메뉴 건너뛰기




Volumn 10, Issue 9, 2017, Pages 4104-4115

Aggregating Rich Hierarchical Features for Scene Classification in Remote Sensing Imagery

Author keywords

Convolutional neural networks (CNNs); mixed resolution representation; remote sensing scene classification; vector of locally aggregated descriptors (VLAD)

Indexed keywords

CONVOLUTION; ENCODING (SYMBOLS); IMAGE CLASSIFICATION; IMAGE CODING; IMAGE PROCESSING; IMAGE RECONSTRUCTION; NEURAL NETWORKS; PRINCIPAL COMPONENT ANALYSIS; SEMANTICS; SIGNAL ENCODING;

EID: 85020074308     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2017.2705419     Document Type: Article
Times cited : (103)

References (50)
  • 1
    • 78650593938 scopus 로고    scopus 로고
    • Bag-of-visual-words and spatial extensions for land-use classification
    • Y. Yang and S. Newsam, "Bag-of-visual-words and spatial extensions for land-use classification, " in Proc. ACM Geograph. Inf. Syst., 2010, pp. 270-279.
    • (2010) Proc. ACM Geograph. Inf. Syst. , pp. 270-279
    • Yang, Y.1    Newsam, S.2
  • 2
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe, "Distinctive image features from scale-invariant keypoints, " Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 3
    • 84890425279 scopus 로고    scopus 로고
    • Unsupervised feature learning for aerial scene classification
    • Jan.
    • A. M. Cheriyadat, "Unsupervised feature learning for aerial scene classification, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 439-451, Jan. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 439-451
    • Cheriyadat, A.M.1
  • 4
    • 85027941942 scopus 로고    scopus 로고
    • Land-use classification with compressive sensing multifeature fusion
    • Oct.
    • M. L. Mekhalfi, F. Melgani, Y. Bazi, and N. Alajlan, "Land-use classification with compressive sensing multifeature fusion, " IEEE Geosci. Remote Sens. Lett., vol. 12, no. 10, pp. 2155-2159, Oct. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.10 , pp. 2155-2159
    • Mekhalfi, M.L.1    Melgani, F.2    Bazi, Y.3    Alajlan, N.4
  • 5
    • 84962528662 scopus 로고    scopus 로고
    • The fisher kernel coding framework for high spatial resolution scene classification
    • B. Zhao, Y. Zhong, L. Zhang, and B. Huang, "The fisher kernel coding framework for high spatial resolution scene classification, " Remote Sens., vol. 8, no. 2, p. 157, 2016.
    • (2016) Remote Sens. , vol.8 , Issue.2 , pp. 157
    • Zhao, B.1    Zhong, Y.2    Zhang, L.3    Huang, B.4
  • 7
    • 84995470007 scopus 로고    scopus 로고
    • Mid-level feature representation via sparse autoencoder for remotely sensed scene classification
    • Mar.
    • E. Li, P. Du, A. Samat, Y. Meng, andM. Che, "Mid-level feature representation via sparse autoencoder for remotely sensed scene classification, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 3, pp. 1068-1081, Mar. 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.3 , pp. 1068-1081
    • Li, E.1    Du, P.2    Samat, A.3    Meng, Y.4    Che, M.5
  • 8
    • 84960978067 scopus 로고    scopus 로고
    • High-level feature selection with dictionary learning for unsupervised sar imagery terrain classification
    • Jan.
    • J. Chen, L. Jiao, and Z. Wen, "High-level feature selection with dictionary learning for unsupervised sar imagery terrain classification, " J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 1, pp. 145-160, Jan. 2017.
    • (2017) J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.1 , pp. 145-160
    • Chen, J.1    Jiao, L.2    Wen, Z.3
  • 12
    • 84973905350 scopus 로고    scopus 로고
    • HD-cnn: Hierarchical deep convolutional neural networks for large scale visual recognition
    • Z. Yan et al., "Hd-cnn: hierarchical deep convolutional neural networks for large scale visual recognition, " in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 2740-2748.
    • (2015) Proc. IEEE Int. Conf. Comput. Vis. , pp. 2740-2748
    • Yan, Z.1
  • 14
