메뉴 건너뛰기




Volumn 55, Issue 10, 2017, Pages 5653-5665

Integrating Multilayer Features of Convolutional Neural Networks for Remote Sensing Scene Classification

Author keywords

Convolutional neural networks (CNN); feature fusion; improved Fisher kernel; scene classification; spectral regression kernel discriminant analysis (SRKDA)

Indexed keywords

CONVOLUTION; CONVOLUTIONAL CODES; DATA MINING; DATA VISUALIZATION; DISCRIMINANT ANALYSIS; FEATURE EXTRACTION; FLOW VISUALIZATION; IMAGE CLASSIFICATION; IMAGE RECONSTRUCTION; IMAGE RESOLUTION; MULTILAYER NEURAL NETWORKS; MULTILAYERS; NEURAL NETWORKS; PERSONNEL TRAINING; PRINCIPAL COMPONENT ANALYSIS; REMOTE SENSING; SEMANTICS; VIDEO STREAMING;

EID: 85023777322     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2017.2711275     Document Type: Article
Times cited : (284)

References (60)
  • 1
    • 84938864851 scopus 로고    scopus 로고
    • Expanding an urban structure type mapping approach from a subarea to the entire city of Berlin
    • Lausanne, Switzerland, Mar.
    • M. Voltersen, C. Berger, S. Hese, and C. Schmullius, "Expanding an urban structure type mapping approach from a subarea to the entire city of Berlin," in Proc. Joint Urban Remote Sens. Event (JURSE), Lausanne, Switzerland, Mar. 2015, pp. 1-4.
    • (2015) Proc. Joint Urban Remote Sens. Event (JURSE) , pp. 1-4
    • Voltersen, M.1    Berger, C.2    Hese, S.3    Schmullius, C.4
  • 2
    • 84939129925 scopus 로고    scopus 로고
    • A linear Dirichlet mixture model for decomposing scenes: Application to analyzing urban functional zonings
    • Nov.
    • X. Zhang and S. Du, "A linear Dirichlet mixture model for decomposing scenes: Application to analyzing urban functional zonings," Remote Sens. Environ., vol. 169, pp. 37-49, Nov. 2015.
    • (2015) Remote Sens. Environ. , vol.169 , pp. 37-49
    • Zhang, X.1    Du, S.2
  • 3
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • Mar.
    • L. Zhang, L. Zhang, D. Tao, and X. Huang, "On combining multiple features for hyperspectral remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 879-893, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 4
    • 84931572289 scopus 로고    scopus 로고
    • Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
    • Oct.
    • L. Zhang, Q. Zhang, L. Zhang, D. Tao, X. Huang, and B. Du, "Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding," Pattern Recognit., vol. 48, no. 10, pp. 3102-3112, Oct. 2015.
    • (2015) Pattern Recognit. , vol.48 , Issue.10 , pp. 3102-3112
    • Zhang, L.1    Zhang, Q.2    Zhang, L.3    Tao, D.4    Huang, X.5    Du, B.6
  • 5
    • 77955426203 scopus 로고    scopus 로고
    • Evaluating color descriptors for object and scene recognition
    • Sep.
    • K. van de Sande, T. Gevers, and C. Snoek, "Evaluating color descriptors for object and scene recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1582-1596, Sep. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.9 , pp. 1582-1596
    • Van de Sande, K.1    Gevers, T.2    Snoek, C.3
  • 6
    • 84908027761 scopus 로고    scopus 로고
    • Pyramid of spatial relatons for scene-level land use classification
    • Apr.
    • S. Chen and Y. Tian, "Pyramid of spatial relatons for scene-level land use classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 1947-1957, Apr. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.4 , pp. 1947-1957
    • Chen, S.1    Tian, Y.2
  • 8
    • 77949880212 scopus 로고    scopus 로고
    • Texture description based on multiresolution moments of image histograms
    • Mar.
    • Y. Jiang, R. Wang, and P. Zhang, "Texture description based on multiresolution moments of image histograms," Opt. Eng., vol. 47, no. 3, p. 037005, Mar. 2008.
    • (2008) Opt. Eng. , vol.47 , Issue.3 , pp. 037005
    • Jiang, Y.1    Wang, R.2    Zhang, P.3
  • 9
    • 78650593938 scopus 로고    scopus 로고
    • Bag-of-visual-words and spatial extensions for land-use classification
    • San Jose, CA, USA, Nov.
    • Y. Yang and S. Newsam, "Bag-of-visual-words and spatial extensions for land-use classification," in Proc. 18th ACM SIGSPATIAL Int. Conf. Adv. Geogr. Inf. Syst. (GIS), San Jose, CA, USA, Nov. 2010, pp. 270-279.
