메뉴 건너뛰기




Volumn 55, Issue 8, 2017, Pages 4775-4784

Deep Feature Fusion for VHR Remote Sensing Scene Classification

Author keywords

Discriminant correlation analysis (DCA); features fusion; scene classification; unsupervised features learning

Indexed keywords

ELECTRICAL ENGINEERING; GEOLOGY;

EID: 85020105528     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2017.2700322     Document Type: Article
Times cited : (439)

References (46)
  • 1
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • Mar.
    • A. Romero, C. Gatta, and G. Camps-Valls, "Unsupervised deep feature extraction for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1349-1362, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 2
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman, "Video Google: A text retrieval approach to object matching in videos," in Proc. ICCV, 2003, pp. 1470-1478.
    • (2003) Proc. ICCV , pp. 1470-1478
    • Sivic, J.1    Zisserman, A.2
  • 3
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • New York, NY, USA, Jun.
    • S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories," in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), New York, NY, USA, Jun. 2006, pp. 2169-2178.
    • (2006) Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR) , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 5
    • 84905920772 scopus 로고    scopus 로고
    • (Semi-) supervised probabilistic principal component analysis for hyperspectral remote sensing image classification
    • Jun.
    • J. Xia, J. Chanussot, P. Du, and X. He, "(Semi-) supervised probabilistic principal component analysis for hyperspectral remote sensing image classification," IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens., vol. 7, no. 6, pp. 2224-2236, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens , vol.7 , Issue.6 , pp. 2224-2236
    • Xia, J.1    Chanussot, J.2    Du, P.3    He, X.4
  • 6
    • 84890425279 scopus 로고    scopus 로고
    • Unsupervised feature learning for aerial scene classification
    • Jan.
    • A. M. Cheriyadat, "Unsupervised feature learning for aerial scene classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 439-451, Jan. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.1 , pp. 439-451
    • Cheriyadat, A.M.1
  • 7
    • 85027941803 scopus 로고    scopus 로고
    • Semi-supervised multitask learning for scene recognition
    • Sep.
    • X. Lu, X. Li, and L. Mou, "Semi-supervised multitask learning for scene recognition," IEEE Trans. on, vol. 45, no. 9, pp. 1967-1976, Sep. 2015.
    • (2015) IEEE Trans. on , vol.45 , Issue.9 , pp. 1967-1976
    • Lu, X.1    Li, X.2    Mou, L.3
  • 8
    • 84908032942 scopus 로고    scopus 로고
    • Saliency-guided unsupervised feature learning for scene classification
    • Apr.
    • F. Zhang, B. Du, and L. Zhang, "Saliency-guided unsupervised feature learning for scene classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 2175-2184, Apr. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.4 , pp. 2175-2184
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 9
    • 84909977972 scopus 로고    scopus 로고
    • Multi-class geospatial object detection and geographic image classification based on collection of part detectors
    • Dec.
    • G. Cheng, J. Han, P. Zhou, and L. Guo, "Multi-class geospatial object detection and geographic image classification based on collection of part detectors," ISPRS J. Photogramm. Remote Sens., vol. 98, pp. 119-132, Dec. 2014.
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.98 , pp. 119-132
    • Cheng, G.1    Han, J.2    Zhou, P.3    Guo, L.4
  • 10
    • 85028158057 scopus 로고    scopus 로고
    • Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images
    • Aug.
    • G. Cheng, J. Han, L. Guo, Z. Liu, S. Bu, and J. Ren, "Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8, pp. 4238-4249, Aug. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.8 , pp. 4238-4249
    • Cheng, G.1    Han, J.2    Guo, L.3    Liu, Z.4    Bu, S.5    Ren, J.6
  • 11
    • 84869762769 scopus 로고    scopus 로고
    • Deep learning in very high resolution remote sensing image information mining communication concept
