object detection via a multi-region and semantic segmentation-aware CNN model," in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 1134-1142.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 1134-1142
-
-
Gidaris, S.1
Komodakis, N.2
-
43
-
-
84940765289
-
A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery
-
Oct
-
L. Zhang, Z. Shi, and J. Wu, "A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 10, pp. 4895-4909, Oct. 2015.
-
(2015)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.8
, Issue.10
, pp. 4895-4909
-
-
Zhang, L.1
Shi, Z.2
Wu, J.3
-
44
-
-
84986259967
-
Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks
-
Jun
-
S. Bell, C. L. Zitnick, K. Bala, and R. Girshick, "Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks," in Proc. Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2874-2883.
-
(2016)
Proc. Int. Conf. Comput. Vis. Pattern Recognit.
, pp. 2874-2883
-
-
Bell, S.1
Zitnick, C.L.2
Bala, K.3
Girshick, R.4
-
45
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
46
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
48
-
-
84954133710
-
Efficient saliency-based object detection in remote sensing images using deep belief networks
-
Feb
-
W. Diao, X. Sun, X. Zheng, F. Dou, H. Wang, and K. Fu, "Efficient saliency-based object detection in remote sensing images using deep belief networks," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 2, pp. 137-141, Feb. 2016.
-
(2016)
IEEE Geosci. Remote Sens. Lett.
, vol.13
, Issue.2
, pp. 137-141
-
-
Diao, W.1
Sun, X.2
Zheng, X.3
Dou, F.4
Wang, H.5
Fu, K.6
-
49
-
-
85016393818
-
Learning to diversify deep belief networks for hyperspectral image classification
-
Jun
-
P. Zhong, Z. Gong, S. Li, and C.-B. Schönlieb, "Learning to diversify deep belief networks for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 6, pp. 3516-3530, Jun. 2017.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.6
, pp. 3516-3530
-
-
Zhong, P.1
Gong, Z.2
Li, S.3
Schönlieb, C.-B.4
-
50
-
-
80053437179
-
Multimodal deep learning
-
J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, "Multimodal deep learning," in Proc. Int. Conf. Mach. Learn., 2011, pp. 689-696.
-
(2011)
Proc. Int. Conf. Mach. Learn.
, pp. 689-696
-
-
Ngiam, J.1
Khosla, A.2
Kim, M.3
Nam, J.4
Lee, H.5
Ng, A.Y.6
-
51
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in Proc. Eur. Conf. Comput. Vis., 2014, pp. 818-833.
-
(2014)
Proc. Eur. Conf. Comput. Vis.
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
52
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Jun
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proc. Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580-587.
-
(2014)
Proc. Int. Conf. Comput. Vis. Pattern Recognit.
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
53
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Proc. Int. Conf. Mach. Learn., 2009, pp. 609-616.
-
(2009)
Proc. Int. Conf. Mach. Learn.
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
54
-
-
84973867067
-
DeepProposal: Hunting objects by cascading deep convolutional layers
-
Dec
-
A. Ghodrati, A. Diba, M. Pedersoli, T. Tuytelaars, and L. Van Gool, "DeepProposal: Hunting objects by cascading deep convolutional layers," in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 2578-2586.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 2578-2586
-
-
Ghodrati, A.1
Diba, A.2
Pedersoli, M.3
Tuytelaars, T.4
Van Gool, L.5
-
55
-
-
84859473821
-
Learning algorithms for the classification restricted Boltzmann machine
-
Mar
-
H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio, "Learning algorithms for the classification restricted Boltzmann machine," J. Mach. Learn. Res., vol. 13, pp. 643-669, Mar. 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 643-669
-
-
Larochelle, H.1
Mandel, M.2
Pascanu, R.3
Bengio, Y.4
-
56
-
-
77955422240
-
Object detection with discriminatively trained part-based models
-
Sep
-
P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, "Object detection with discriminatively trained part-based models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627-1645, Sep. 2010.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
57
-
-
84909977972
-
Multi-class geospatial object detection and geographic image classification based on collection of part detectors
-
Dec
-
G. Cheng, J. Han, P. Zhou, and L. Guo, "Multi-class geospatial object detection and geographic image classification based on collection of part detectors," ISPRS J. Photogramm. Remote Sens., vol. 98, pp. 119-132, Dec. 2014.
-
(2014)
ISPRS J. Photogramm. Remote Sens.
, vol.98
, pp. 119-132
-
-
Cheng, G.1
Han, J.2
Zhou, P.3
Guo, L.4
|