    • (2010) Proc. 18th ACM SIGSPATIAL Int. Conf. Adv. Geogr. Inf. Syst. (GIS) , pp. 270-279
    • Yang, Y.1    Newsam, S.2
  • 10
    • 84868112918 scopus 로고    scopus 로고
    • Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA
    • Jan.
    • G. Cheng, L. Guo, T. Zhao, J. Han, H. Li, and J. Fang, "Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA," Int. J. Remote Sens., vol. 34, no. 1, pp. 45-59, Jan. 2013.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.1 , pp. 45-59
    • Cheng, G.1    Guo, L.2    Zhao, T.3    Han, J.4    Li, H.5    Fang, J.6
  • 11
    • 84947933375 scopus 로고    scopus 로고
    • Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery
    • Apr.
    • B. Zhao, Y. Zhong, G.-S. Xia, and L. Zhang, "Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 4, pp. 2108-2123, Apr. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.4 , pp. 2108-2123
    • Zhao, B.1    Zhong, Y.2    Xia, G.-S.3    Zhang, L.4
  • 12
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • Minneapolis, MN, USA, Jun.
    • F. Perronnin and C. Dance, "Fisher kernels on visual vocabularies for image categorization," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Minneapolis, MN, USA, Jun. 2007, pp. 1-8.
    • (2007) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 1-8
    • Perronnin, F.1    Dance, C.2
  • 13
    • 84890425279 scopus 로고    scopus 로고
    • Unsupervised feature learning for aerial scene classification
    • Jan.
    • A. M. Cheriyadat, "Unsupervised feature learning for aerial scene classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 439-451, Jan. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 439-451
    • Cheriyadat, A.M.1
  • 14
    • 85027929099 scopus 로고    scopus 로고
    • Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification
    • May
    • F. Hu, G.-S. Xia, Z. Wang, X. Huang, L. Zhang, and H. Sun, "Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 5, pp. 2015-2030, May 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.5 , pp. 2015-2030
    • Hu, F.1    Xia, G.-S.2    Wang, Z.3    Huang, X.4    Zhang, L.5    Sun, H.6
  • 15
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Jan.
    • J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Netw., vol. 61, pp. 85-117, Jan. 2015.
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 16
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the art
    • Jun.
    • L. Zhang, L. Zhang, and B. Du, "Deep learning for remote sensing data: A technical tutorial on the state of the art," IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 22-40, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , Issue.2 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 17
    • 84961595279 scopus 로고    scopus 로고
    • Region-based convolutional networks for accurate object detection and segmentation
    • Jan.
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142-158, Jan. 2016.
    • (2016) IEEE Trans. Pattern Anal. Mach. Intell. , vol.38 , Issue.1 , pp. 142-158
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 18
    • 84948695714 scopus 로고    scopus 로고
    • Deep learning and face recognition: The state of the art
    • May
    • S. Balaban, "Deep learning and face recognition: The state of the art," Proc. SPIE, vol. 9457, May 2015, Art. no. 94570B.
    • (2015) Proc. SPIE , vol.9457
    • Balaban, S.1
  • 21
    • 84973861983 scopus 로고    scopus 로고
    • Conditional random fields as recurrent neural networks
    • Santiago, Chile, Dec.
    • S. Zheng et al., "Conditional random fields as recurrent neural networks," in Proc. 15th IEEE Int. Conf. Comput. Vis. (ICCV), Santiago, Chile, Dec. 2016, pp. 1529-1537.
    • (2016) Proc. 15th IEEE Int. Conf. Comput. Vis. (ICCV) , pp. 1529-1537
    • Zheng, S.1
  • 26
    • 84979775123 scopus 로고    scopus 로고
    • Towards better exploiting convolutional neural networks for remote sensing scene classification
    • Jan.
    • K. Nogueira, O. A. B. Penatti, and J. A. dos Santos, "Towards better exploiting convolutional neural networks for remote sensing scene classification," Pattern Recognit., vol. 61, pp. 539-556, Jan. 2017.
    • (2017) Pattern Recognit. , vol.61 , pp. 539-556