    • Aug.
    • C. Vaduva, I. Gavat, and M. Datcu, "Deep learning in very high resolution remote sensing image information mining communication concept," in Proc. Proc. 20th Eur. Signal Process. Conf. (EUSIPCO), Aug. 2012, pp. 2506-2510.
    • (2012) Proc. Proc. 20th Eur. Signal Process. Conf. (EUSIPCO) , pp. 2506-2510
    • Vaduva, C.1    Gavat, I.2    Datcu, M.3
  • 12
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • Oct.
    • X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, "Vehicle detection in satellite images by hybrid deep convolutional neural networks," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 10, pp. 1797-1801, Oct. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.-L.3    Pan, C.-H.4
  • 13
    • 84947865496 scopus 로고    scopus 로고
    • Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
    • Dec.
    • C. Tao, H. Pan, Y. Li, and Z. Zou, "Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 12, pp. 2438-2442, Dec. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.12 , pp. 2438-2442
    • Tao, C.1    Pan, H.2    Li, Y.3    Zou, Z.4
  • 14
    • 84947127828 scopus 로고    scopus 로고
    • Deep learning based feature selection for remote sensing scene classification
    • Nov.
    • Q. Zou, L. Ni, T. Zhang, and Q. Wang, "Deep learning based feature selection for remote sensing scene classification," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 11, pp. 2321-2325, Nov. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.11 , pp. 2321-2325
    • Zou, Q.1    Ni, L.2    Zhang, T.3    Wang, Q.4
  • 15
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 16
    • 84947803081 scopus 로고    scopus 로고
    • Meta-parameter free unsupervised sparse feature learning
    • Aug.
    • A. Romero, P. Radeva, and C. Gatta, "Meta-parameter free unsupervised sparse feature learning," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 8, pp. 1716-1722, Aug. 2015.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , Issue.8 , pp. 1716-1722
    • Romero, A.1    Radeva, P.2    Gatta, C.3
  • 17
    • 84945898896 scopus 로고    scopus 로고
    • Scene classification via a gradient boosting random convolutional network framework
    • Mar.
    • F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.3 , pp. 1793-1802
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 18
    • 84979775123 scopus 로고    scopus 로고
    • Towards better exploiting convolutional neural networks for remote sensing scene classification
    • Jan. [Online]
    • K. Nogueira, O. A. B. Penatti, and J. A. dos Santos, "Towards better exploiting convolutional neural networks for remote sensing scene classification," Pattern Recognit., vol. 61, pp. 539-556, Jan. 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/-S0031320316301509
    • (2017) Pattern Recognit. , vol.61 , pp. 539-556
    • Nogueira, K.1    Penatti, O.A.B.2    Dos Santos, J.A.3
  • 19
    • 84978388572 scopus 로고    scopus 로고
    • Using convolutional features and a sparse autoencoder for land-use scene classification
    • E. Othman, Y. Bazi, N. Alajlan, H. Alhichri, and F. Melgani, "Using convolutional features and a sparse autoencoder for land-use scene classification," Int. J. Remote Sens., vol. 37, no. 10, pp. 2149-2167, 2016.
    • (2016) Int. J. Remote Sens , vol.37 , Issue.10 , pp. 2149-2167
    • Othman, E.1    Bazi, Y.2    Alajlan, N.3    Alhichri, H.4    Melgani, F.5
  • 21
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • [Online]
    • F. Hu, G.-S. Xia, J. Hu, and L. Zhang, "Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery," Remote Sens., vol. 7, no. 11, pp. 14680-14707, 2015. [Online]. Available: http://-www.mdpi.com/2072-4292/7/11/14680
    • (2015) Remote Sens , vol.7 , Issue.11 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 22
    • 85027047340 scopus 로고    scopus 로고
    • Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images
    • Dec.
    • G. Cheng, P. Zhou, and J. Han, "Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 7405-7415, Dec. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.12 , pp. 7405-7415
