메뉴 건너뛰기




Volumn 2016-September, Issue , 2016, Pages 9.1-9.12

Bottom-up instance segmentation using deep higher-order CRFs

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; DEEP NEURAL NETWORKS; IMAGE SEGMENTATION; OBJECT RECOGNITION; PIXELS; SEMANTICS;

EID: 85044534252     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5244/C.30.19     Document Type: Conference Paper
Times cited : (33)

References (38)
  • 2
    • 85016067292 scopus 로고    scopus 로고
    • Higher order potentials in end-to-end trainable conditional random fields
    • Anurag Arnab, Sadeep Jayasumana, Shuai Zheng, and Philip H. S. Torr. Higher order potentials in end-to-end trainable conditional random fields. In ECCV, 2016.
    • (2016) ECCV
    • Arnab, A.1    Jayasumana, S.2    Zheng, S.3    Torr, P.H.S.4
  • 3
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. ICLR, 2015.
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 4
    • 84959224495 scopus 로고    scopus 로고
    • Multi-instance object segmentation with occlusion handling
    • Yi-Ting Chen, Xiaokai Liu, and Ming-Hsuan Yang. Multi-instance object segmentation with occlusion handling. In CVPR, pages 3470–3478, 2015.
    • (2015) CVPR , pp. 3470-3478
    • Chen, Y.-T.1    Liu, X.2    Yang, M.-H.3
  • 5
    • 84959216100 scopus 로고    scopus 로고
    • Convolutional feature masking for joint object and stuff segmentation
    • Jifeng Dai, Kaiming He, and Jian Sun. Convolutional feature masking for joint object and stuff segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Dai, J.1    He, K.2    Sun, J.3
  • 6
    • 84973890848 scopus 로고    scopus 로고
    • Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
    • Jifeng Dai, Kaiming He, and Jian Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Dai, J.1    He, K.2    Sun, J.3
  • 7
    • 84986282070 scopus 로고    scopus 로고
    • Instance-aware semantic segmentation via multi-task network cascades
    • Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation via multi-task network cascades. In CVPR, 2016.
    • (2016) CVPR
    • Dai, J.1    He, K.2    Sun, J.3
  • 9
    • 51949101231 scopus 로고    scopus 로고
    • A discriminatively trained, multiscale, deformable part model
    • IEEE
    • Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, pages 1–8. IEEE, 2008.
    • (2008) CVPR , pp. 1-8
    • Felzenszwalb, P.1    McAllester, D.2    Ramanan, D.3
  • 10
    • 84973864191 scopus 로고    scopus 로고
    • Object detection via a multi-region and semantic segmentation-aware cnn model
    • Spyros Gidaris and Nikos Komodakis. Object detection via a multi-region and semantic segmentation-aware cnn model. In ICCV, pages 1134–1142, 2015.
    • (2015) ICCV , pp. 1134-1142
    • Gidaris, S.1    Komodakis, N.2
  • 11
    • 85029359197 scopus 로고    scopus 로고
    • Fast r-cnn
    • Ross Girshick. Fast r-cnn. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 12
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 13
    • 84906342998 scopus 로고    scopus 로고
    • Simultaneous detection and segmentation
    • Springer
    • Bharath Hariharan, Pablo Arbel ez, Ross Girshick, and Jitendra Malik. Simultaneous detection and segmentation. In ECCV, pages 297–312. Springer, 2014.
    • (2014) ECCV , pp. 297-312
    • Hariharan, B.1    Arbel ez, P.2    Girshick, R.3    Malik, J.4
  • 14
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization
    • Bharath Hariharan, Pablo Arbel ez, Ross Girshick, and Jitendra Malik. Hypercolumns for object segmentation and fine-grained localization. CVPR, 2015.
    • (2015) CVPR
    • Hariharan, B.1    Arbel ez, P.2    Girshick, R.3    Malik, J.4
  • 15
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 16
    • 5044223520 scopus 로고    scopus 로고
    • Multiscale conditional random fields for image labeling
    • IEEE
    • Xuming He, Richard S Zemel, and Miguel Carreira-Perpi n. Multiscale conditional random fields for image labeling. In CVPR, volume 2, pages II–695. IEEE, 2004.
    • (2004) CVPR , vol.2
    • He, X.1    Zemel, R.S.2    Carreira-Perpin, M.3
  • 17
    • 61349174704 scopus 로고    scopus 로고
    • Robust higher order potentials for enforcing label consistency
    • Pushmeet Kohli, Lubor Ladicky, and Philip H.S. Torr. Robust higher order potentials for enforcing label consistency. IJCV, 82(3):302–324, 2009.
