메뉴 건너뛰기




Volumn 57, Issue 4, 2017, Pages 1007-1012

Structural and Sequence Similarity Makes a Significant Impact on Machine-Learning-Based Scoring Functions for Protein-Ligand Interactions

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; BINDING ENERGY; CORRELATION METHODS; LIGANDS; PROTEINS;

EID: 85018596195     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/acs.jcim.7b00049     Document Type: Article
Times cited : (75)

References (38)
  • 1
    • 0034645763 scopus 로고    scopus 로고
    • Knowledge-based Scoring Function to Predict Protein-Ligand Interactions
    • Gohlke, H.; Hendlich, M.; Klebe, G. Knowledge-based Scoring Function to Predict Protein-Ligand Interactions J. Mol. Biol. 2000, 295, 337-356 10.1006/jmbi.1999.3371
    • (2000) J. Mol. Biol. , vol.295 , pp. 337-356
    • Gohlke, H.1    Hendlich, M.2    Klebe, G.3
  • 3
    • 84873041650 scopus 로고    scopus 로고
    • Characterization of Small Molecule Binding. I. Accurate Identification of Strong Inhibitors in Virtual Screening
    • Ding, B.; Wang, J.; Li, N.; Wang, W. Characterization of Small Molecule Binding. I. Accurate Identification of Strong Inhibitors in Virtual Screening J. Chem. Inf. Model. 2013, 53, 114-122 10.1021/ci300508m
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 114-122
    • Ding, B.1    Wang, J.2    Li, N.3    Wang, W.4
  • 4
    • 66149103553 scopus 로고    scopus 로고
    • Comparative Assessment of Scoring Functions on a Diverse Test Set
    • Cheng, T.; Li, X.; Li, Y.; Liu, Z.; Wang, R. Comparative Assessment of Scoring Functions on a Diverse Test Set J. Chem. Inf. Model. 2009, 49, 1079-1093 10.1021/ci9000053
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1079-1093
    • Cheng, T.1    Li, X.2    Li, Y.3    Liu, Z.4    Wang, R.5
  • 5
    • 84865132980 scopus 로고    scopus 로고
    • DoGSiteScorer: A Web Server for Automatic Binding Site Prediction, Analysis and Druggability Assessment
    • Volkamer, A.; Kuhn, D.; Rippmann, F.; Rarey, M. DoGSiteScorer: a Web Server for Automatic Binding Site Prediction, Analysis and Druggability Assessment Bioinformatics 2012, 28, 2074-2075 10.1093/bioinformatics/bts310
    • (2012) Bioinformatics , vol.28 , pp. 2074-2075
    • Volkamer, A.1    Kuhn, D.2    Rippmann, F.3    Rarey, M.4
  • 6
    • 67649225348 scopus 로고    scopus 로고
    • Efficient Drug Lead Discovery and Optimization
    • Jorgensen, W. L. Efficient Drug Lead Discovery and Optimization Acc. Chem. Res. 2009, 42, 724-733 10.1021/ar800236t
    • (2009) Acc. Chem. Res. , vol.42 , pp. 724-733
    • Jorgensen, W.L.1
  • 7
    • 84881251398 scopus 로고    scopus 로고
    • Structure-Based Target Druggability Assessment
    • Trosset, J.-Y.; Vodovar, N. Structure-Based Target Druggability Assessment Methods Mol. Biol. 2013, 986, 141-164 10.1007/978-1-62703-311-4-10
    • (2013) Methods Mol. Biol. , vol.986 , pp. 141-164
    • Trosset, J.-Y.1    Vodovar, N.2
  • 8
    • 84875150414 scopus 로고    scopus 로고
    • The Holistic Integration of Virtual Screening in Drug Discovery
    • Tanrikulu, Y.; Kruger, B.; Proschak, E. The Holistic Integration of Virtual Screening in Drug Discovery Drug Discovery Today 2013, 18, 358-364 10.1016/j.drudis.2013.01.007
    • (2013) Drug Discovery Today , vol.18 , pp. 358-364
    • Tanrikulu, Y.1    Kruger, B.2    Proschak, E.3
  • 9
  • 10