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding, " in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675-678.
    • (2014) Proc. 22nd ACM Int. Conf. Multimedia , pp. 675-678
    • Jia, Y.1
  • 16
    • 84979492419 scopus 로고    scopus 로고
    • Convolutional neural network based automatic object detection on aerial images
    • May
    • I. Sevo andA. Avramovíc, "Convolutional neural network based automatic object detection on aerial images, " IEEE Geosci. Remote Sens. Soc. Lett., vol. 13, no. 5, pp. 740-744, May 2016.
    • (2016) IEEE Geosci. Remote Sens. Soc. Lett. , vol.13 , Issue.5 , pp. 740-744
    • Sevo, I.1    Avramovíc, A.2
  • 17
    • 85027047340 scopus 로고    scopus 로고
    • Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
    • Dec.
    • G. Cheng, P. Zhou, and J. Han, "Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 7405-7415, Dec. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.12 , pp. 7405-7415
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 18
    • 84979775123 scopus 로고    scopus 로고
    • Towards better exploiting convolutional neural networks for remote sensing scene classification
    • K. Nogueira, O. A. Penatti, and J. A. dos Santos, "Towards better exploiting convolutional neural networks for remote sensing scene classification, " Pattern Recognit., vol. 61, pp. 539-556, 2017.
    • (2017) Pattern Recognit. , vol.61 , pp. 539-556
    • Nogueira, K.1    Penatti, O.A.2    Dos Santos, J.A.3
  • 20
    • 85011659317 scopus 로고    scopus 로고
    • Effective and efficient global context verification for image copy detection
    • Jan.
    • Z. Zhou, Y. Wang, Q. J. Wu, C.-N. Yang, and X. Sun, "Effective and efficient global context verification for image copy detection, " IEEE Trans. Inf. Forensics Security, vol. 12, no. 1, pp. 48-63, Jan. 2017.
    • (2017) IEEE Trans. Inf. Forensics Security , vol.12 , Issue.1 , pp. 48-63
    • Zhou, Z.1    Wang, Y.2    Wu, Q.J.3    Yang, C.-N.4    Sun, X.5
  • 21
    • 85027929099 scopus 로고    scopus 로고
    • Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification
    • May
    • F. Hu, G.-S. Xia, Z. Wang, X. Huang, L. Zhang, andH. Sun, "Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 5, pp. 2015-2030, May 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.5 , pp. 2015-2030
    • Hu, F.1    Xia, G.-S.2    Wang, Z.3    Huang, X.4    Zhang, L.5    Sun, H.6
  • 22
    • 84966587897 scopus 로고    scopus 로고
    • Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery
    • Jun.
    • Q. Zhu, Y. Zhong, B. Zhao, G.-S. Xia, and L. Zhang, "Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery, " IEEE Geosci. Remote Sens. Lett., vol. 13, no. 6, pp. 747-751, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.6 , pp. 747-751
    • Zhu, Q.1    Zhong, Y.2    Zhao, B.3    Xia, G.-S.4    Zhang, L.5
  • 23
    • 84945898896 scopus 로고    scopus 로고
    • Scene classification via a gradient boosting random convolutional network framework
    • Mar.
    • F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1793-1802
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 24
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition, " IEEE Proc., vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) IEEE Proc. , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 26
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks, " in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 91-99.
    • (2015) Proc. Adv. Neural Inf. Process. Syst. , pp. 91-99
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 28
    • 84906508687 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • Berlin, Germany: Springer
    • K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition, " in Eur. Conf. Comput. Vis., Berlin, Germany: Springer, 2014, pp. 346-361.
    • (2014) Eur. Conf. Comput. Vis. , pp. 346-361
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 31
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Berlin, Germany: Springer
    • M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks, " in Proc. Eur. Conf. Comput. Vis., Berlin, Germany: Springer, 2014, pp. 818-833.
