메뉴 건너뛰기




Volumn 54, Issue 4, 2016, Pages 1990-2000

Anomaly detection in hyperspectral images based on low-rank and sparse representation

Author keywords

Anomaly detection; Dictionary construction; Hyperspectral image (HSI) analysis; Low rank representation (LRR); Sparse representation

Indexed keywords

MATRIX ALGEBRA; SIGNAL DETECTION; SPECTROSCOPY;

EID: 84946950059     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2015.2493201     Document Type: Article
Times cited : (480)

References (35)
  • 2
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • Jan.
    • D. Manolakis and G. Shaw, "Detection algorithms for hyperspectral imaging applications," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 29-43, Jan. 2002.
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.1    Shaw, G.2
  • 3
    • 85032751921 scopus 로고    scopus 로고
    • Anomaly detection from hyperspectral imagery
    • Jan.
    • D. W. J. Stein et al., "Anomaly detection from hyperspectral imagery," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 58-69, Jan. 2002.
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 58-69
    • Stein, D.W.J.1
  • 4
    • 0034248248 scopus 로고    scopus 로고
    • Hyperspectral imagery: Clutter adaption in anomaly detection
    • Aug.
    • S. M. Schweizer and J. M. F. Moura, "Hyperspectral imagery: Clutter adaption in anomaly detection," IEEE Trans. Inf. Theory, vol. 46, no. 5, pp. 1855-1871, Aug. 2000.
    • (2000) IEEE Trans. Inf. Theory , vol.46 , Issue.5 , pp. 1855-1871
    • Schweizer, S.M.1    Moura, J.M.F.2
  • 5
    • 77952585265 scopus 로고    scopus 로고
    • Hybrid detectors based on selective endmembers
    • Jun.
    • L. Zhang, B. Du, and Y. Zhong, "Hybrid detectors based on selective endmembers," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2633-2646, Jun. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.6 , pp. 2633-2646
    • Zhang, L.1    Du, B.2    Zhong, Y.3
  • 6
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • Oct.
    • I. S. Reed and X. Yu, "Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution," IEEE Trans. Acoust. Speech Signal Process., vol. 38, no. 10, pp. 1760-1770, Oct. 1990.
    • (1990) IEEE Trans. Acoust. Speech Signal Process. , vol.38 , Issue.10 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 7
    • 44949156583 scopus 로고    scopus 로고
    • Regularization for spectral matched filter and RX anomaly detector,"
    • N. M. Nasrabadi, "Regularization for spectral matched filter and RX anomaly detector," in Proc. SPIE, vol. 6966, 2008, pp. 1-12.
    • (2008) In Proc. SPIE , vol.6966 , pp. 1-12
    • Nasrabadi, N.M.1
  • 8
    • 79955524544 scopus 로고    scopus 로고
    • Improved estimation of local background covariance matrix for anomaly detection in hyperspectral images
    • S. Matteoli, M. Diani, and G. Corsini, "Improved estimation of local background covariance matrix for anomaly detection in hyperspectral images," Opt. Eng., vol. 49, no. 4, pp. 1-16, 2010.
    • (2010) Opt. Eng. , vol.49 , Issue.4 , pp. 1-16
    • Matteoli, S.1    Diani, M.2    Corsini, G.3
  • 9
    • 84905913525 scopus 로고    scopus 로고
    • Weighted-RXD and Linear Filter-Based RXD: Improving background statistics estimation for anomaly detection in hyperspectral imagery
    • Jun.
    • Q. Guo et al., "Weighted-RXD and Linear Filter-Based RXD: Improving background statistics estimation for anomaly detection in hyperspectral imagery," IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens., vol. 7, no. 6, pp. 2351-2366, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. , vol.7 , Issue.6 , pp. 2351-2366
    • Guo, Q.1
  • 10
    • 13144293109 scopus 로고    scopus 로고
    • Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery
    • Feb.
    • H. Kwon and N. M. Nasrabadi, "Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 2, pp. 388-397, Feb. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.2 , pp. 388-397
    • Kwon, H.1    Nasrabadi, N.M.2
  • 11
    • 35348881574 scopus 로고    scopus 로고
    • Kernel eigenspace separation transform for subspace anomaly detection in hyperspectral imagery
    • Oct.
    • H. Goldberg, H. Kwon, and N. M. Nasrabadi, "Kernel eigenspace separation transform for subspace anomaly detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 581-585, Oct. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.4 , pp. 581-585