    • (2009) IJCV , vol.82 , Issue.3 , pp. 302-324
    • Kohli, P.1    Ladicky, L.2    Torr, P.H.S.3
  • 18
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected CRFs with Gaussian edge potentials
    • P. Kr henb hl and V. Koltun. Efficient inference in fully connected CRFs with Gaussian edge potentials. In NIPS, 2011.
    • (2011) NIPS
    • Kr henb hl, P.1    Koltun, V.2
  • 19
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097–1105. 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 20
    • 78149343534 scopus 로고    scopus 로고
    • Graph cut based inference with co-occurrence statistics
    • Lubor Ladicky, Chris Russell, Pushmeet Kohli, and Philip HS Torr. Graph cut based inference with co-occurrence statistics. In ECCV, pages 239–253. 2010.
    • (2010) ECCV , pp. 239-253
    • Ladicky, L.1    Russell, C.2    Kohli, P.3    Torr, P.H.S.4
  • 21
    • 78149356342 scopus 로고    scopus 로고
    • What, where and how many? Combining object detectors and crfs
    • Lubor Ladick, Paul Sturgess, Karteek Alahari, Chris Russell, and Philip H. S. Torr. What, where and how many? combining object detectors and crfs. In ECCV, pages 424–437, 2010.
    • (2010) ECCV , pp. 424-437
    • Ladick, L.1    Sturgess, P.2    Alahari, K.3    Russell, C.4    Torr, P.H.S.5
  • 22
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Yann LeCun, L on Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
    • (1998) Proceedings of The IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    On Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 25
    • 84986261676 scopus 로고    scopus 로고
    • Efficient piecewise training of deep structured models for semantic segmentation
    • Guosheng Lin, Chunhua Shen, Ian Reid, et al. Efficient piecewise training of deep structured models for semantic segmentation. In CVPR, 2016.
    • (2016) CVPR
    • Lin, G.1    Shen, C.2    Reid, I.3
  • 27
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 28
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015.
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 29
    • 85030264885 scopus 로고    scopus 로고
    • Recurrent instance segmentation
    • Bernardino Romera-Paredes and Philip HS Torr. Recurrent instance segmentation. In ECCV, 2016.
    • (2016) ECCV
    • Romera-Paredes, B.1    Torr, P.H.S.2
  • 30
    • 73849085669 scopus 로고    scopus 로고
    • Grabcut: Interactive foreground extraction using iterated graph cuts
    • Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. ACM TOG, 2004.
    • (2004) ACM TOG
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 31
    • 58149151266 scopus 로고    scopus 로고
    • Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV, 2009.
    • (2009) IJCV
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 32
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 33
    • 84903211110 scopus 로고    scopus 로고
    • Relating things and stuff via object property interactions
    • Min Sun, Byung-soo Kim, Pushmeet Kohli, and Silvio Savarese. Relating things and stuff via object property interactions. PAMI, 36(7):1370–1383, 2014.
    • (2014) PAMI , vol.36 , Issue.7 , pp. 1370-1383
    • Sun, M.1    Kim, B.-S.2    Kohli, P.3    Savarese, S.4
  • 35
    • 84920255614 scopus 로고    scopus 로고
    • Filter-based mean-field inference for random fields with higher-order terms and product label-spaces
    • Vibhav Vineet, Jonathan Warrell, and Philip HS Torr. Filter-based mean-field inference for random fields with higher-order terms and product label-spaces. IJCV, 2014.
    • (2014) IJCV
    • Vineet, V.1    Warrell, J.2    Torr, P.H.S.3
  • 36
    • 84866687133 scopus 로고    scopus 로고
    • Describing the Scene as a Whole: Joint Object Detection, Scene Classification and Semantic Segmentation
    • Jian Yao, Sanja Fidler, and Raquel Urtasun. Describing the Scene as a Whole: Joint Object Detection, Scene Classification and Semantic Segmentation. In CVPR, pages 702–709, 2012.
    • (2012) CVPR , pp. 702-709
    • Yao, J.1    Fidler, S.2    Urtasun, R.3
  • 37
    • 85083952059 scopus 로고    scopus 로고
    • Multi-scale context aggregation by dilated convolutions
    • Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR, 2016.
    • (2016) ICLR
    • Yu, F.1    Koltun, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.