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 24
    • 84949921276 scopus 로고    scopus 로고
    • Deep learning earth observation classification using imagenet pretrained networks
    • Jan.
    • D. Marmanis, M. Datcu, T. Esch, and U. Stilla, "Deep learning earth observation classification using imagenet pretrained networks," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 1, pp. 105-109, Jan. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.1 , pp. 105-109
    • Marmanis, D.1    Datcu, M.2    Esch, T.3    Stilla, U.4
  • 25
    • 84863271556 scopus 로고    scopus 로고
    • High-resolution satellite scene classification using a sparse coding based multiple feature combination
    • G. Sheng, W. Yang, T. Xu, and H. Sun, "High-resolution satellite scene classification using a sparse coding based multiple feature combination," Int. J. Remote Sens., vol. 33, no. 8, pp. 2395-2412, 2012.
    • (2012) Int. J. Remote Sens , vol.33 , Issue.8 , pp. 2395-2412
    • Sheng, G.1    Yang, W.2    Xu, T.3    Sun, H.4
  • 26
    • 84870903062 scopus 로고    scopus 로고
    • Automatic annotation of satellite images via multifeature joint sparse coding with spatial relation constraint
    • Jul.
    • X. Zheng, X. Sun, K. Fu, and H. Wang, "Automatic annotation of satellite images via multifeature joint sparse coding with spatial relation constraint," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 4, pp. 652-656, Jul. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.4 , pp. 652-656
    • Zheng, X.1    Sun, X.2    Fu, K.3    Wang, H.4
  • 27
    • 84881242291 scopus 로고    scopus 로고
    • A hierarchical scheme of multiple feature fusion for high-resolution satellite scene categorization
    • St. Petersburg, Russia, Jul.
    • W. Shao, W. Yang, G. S. Xia, and G. Liu, "A hierarchical scheme of multiple feature fusion for high-resolution satellite scene categorization," in Proc. 9th Int. Conf. Comput. Vis. Syst.-(ICVS), St. Petersburg, Russia, Jul. 2013, pp. 324-333.
    • (2013) Proc. 9th Int. Conf. Comput. Vis. Syst.-(ICVS) , pp. 324-333
    • Shao, W.1    Yang, W.2    Xia, G.S.3    Liu, G.4
  • 28
    • 84962585158 scopus 로고    scopus 로고
    • A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery
    • Jun.
    • B. Zhao, Y. Zhong, and L. Zhang, "A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery," ISPRS J. Photogram. Remote Sens., vol. 116, pp. 73-85, Jun. 2016.
    • (2016) ISPRS J. Photogram. Remote Sens , vol.116 , pp. 73-85
    • Zhao, B.1    Zhong, Y.2    Zhang, L.3
  • 29
    • 84959386343 scopus 로고    scopus 로고
    • Scene classification using local and global features with collaborative representation fusion
    • Jun.
    • J. Zou, W. Li, C. Chen, and Q. Du, "Scene classification using local and global features with collaborative representation fusion," Inf. Sci., vol. 348, pp. 209-226, Jun. 2016.
    • (2016) Inf. Sci. , vol.348 , pp. 209-226
    • Zou, J.1    Li, W.2    Chen, C.3    Du, Q.4
  • 30
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran & Assoc. Inc.
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Advances in Neural Information Processing Systems, vol. 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran & Assoc. Inc, 2012, pp. 1097-1105.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 32
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. CoRR, 2014, pp. 675-678.
    • (2014) Proc. CoRR , pp. 675-678
    • Jia, Y.1
  • 33
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • San Diego, CA, USA, May
    • K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA, May 2015, pp. 1-14.
    • (2015) Proc. Int. Conf. Learn. Represent. (ICLR) , pp. 1-14
    • Simonyan, K.1    Zisserman, A.2
  • 35
    • 0035309019 scopus 로고    scopus 로고
    • A shape- and texture-based enhanced Fisher classifier for face recognition
    • Apr.
    • C. Liu and H. Wechsler, "A shape- and texture-based enhanced Fisher classifier for face recognition," IEEE Trans. Image Process., vol. 10, no. 4, pp. 598-608, Apr. 2001.
    • (2001) IEEE Trans. Image Process. , vol.10 , Issue.4 , pp. 598-608
    • Liu, C.1    Wechsler, H.2