    • Goldberg, H.1    Kwon, H.2    Nasrabadi, N.M.3
  • 12
    • 33746885881 scopus 로고    scopus 로고
    • A support vector method for anomaly detection in hyperspectral imagery
    • Aug.
    • A. Bannerjee, P. Burlina, and C. Diehl, "A support vector method for anomaly detection in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 8, pp. 2282-2291, Aug. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.8 , pp. 2282-2291
    • Bannerjee, A.1    Burlina, P.2    Diehl, C.3
  • 13
    • 79952039869 scopus 로고    scopus 로고
    • An SVDD-based algorithm for target detection in hyperspectral imagery
    • Mar.
    • W. Sakla, A. Chan, J. Ji, and A. Sakla, "An SVDD-based algorithm for target detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 2, pp. 384-388, Mar. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.2 , pp. 384-388
    • Sakla, W.1    Chan, A.2    Ji, J.3    Sakla, A.4
  • 14
    • 79955590723 scopus 로고    scopus 로고
    • Random-selection-based anomaly detector for hyperspectral imagery
    • May
    • B. Du and L. Zhang, "Random-selection-based anomaly detector for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1578-1589, May 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.5 , pp. 1578-1589
    • Du, B.1    Zhang, L.2
  • 15
    • 84902073586 scopus 로고    scopus 로고
    • A discriminative metric learning based anomaly detection method
    • Nov.
    • B. Du and L. Zhang, "A discriminative metric learning based anomaly detection method," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 6844-6857, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 6844-6857
    • Du, B.1    Zhang, L.2
  • 16
    • 18844429782 scopus 로고    scopus 로고
    • On the impact of PCA dimension reduction for hyperspectral detection of difficult targets
    • Apr.
    • M. D. Farrell and R. M. Mersereau, "On the impact of PCA dimension reduction for hyperspectral detection of difficult targets," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, pp. 192-195, Apr. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett. , vol.2 , Issue.2 , pp. 192-195
    • Farrell, M.D.1    Mersereau, R.M.2
  • 17
    • 33746641760 scopus 로고    scopus 로고
    • Hyperspectral anomaly detection within the signal subspace
    • Jul.
    • K. I. Ranney and M. Soumekh, "Hyperspectral anomaly detection within the signal subspace," IEEE Geosci. Remote Sens. Lett., vol. 3, no. 3, pp. 312-316, Jul. 2006.
    • (2006) IEEE Geosci. Remote Sens. Lett. , vol.3 , Issue.3 , pp. 312-316
    • Ranney, K.I.1    Soumekh, M.2
  • 18
    • 84877923339 scopus 로고    scopus 로고
    • Multiple-window anomaly detection for hyper-spectral imagery
    • Apr.
    • W. Liu and C. I. Chang, "Multiple-window anomaly detection for hyper-spectral imagery," IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens., vol. 6, no. 2, pp. 644-658, Apr. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. , vol.6 , Issue.2 , pp. 644-658
    • Liu, W.1    Chang, C.I.2
  • 19
    • 79959708449 scopus 로고    scopus 로고
    • Simultaneous joint spar-sity model for target detection in hyperspectral imagery
    • Jul.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Simultaneous joint spar-sity model for target detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 676-680, Jul. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.4 , pp. 676-680
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 20
    • 84863021199 scopus 로고    scopus 로고
    • Hyperspectral image classification via kernel sparse representation
    • Brussels, Belgium, Sep.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classification via kernel sparse representation," in Proc. IEEE Int. Conf. Image Process., Brussels, Belgium, Sep. 2011, pp. 1233-1236.
    • (2011) In Proc. IEEE Int. Conf. Image Process. , pp. 1233-1236
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 21
    • 84907455189 scopus 로고    scopus 로고
    • Collaborative representation for hyperspectral anomaly detection
    • Mar.
    • W. Li and Q. Du, "Collaborative representation for hyperspectral anomaly detection," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1463-1474, Mar. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1463-1474
    • Li, W.1    Du, Q.2
  • 22