    • 26444468103 scopus 로고    scopus 로고
    • General and Targeted Statistical Potentials for Protein-Ligand Interactions
    • Mooij, W. T.; Verdonk, M. L. General and Targeted Statistical Potentials for Protein-Ligand Interactions Proteins: Struct., Funct., Genet. 2005, 61, 272-287 10.1002/prot.20588
    • (2005) Proteins: Struct., Funct., Genet. , vol.61 , pp. 272-287
    • Mooij, W.T.1    Verdonk, M.L.2
  • 11
    • 77957898063 scopus 로고    scopus 로고
    • Scoring Functions and Their Evaluation Methods for Protein-Ligand Docking: Recent Advances and Future Directions
    • Huang, S. Y.; Grinter, S. Z.; Zou, X. Scoring Functions and Their Evaluation Methods for Protein-Ligand Docking: Recent Advances and Future Directions Phys. Chem. Chem. Phys. 2010, 12, 12899-12908 10.1039/c0cp00151a
    • (2010) Phys. Chem. Chem. Phys. , vol.12 , pp. 12899-12908
    • Huang, S.Y.1    Grinter, S.Z.2    Zou, X.3
  • 12
    • 0036022960 scopus 로고    scopus 로고
    • Further Development and Validation of Empirical Scoring Functions for Structure-based Binding Affinity Prediction
    • Wang, R.; Lai, L.; Wang, S. Further Development and Validation of Empirical Scoring Functions for Structure-based Binding Affinity Prediction J. Comput.-Aided Mol. Des. 2002, 16, 11-26 10.1023/A:1016357811882
    • (2002) J. Comput.-Aided Mol. Des. , vol.16 , pp. 11-26
    • Wang, R.1    Lai, L.2    Wang, S.3
  • 13
    • 84945475267 scopus 로고    scopus 로고
    • Machine-Learning Scoring Functions to Improve Structure-based Binding Affinity Prediction and Virtual Screening
    • Ain, Q. U.; Aleksandrova, A.; Roessler, F. D.; Ballester, P. J. Machine-Learning Scoring Functions to Improve Structure-based Binding Affinity Prediction and Virtual Screening WIREs Comput. Mol. Sci. 2015, 5, 405-424 10.1002/wcms.1225
    • (2015) WIREs Comput. Mol. Sci. , vol.5 , pp. 405-424
    • Ain, Q.U.1    Aleksandrova, A.2    Roessler, F.D.3    Ballester, P.J.4
  • 14
    • 84925387258 scopus 로고    scopus 로고
    • Classification of Current Scoring Functions
    • Liu, J.; Wang, R. Classification of Current Scoring Functions J. Chem. Inf. Model. 2015, 55, 475-482 10.1021/ci500731a
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 475-482
    • Liu, J.1    Wang, R.2
  • 15
    • 84903287174 scopus 로고    scopus 로고
    • Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation Methods and General Results
    • Li, Y.; Han, L.; Liu, Z.; Wang, R. Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation Methods and General Results J. Chem. Inf. Model. 2014, 54, 1717-1736 10.1021/ci500081m
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 1717-1736
    • Li, Y.1    Han, L.2    Liu, Z.3    Wang, R.4
  • 16
    • 77952825581 scopus 로고    scopus 로고
    • A Machine Learning Approach to Predicting Protein-Ligand Binding Affinity with Applications to Molecular Docking
    • Ballester, P. J.; Mitchell, J. B. A Machine Learning Approach to Predicting Protein-Ligand Binding Affinity with Applications to Molecular Docking Bioinformatics 2010, 26, 1169-1175 10.1093/bioinformatics/btq112
    • (2010) Bioinformatics , vol.26 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.2
  • 17
    • 84897010735 scopus 로고    scopus 로고
    • Does a More Precise Chemical Description of Protein-Ligand Complexes Lead to More Accurate Prediction of Binding Affinity?