  • 36
    • 0036132482 scopus 로고    scopus 로고
    • Generalized K-L transform based combined feature extraction
    • J. Yang and J. Y. Yang, "Generalized K-L transform based combined feature extraction," Pattern Recognit., vol. 35, no. 1, pp. 295-297, 2002.
    • (2002) Pattern Recognit. , vol.35 , Issue.1 , pp. 295-297
    • Yang, J.1    Yang, J.Y.2
  • 37
    • 0037410689 scopus 로고    scopus 로고
    • Feature fusion: Parallel strategy vs. Serial strategy
    • Jun.
    • J. Yang, J.-Y. Yang, D. Zhang, and J.-F. Lu, "Feature fusion: Parallel strategy vs. serial strategy," Pattern Recognit., vol. 36, no. 6, pp. 1369-1381, Jun. 2003.
    • (2003) Pattern Recognit. , vol.36 , Issue.6 , pp. 1369-1381
    • Yang, J.1    Yang, J.-Y.2    Zhang, D.3    Lu, J.-F.4
  • 38
    • 25144439113 scopus 로고    scopus 로고
    • A new method of feature fusion and its application in image recognition
    • Dec.
    • Q.-S. Sun, S.-G. Zeng, Y. Liu, P.-A. Heng, and D.-S. Xia, "A new method of feature fusion and its application in image recognition," Pattern Recognit., vol. 38, no. 12, pp. 2437-2448, Dec. 2005.
    • (2005) Pattern Recognit. , vol.38 , Issue.12 , pp. 2437-2448
    • Sun, Q.-S.1    Zeng, S.-G.2    Liu, Y.3    Heng, P.-A.4    Xia, D.-S.5
  • 39
    • 84862808107 scopus 로고    scopus 로고
    • Feature-level fusion of fingerprint and fingervein for personal identification
    • Apr.
    • J. Yang and X. Zhang, "Feature-level fusion of fingerprint and fingervein for personal identification," Pattern Recognit. Lett., vol. 33, no. 5, pp. 623-628, Apr. 2012.
    • (2012) Pattern Recognit. Lett. , vol.33 , Issue.5 , pp. 623-628
    • Yang, J.1    Zhang, X.2
  • 40
    • 84976415868 scopus 로고    scopus 로고
    • Multi-feature fusion for thermal face recognition
    • Jul.
    • Y. Bi, M. Lv, Y. Wei, N. Guan, and W. Yi, "Multi-feature fusion for thermal face recognition," Infr. Phys. Technol., vol. 77, pp. 366-374, Jul. 2016.
    • (2016) Infr. Phys. Technol. , vol.77 , pp. 366-374
    • Bi, Y.1    Lv, M.2    Wei, Y.3    Guan, N.4    Yi, W.5
  • 41
    • 85014853773 scopus 로고    scopus 로고
    • Principles of multivariate analysis: A user's perspective
    • J. R. Schott, "Principles of multivariate analysis: A user's perspective," J. Amer. Statist. Assoc., vol. 97, no. 458, 2002.
    • (2002) J. Amer. Statist. Assoc. , vol.97 , Issue.458
    • Schott, J.R.1
  • 42
    • 84979073626 scopus 로고    scopus 로고
    • Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition
    • Sep.
    • M. Haghighat, M. Abdel-Mottaleb, and W. Alhalabi, "Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition," IEEE Trans. Inf. Forensics Security, vol. 11, no. 9, pp. 1984-1996, Sep. 2016.
    • (2016) IEEE Trans. Inf. Forensics Security , vol.11 , Issue.9 , pp. 1984-1996
    • Haghighat, M.1    Abdel-Mottaleb, M.2    Alhalabi, W.3
  • 44
    • 78650593938 scopus 로고    scopus 로고
    • Bag-of-visual-words and spatial extensions for land-use classification
    • New York, NY, USA
    • Y. Yang and S. Newsam, "Bag-of-visual-words and spatial extensions for land-use classification," in Proc. 18th SIGSPATIAL Int. Conf. Adv. Geograph. Inf. Syst., New York, NY, USA, 2010, pp. 270-279.
    • (2010) Proc. 18th SIGSPATIAL Int. Conf. Adv. Geograph. Inf. Syst. , pp. 270-279
    • Yang, Y.1    Newsam, S.2
  • 45
    • 85027941942 scopus 로고    scopus 로고
    • Land-use classification with compressive sensing multifeature fusion
    • Oct.
    • M. L. Mekhalfi, F. Melgani, Y. Bazi, and N. Alajlan, "Land-use classification with compressive sensing multifeature fusion," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 10, pp. 2155-2159, Oct. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.10 , pp. 2155-2159
    • Mekhalfi, M.L.1    Melgani, F.2    Bazi, Y.3    Alajlan, N.4
  • 46
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Apr.
    • C. C. Chang and C. J. Lin, "LIBSVM: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, Apr. 2011, Art. no. 27.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3
    • Chang, C.C.1    Lin, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.