    • 77956529193 scopus 로고    scopus 로고
    • Robust subspace segmentation by low-rank representation
    • G. Liu, Z. Lin, and Y. Yu, "Robust subspace segmentation by low-rank representation," in Proc. Int. Conf. Mach. Learn., 2010, pp. 663-670.
    • (2010) In Proc. Int. Conf. Mach. Learn. , pp. 663-670
    • Liu, G.1    Lin, Z.2    Yu, Y.3
  • 23
    • 84870197517 scopus 로고    scopus 로고
    • Robust recovery of subspace structures by low-rank representation
    • Jan.
    • G. Liu et al., "Robust recovery of subspace structures by low-rank representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 171-184, Jan. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.1 , pp. 171-184
    • Liu, G.1
  • 24
    • 84962959415 scopus 로고    scopus 로고
    • Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery
    • May, Art. ID 083641
    • W. Sun, C. Liu, and J. Li, "Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery," J. Appl. Remote Sens., vol. 8, no. 1, May 2014, Art. ID 083641.
    • (2014) J. Appl. Remote Sens. , vol.8 , Issue.1
    • Sun, W.1    Liu, C.2    Li, J.3
  • 25
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • May
    • E. J. Candès, X. Li, Y. Ma, and J. Wright, "Robust principal component analysis?" J. ACM , vol. 58, no. 3, pp. 1-39, May 2011.
    • (2011) J. ACM , vol.58 , Issue.3 , pp. 1-39
    • Candès, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 26
    • 0142257025 scopus 로고    scopus 로고
    • Ph.D. dissertation Dept. Elect. Eng., Stanford Univ., Stanford, CA, USA
    • M. Fazel, "Matrix rank minimization with applications," Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ., Stanford, CA, USA, 2002.
    • (2002) Matrix Rank Minimization with Applications
    • Fazel, M.1
  • 27
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • Feb.
    • A. M. Bruckstein, D. L. Donoho, and M. Elad, "From sparse solutions of systems of equations to sparse modeling of signals and images," SIAM Rev., vol. 51, no. 1, pp. 34-81, Feb. 2009.
    • (2009) SIAM Rev. , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 28
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • Jun.
    • J. Wright et al., "Sparse representation for computer vision and pattern recognition," Proc. IEEE, vol. 98, no. 6, pp. 1031-1044, Jun. 2010.
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 1031-1044
    • Wright, J.1
  • 30
    • 85162350693 scopus 로고    scopus 로고
    • Linearized alternating direction method with adaptive penalty for low rank representation
    • Z. Lin, R. Liu, and Z. Su, "Linearized alternating direction method with adaptive penalty for low rank representation," Adv. Neural Inf. Process. Syst., pp. 612-620, 2011.
    • (2011) Adv. Neural Inf. Process. Syst. , pp. 612-620
    • Lin, Z.1    Liu, R.2    Su, Z.3
  • 31
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • J. F. Cai, E. J. Candès, and Z. Shen, "A singular value thresholding algorithm for matrix completion," SIAM J. Optim., vol. 20, no. 4, pp. 1956-1982, 2010.
    • (2010) SIAM J. Optim. , vol.20 , Issue.4 , pp. 1956-1982
    • Cai, J.F.1    Candès, E.J.2    Shen, Z.3
  • 32
    • 67349194302 scopus 로고    scopus 로고
    • A method for assessing spectral image utility
    • Jun.
    • M. S. Stefanou and J. P. Kerekes, "A method for assessing spectral image utility," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 6, pp. 1698-1706, Jun. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.6 , pp. 1698-1706
    • Stefanou, M.S.1    Kerekes, J.P.2
  • 33
    • 0035309562 scopus 로고    scopus 로고
    • Efficient detection in hyperspec-tral imagery
    • Apr.
    • S. M. Schweizer and J. M. F. Moura, "Efficient detection in hyperspec-tral imagery," IEEE Trans. Image Process., vol. 10, no. 4, pp. 584-597, Apr. 2001.
    • (2001) IEEE Trans. Image Process. , vol.10 , Issue.4 , pp. 584-597
    • Schweizer, S.M.1    Moura, J.M.F.2
  • 34
    • 84882843009 scopus 로고    scopus 로고
    • Unsupervised transfer learning for target detection from hyperspectral images
    • Nov.
    • B. Du and L. Zhang, "Unsupervised transfer learning for target detection from hyperspectral images," Neurocomputing, vol. 120, pp. 72-82, Nov. 2013.
    • (2013) Neurocomputing , vol.120 , pp. 72-82
    • Du, B.1    Zhang, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.