    • Ballester, P. J.; Schreyer, A.; Blundell, T. L. Does a More Precise Chemical Description of Protein-Ligand Complexes Lead to More Accurate Prediction of Binding Affinity? J. Chem. Inf. Model. 2014, 54, 944-955 10.1021/ci500091r
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 944-955
    • Ballester, P.J.1    Schreyer, A.2    Blundell, T.L.3
  • 18
    • 84883250593 scopus 로고    scopus 로고
    • SFCscore(RF): A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes
    • Zilian, D.; Sotriffer, C. A. SFCscore(RF): A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes J. Chem. Inf. Model. 2013, 53, 1923-1933 10.1021/ci400120b
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1923-1933
    • Zilian, D.1    Sotriffer, C.A.2
  • 19
    • 84888602591 scopus 로고    scopus 로고
    • Nonlinear Scoring Functions for Similarity-Based Ligand Docking and Binding Affinity Prediction
    • Brylinski, M. Nonlinear Scoring Functions for Similarity-Based Ligand Docking and Binding Affinity Prediction J. Chem. Inf. Model. 2013, 53, 3097-3112 10.1021/ci400510e
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 3097-3112
    • Brylinski, M.1
  • 20
    • 84875428269 scopus 로고    scopus 로고
    • ID-Score: A New Empirical Scoring Function Based on a Comprehensive Set of Descriptors Related to Protein-Ligand Interactions
    • Li, G. B.; Yang, L. L.; Wang, W. J.; Li, L. L.; Yang, S. Y. ID-Score: A New Empirical Scoring Function Based on a Comprehensive Set of Descriptors Related to Protein-Ligand Interactions J. Chem. Inf. Model. 2013, 53, 592-600 10.1021/ci300493w
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 592-600
    • Li, G.B.1    Yang, L.L.2    Wang, W.J.3    Li, L.L.4    Yang, S.Y.5
  • 21
    • 78649517318 scopus 로고    scopus 로고
    • Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets
    • Kramer, C.; Gedeck, P. Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets J. Chem. Inf. Model. 2010, 50, 1961-1969 10.1021/ci100264e
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1961-1969
    • Kramer, C.1    Gedeck, P.2
  • 22
    • 80051984855 scopus 로고    scopus 로고
    • Comments on "leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets": Significance for the Validation of Scoring Functions
    • Ballester, P. J.; Mitchell, J. B. Comments on "Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets": Significance for the Validation of Scoring Functions J. Chem. Inf. Model. 2011, 51, 1739-1741 10.1021/ci200057e
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1739-1741
    • Ballester, P.J.1    Mitchell, J.B.2
  • 23
    • 84908242076 scopus 로고    scopus 로고
    • Beware of Machine Learning-Based Scoring Functions-On the Danger of Developing Black Boxes
    • Gabel, J.; Desaphy, J.; Rognan, D. Beware of Machine Learning-Based Scoring Functions-On the Danger of Developing Black Boxes J. Chem. Inf. Model. 2014, 54, 2807-2815 10.1021/ci500406k
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 2807-2815
    • Gabel, J.1    Desaphy, J.2    Rognan, D.3
  • 24
    • 84929141895 scopus 로고    scopus 로고
    • PDB-wide Collection of Binding Data: Current Status of the PDBbind Database
    • Liu, Z.; Li, Y.; Han, L.; Li, J.; Liu, J.; Zhao, Z.; Nie, W.; Liu, Y.; Wang, R. PDB-wide Collection of Binding Data: Current Status of the PDBbind Database Bioinformatics 2015, 31, 405-412 10.1093/bioinformatics/btu626
    • (2015) Bioinformatics , vol.31 , pp. 405-412
    • Liu, Z.1    Li, Y.2    Han, L.3    Li, J.4    Liu, J.5    Zhao, Z.6    Nie, W.7    Liu, Y.8    Wang, R.9
  • 25
    • 10044294023 scopus 로고    scopus 로고
    • An Extensive Test of 14 Scoring Functions Using the PDBbind Refined Set of 800 Protein-Ligand Complexes
    • Wang, R.; Lu, Y.; Fang, X.; Wang, S. An Extensive Test of 14 Scoring Functions Using the PDBbind Refined Set of 800 Protein-Ligand Complexes J. Chem. Inf. Comput. Sci. 2004, 44, 2114-2125 10.1021/ci049733j
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 2114-2125
    • Wang, R.1    Lu, Y.2    Fang, X.3    Wang, S.4
  • 26
    • 20444422149 scopus 로고    scopus 로고
    • The PDBbind Database: Methodologies and Updates
    • Wang, R.; Fang, X.; Lu, Y.; Yang, C. Y.; Wang, S. The PDBbind Database: Methodologies and Updates J. Med. Chem. 2005, 48, 4111-4119 10.1021/jm048957q
    • (2005) J. Med. Chem. , vol.48 , pp. 4111-4119
    • Wang, R.1    Fang, X.2    Lu, Y.3    Yang, C.Y.4    Wang, S.5
  • 27
    • 85018568088 scopus 로고    scopus 로고
    • CASF-2007 Data. (accessed June 2016)
    • CASF-2007 Data. http://www.pdbbind.org.cn/download/CASF-2007.tar.gz (accessed June 2016).