    • (2014) Proc. Eur. Conf. Comput. Vis. , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 33
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • W. Zhao and S. Du, "Learning multiscale and deep representations for classifying remotely sensed imagery, " ISPRS J. Photogrammetry Remote Sens., vol. 113, pp. 155-165, 2016.
    • (2016) ISPRS J. Photogrammetry Remote Sens. , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 36
    • 84906352772 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • Berlin, Germany: Springer
    • Y. Gong, L. Wang, R. Guo, and S. Lazebnik, "Multi-scale orderless pooling of deep convolutional activation features, " in Eur. Conf. Comput. Vis., Berlin, Germany: Springer, 2014, pp. 392-407.
    • (2014) Eur. Conf. Comput. Vis. , pp. 392-407
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 37
    • 84961690141 scopus 로고    scopus 로고
    • Convolutional fisher kernels for RGB-D object recognition
    • Y. Cheng, R. Cai, X. Zhao, and K. Huang, "Convolutional fisher kernels for RGB-D object recognition, " in Proc. IEEE Int. Conf. 3D Vis., 2015, pp. 135-143.
    • (2015) Proc. IEEE Int. Conf. 3D Vis. , pp. 135-143
    • Cheng, Y.1    Cai, R.2    Zhao, X.3    Huang, K.4
  • 39
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Jul.
    • T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, " IEEE Trans. Pattern Analysis Mach. Intell., vol. 24, no. 7, pp. 971-987, Jul. 2002.
    • (2002) IEEE Trans. Pattern Analysis Mach. Intell. , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 40
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • F. Hu, G.-S. Xia, J. Hu, and L. Zhang, "Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery, " Remote Sens., vol. 7, no. 11, pp. 14 680-14 707, 2015.
    • (2015) Remote Sens. , vol.7 , Issue.11 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 44
    • 84908027761 scopus 로고    scopus 로고
    • Pyramid of spatial relations for scene-level land use classification
    • Apr.
    • S. Chen and Y. Tian, "Pyramid of spatial relations for scene-level land use classification, " IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 1947-1957, Apr. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.4 , pp. 1947-1957
    • Chen, S.1    Tian, Y.2
  • 45
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • O. Russakovsky et al., "Imagenet large scale visual recognition challenge, " Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015.
    • (2015) Int. J. Comput. Vis. , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 46
    • 84962815548 scopus 로고    scopus 로고
    • Matconvnet: Convolutional neural networks for MATLAB
    • A. Vedaldi and K. Lenc, "Matconvnet: Convolutional neural networks for MATLAB, " in Proc. 23rd ACMInt. Conf. Multimedia., 2015, pp. 689-692.
    • (2015) Proc. 23rd ACMInt. Conf. Multimedia. , pp. 689-692
    • Vedaldi, A.1    Lenc, K.2
  • 47
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines, " in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 807-814.
    • (2010) Proc. 27th Int. Conf. Mach. Learn. , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 48
    • 78650994992 scopus 로고    scopus 로고
    • VLFeat: An open and portable library of computer vision algorithms
    • A. Vedaldi and B. Fulkerson, "VLFeat: An open and portable library of computer vision algorithms, " in Proc. ACM Multimedia, 2010, pp. 1469-1472.
    • (2010) Proc. ACM Multimedia , pp. 1469-1472
    • Vedaldi, A.1    Fulkerson, B.2
  • 49
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR:Alibrary for large linear classification
    • R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, "LIBLINEAR:Alibrary for large linear classification, " J. Mach. Learn. Res., vol. 9, pp. 1871-1874, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1871-1874
    • Fan, R.1    Chang, K.2    Hsieh, C.3    Wang, X.4    Lin, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.