    • Nogueira, K.1    Penatti, O.A.B.2    Dos Santos, J.A.3
  • 28
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • Nov.
    • F. Hu, G.-S. Xia, J. Hu, and L. Zhang, "Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery," Remote Sens., vol. 7, no. 11, pp. 14680-14707, Nov. 2015.
    • (2015) Remote Sens. , vol.7 , Issue.11 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 29
    • 84945898896 scopus 로고    scopus 로고
    • Scene classification via a gradient boosting random convolutional network framework
    • Mar.
    • F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1793-1802
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 30
    • 84979619476 scopus 로고    scopus 로고
    • Scene classification using multi-scale deeply described visual words
    • Sep.
    • W. Zhao and S. Du, "Scene classification using multi-scale deeply described visual words," Int. J. Remote Sens., vol. 37, no. 17, pp. 4119-4131, Sep. 2016.
    • (2016) Int. J. Remote Sens. , vol.37 , Issue.17 , pp. 4119-4131
    • Zhao, W.1    Du, S.2
  • 31
    • 84978388572 scopus 로고    scopus 로고
    • Using convolutional features and a sparse autoencoder for land-use scene classification
    • May
    • E. Othman, Y. Bazi, N. Alajlan, H. Alhichri, and F. Melgani, "Using convolutional features and a sparse autoencoder for land-use scene classification," Int. J. Remote Sens., vol. 37, no. 10, pp. 1977-1995, May 2016.
    • (2016) Int. J. Remote Sens. , vol.37 , Issue.10 , pp. 1977-1995
    • Othman, E.1    Bazi, Y.2    Alajlan, N.3    Alhichri, H.4    Melgani, F.5
  • 32
    • 84930423638 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
    • Jun.
    • J. Yue, W. Zhao, S. Mao, and H. Liu, "Spectral-spatial classification of hyperspectral images using deep convolutional neural networks," Remote Sens. Lett., vol. 6, no. 6, pp. 468-477, Jun. 2015.
    • (2015) Remote Sens. Lett. , vol.6 , Issue.6 , pp. 468-477
    • Yue, J.1    Zhao, W.2    Mao, S.3    Liu, H.4
  • 35
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • Mar.
    • W. Zhao and S. Du, "Learning multiscale and deep representations for classifying remotely sensed imagery," ISPRS J. Photogramm. Remote Sens., vol. 113, pp. 155-165, Mar. 2016.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 36
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic gradient descent
    • Paris, France
    • L. Bottou, "Large-scale machine learning with stochastic gradient descent," in Proc. 19th Int. Conf. Comput. Stat. (COMPSTAT), Paris, France, 2010, pp. 177-186.
    • (2010) Proc. 19th Int. Conf. Comput. Stat. (COMPSTAT) , pp. 177-186
    • Bottou, L.1
  • 37
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • May
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, May 2015.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 39
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • Oct.
    • X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, "Vehicle detection in satellite images by hybrid deep convolutional neural networks," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 10, pp. 1797-1801, Oct. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.-L.3    Pan, C.-H.4
  • 40
    • 84907463801 scopus 로고    scopus 로고
    • Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
    • Mar.
    • J. Tang, C. Deng, G. B. Huang, and B. Zhao, "Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1174-1185, Mar. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1174-1185
    • Tang, J.1    Deng, C.2    Huang, G.B.3    Zhao, B.4
  • 41
    • 84962569483 scopus 로고    scopus 로고
    • Deep supervised learning for hyperspectral data classification through convolutional neural networks
    • Milan, Italy, Jul.
    • K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, "Deep supervised learning for hyperspectral data classification through convolutional neural networks," in Proc. Int Geosci Remote Sens. Symp. (IGARSS), Milan, Italy, Jul. 2015, pp. 4959-4962.
    • (2015) Proc. Int Geosci Remote Sens. Symp. (IGARSS) , pp. 4959-4962
    • Makantasis, K.1    Karantzalos, K.2    Doulamis, A.3    Doulamis, N.4
  • 42
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