  • 28
    • 10344232638 scopus 로고    scopus 로고
    • Scoring Function for Automated Assessment of Protein Structure Template Quality
    • Zhang, Y.; Skolnick, J. Scoring Function for Automated Assessment of Protein Structure Template Quality Proteins: Struct., Funct., Genet. 2004, 57, 702-710 10.1002/prot.20264
    • (2004) Proteins: Struct., Funct., Genet. , vol.57 , pp. 702-710
    • Zhang, Y.1    Skolnick, J.2
  • 29
    • 17644392830 scopus 로고    scopus 로고
    • TM-align: A Protein Structure Alignment Algorithm Based on the TM-score
    • Zhang, Y.; Skolnick, J. TM-align: a Protein Structure Alignment Algorithm Based on the TM-score Nucleic Acids Res. 2005, 33, 2302-2309 10.1093/nar/gki524
    • (2005) Nucleic Acids Res. , vol.33 , pp. 2302-2309
    • Zhang, Y.1    Skolnick, J.2
  • 30
    • 85018581612 scopus 로고    scopus 로고
    • TM-align. (accessed January 2017)
    • TM-align. http://zhanglab.ccmb.med.umich.edu/TM-align/ (accessed January 2017).
  • 31
    • 0014757386 scopus 로고
    • A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins
    • Needleman, S. B.; Wunsch, C. D. A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins J. Mol. Biol. 1970, 48, 443-453 10.1016/0022-2836(70)90057-4
    • (1970) J. Mol. Biol. , vol.48 , pp. 443-453
    • Needleman, S.B.1    Wunsch, C.D.2
  • 32
    • 85018548516 scopus 로고    scopus 로고
    • NW-align. (accessed December 2016)
    • Zhang, Y. NW-align. http://zhanglab.ccmb.med.umich.edu/NW-align/ (accessed December 2016).
    • Zhang, Y.1
  • 33
    • 76149120388 scopus 로고    scopus 로고
    • AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading
    • Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking With a New Scoring Function, Efficient Optimization, and Multithreading J. Comput. Chem. 2010, 31, 455-461 10.1002/jcc.21334
    • (2010) J. Comput. Chem. , vol.31 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 34
    • 84923588607 scopus 로고    scopus 로고
    • Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets
    • Li, H.; Leung, K. S.; Wong, M. H.; Ballester, P. J. Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets Mol. Inf. 2015, 34, 115-126 10.1002/minf.201400132
    • (2015) Mol. Inf. , vol.34 , pp. 115-126
    • Li, H.1    Leung, K.S.2    Wong, M.H.3    Ballester, P.J.4
  • 36
    • 85018601053 scopus 로고    scopus 로고
    • X-Score, version 1.3. (accessed December 2016)
    • X-Score, version 1.3. http://www.sioc-ccbg.ac.cn/?p=42 (accessed December 2016).
  • 37
    • 77951961719 scopus 로고    scopus 로고
    • How significant is a protein structure similarity with TM-score = 0.5?
    • Xu, J.; Zhang, Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 2010, 26, 889-95 10.1093/bioinformatics/btq066
    • (2010) Bioinformatics , vol.26 , pp. 889-895
    • Xu, J.1    Zhang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.