    • Aug.
    • W. Zhao and S. Du, "Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4544-4554, Aug. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.8 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 43
    • 84988515896 scopus 로고    scopus 로고
    • Fine-tuning deep convolutional neural networks for distinguishing illustrations from photographs
    • Dec.
    • G. Gando, T. Yamada, H. Sato, S. Oyama, and M. Kurihara, "Fine-tuning deep convolutional neural networks for distinguishing illustrations from photographs," Expert Sys. Appl., vol. 66, pp. 295-301, Dec. 2016.
    • (2016) Expert Sys. Appl. , vol.66 , pp. 295-301
    • Gando, G.1    Yamada, T.2    Sato, H.3    Oyama, S.4    Kurihara, M.5
  • 44
    • 78149348137 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • Heraklion, Greece
    • F. Perronnin, J. Sánchez, and T. Mensink, "Improving the fisher kernel for large-scale image classification," in Proc. 11th Eur. Conf. Comput. Vis. (ECCV), Heraklion, Greece, 2010, pp. 143-156.
    • (2010) Proc. 11th Eur. Conf. Comput. Vis. (ECCV) , pp. 143-156
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 46
    • 36649009540 scopus 로고    scopus 로고
    • SRDA: An efficient algorithm for largescale discriminant analysis
    • Jan.
    • D. Cai, X. He, and J. Han, "SRDA: An efficient algorithm for largescale discriminant analysis," IEEE Trans. Knowl. Data Eng., vol. 20, no. 1, pp. 1-12, Jan. 2008.
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , Issue.1 , pp. 1-12
    • Cai, D.1    He, X.2    Han, J.3
  • 47
    • 78751591621 scopus 로고    scopus 로고
    • Speed up kernel discriminant analysis
    • D. Cai, X. He, and J. Han, "Speed up kernel discriminant analysis," VLDB J., vol. 20, no. 1, pp. 21-33, 2011.
    • (2011) VLDB J. , vol.20 , Issue.1 , pp. 21-33
    • Cai, D.1    He, X.2    Han, J.3
  • 48
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • G. Baudat and F. Anouar, "Generalized discriminant analysis using a kernel approach," Neural Comput., vol. 12, no. 10, pp. 2385-2404, 2000.
    • (2000) Neural Comput. , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 51
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Orlando, FL, USA, Nov.
    • Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. ACM Conf. Multimedia (MM), Orlando, FL, USA, Nov. 2014, pp. 675-678.
    • (2014) Proc. ACM Conf. Multimedia (MM) , pp. 675-678
    • Jia, Y.1
  • 54
    • 78650994992 scopus 로고    scopus 로고
    • Vlfeat: An open and portable library of computer vision algorithms
    • Firenze, Italy, Oct.
    • A. Vedaldi and B. Fulkerson, "Vlfeat: An open and portable library of computer vision algorithms," in Proc. 18th ACM Int. Conf. Multimedia, Firenze, Italy, Oct. 2010, pp. 1469-1472.
    • (2010) Proc. 18th ACM Int. Conf. Multimedia , pp. 1469-1472
    • Vedaldi, A.1    Fulkerson, B.2
  • 55
    • 84962815548 scopus 로고    scopus 로고
    • MatConvNet: Convolutional neural networks for MATLAB
    • Brisbane, QLD, Australia, Oct.
    • A. Vedaldi and K. Lenc, "MatConvNet: Convolutional neural networks for MATLAB," in Proc. 23rd ACM Int. Conf. Multimedia (MM), Brisbane, QLD, Australia, Oct. 2015, pp. 689-692.
    • (2015) Proc. 23rd ACM Int. Conf. Multimedia (MM) , pp. 689-692
    • Vedaldi, A.1    Lenc, K.2
  • 58
    • 85018642692 scopus 로고    scopus 로고
    • AID: A benchmark data set for performance evaluation of aerial scene classification
    • Jul.
    • G.-S. Xia et al., "AID: A benchmark data set for performance evaluation of aerial scene classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3965-3981, Jul. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.7 , pp. 3965-3981
    • Xia, G.-S.1
  • 60
    • 84959386343 scopus 로고    scopus 로고
    • Scene classification using local and global features with collaborative representation fusion
    • Jun.
    • J. Zou, W. Li, C. Chen, and Q. Du, "Scene classification using local and global features with collaborative representation fusion," Inf. Sci., vol. 348, pp. 209-226, Jun. 2016.
    • (2016) Inf. Sci. , vol.348 , pp. 209-226
    • Zou, J.1    Li, W.2    Chen, C.3    Du, Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.