메뉴 건너뛰기




Volumn 67, Issue 7, 2018, Pages 1031-1040

Quantifying tumor-infiltrating immune cells from transcriptomics data

Author keywords

Deconvolution; Gene expression; Next generation sequencing; NGS; RNA seq; TILs

Indexed keywords

BIOINFORMATICS; CELL FRACTIONATION; GENE EXPRESSION; HUMAN; IMMUNOCOMPETENT CELL; PRIORITY JOURNAL; REVIEW; RNA SEQUENCE; TRANSCRIPTOMICS; TUMOR ASSOCIATED LEUKOCYTE; TUMOR ESCAPE; TUMOR INFILTRATING IMMUNE CELL; IMMUNOLOGY;

EID: 85043693370     PISSN: 03407004     EISSN: 14320851     Source Type: Journal    
DOI: 10.1007/s00262-018-2150-z     Document Type: Review
Times cited : (292)

References (68)
  • 1
    • 84858800620 scopus 로고    scopus 로고
    • The immune contexture in human tumours: impact on clinical outcome
    • Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. 10.1038/nrc3245
    • (2012) Nat Rev Cancer , vol.12 , pp. 298-306
    • Fridman, W.H.1    Pagès, F.2    Sautès-Fridman, C.3    Galon, J.4
  • 2
    • 85016548232 scopus 로고    scopus 로고
    • Elements of cancer immunity and the cancer-immune set point
    • Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541:321–330. 10.1038/nature21349
    • (2017) Nature , vol.541 , pp. 321-330
    • Chen, D.S.1    Mellman, I.2
  • 3
    • 84880706152 scopus 로고    scopus 로고
    • Oncology meets immunology: the cancer-immunity cycle
    • Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10. 10.1016/j.immuni.2013.07.012
    • (2013) Immunity , vol.39 , pp. 1-10
    • Chen, D.S.1    Mellman, I.2
  • 4
    • 85011096715 scopus 로고    scopus 로고
    • New strategies for cancer immunotherapy: targeting regulatory T cells
    • Finotello F, Trajanoski Z (2017) New strategies for cancer immunotherapy: targeting regulatory T cells. Genome Med 9:10. 10.1186/s13073-017-0402-8
    • (2017) Genome Med , vol.9 , pp. 10
    • Finotello, F.1    Trajanoski, Z.2
  • 5
    • 84963621254 scopus 로고    scopus 로고
    • Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy
    • Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287. 10.1038/nrc.2016.36
    • (2016) Nat Rev Cancer , vol.16 , pp. 275-287
    • Topalian, S.L.1    Taube, J.M.2    Anders, R.A.3    Pardoll, D.M.4
  • 6
    • 53649106195 scopus 로고    scopus 로고
    • Next-generation DNA sequencing
    • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145. 10.1038/nbt1486
    • (2008) Nat Biotechnol , vol.26 , pp. 1135-1145
    • Shendure, J.1    Ji, H.2
  • 7
    • 84884994218 scopus 로고    scopus 로고
    • The Cancer Genome Atlas Pan-Cancer analysis project
    • Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45:1113–1120. 10.1038/ng.2764
    • (2013) Nat Genet , vol.45 , pp. 1113-1120
    • Weinstein, J.N.1    Collisson, E.A.2
  • 8
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. 10.1073/pnas.0506580102
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 15545-15550
    • Subramanian, A.1    Tamayo, P.2    Mootha, V.K.3
  • 9
    • 84882727548 scopus 로고    scopus 로고
    • CellMix: a comprehensive toolbox for gene expression deconvolution
    • Gaujoux R, Seoighe C (2013) CellMix: a comprehensive toolbox for gene expression deconvolution. Bioinformatics 29:2211–2212. 10.1093/bioinformatics/btt351
    • (2013) Bioinformatics , vol.29 , pp. 2211-2212
    • Gaujoux, R.1    Seoighe, C.2
  • 10
    • 84931426001 scopus 로고    scopus 로고
    • Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy
    • Angelova M, Charoentong P, Hackl H et al (2015) Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol 16:64. 10.1186/s13059-015-0620-6
    • (2015) Genome Biol , vol.16 , pp. 64
    • Angelova, M.1    Charoentong, P.2    Hackl, H.3
  • 11
    • 85009106590 scopus 로고    scopus 로고
    • Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade
    • Charoentong P, Finotello F, Angelova M et al (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18:248–262. 10.1016/j.celrep.2016.12.019
    • (2017) Cell Rep , vol.18 , pp. 248-262
    • Charoentong, P.1    Finotello, F.2    Angelova, M.3
  • 12
    • 85034614124 scopus 로고    scopus 로고
    • xCell: digitally portraying the tissue cellular heterogeneity landscape
    • Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220. 10.1186/s13059-017-1349-1
    • (2017) Genome Biol , vol.18 , pp. 220
    • Aran, D.1    Hu, Z.2    Butte, A.J.3
  • 13
    • 85030697733 scopus 로고    scopus 로고
    • TIminer: NGS data mining pipeline for cancer immunology and immunotherapy
    • Tappeiner E, Finotello F, Charoentong P et al (2017) TIminer: NGS data mining pipeline for cancer immunology and immunotherapy. Bioinformatics 33:3140–3141. 10.1093/bioinformatics/btx377
    • (2017) Bioinformatics , vol.33 , pp. 3140-3141
    • Tappeiner, E.1    Finotello, F.2    Charoentong, P.3
  • 14
    • 84992053166 scopus 로고    scopus 로고
    • Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression
    • Becht E, Giraldo NA, Lacroix L et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17:218. 10.1186/s13059-016-1070-5
    • (2016) Genome Biol , vol.17 , pp. 218
    • Becht, E.1    Giraldo, N.A.2    Lacroix, L.3
  • 15
    • 67749112023 scopus 로고    scopus 로고
    • Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus
    • Abbas AR, Wolslegel K, Seshasayee D et al (2009) Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS ONE 4:e6098. 10.1371/journal.pone.0006098
    • (2009) PLoS ONE , vol.4
    • Abbas, A.R.1    Wolslegel, K.2    Seshasayee, D.3
  • 16
    • 81155135154 scopus 로고    scopus 로고
    • Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples
    • Gong T, Hartmann N, Kohane IS et al (2011) Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples. PLoS ONE 6:e27156. 10.1371/journal.pone.0027156
    • (2011) PLoS ONE , vol.6
    • Gong, T.1    Hartmann, N.2    Kohane, I.S.3
  • 17
    • 84876213240 scopus 로고    scopus 로고
    • DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data
    • Gong T, Szustakowski JD (2013) DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data. Bioinformatics 29:1083–1085. 10.1093/bioinformatics/btt090
    • (2013) Bioinformatics , vol.29 , pp. 1083-1085
    • Gong, T.1    Szustakowski, J.D.2
  • 18
    • 84872023313 scopus 로고    scopus 로고
    • PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions
    • Qiao W, Quon G, Csaszar E et al (2012) PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions. PLoS Comput Biol 8:e1002838. 10.1371/journal.pcbi.1002838
    • (2012) PLoS Comput Biol , vol.8
    • Qiao, W.1    Quon, G.2    Csaszar, E.3
  • 19
    • 84928927858 scopus 로고    scopus 로고
    • Robust enumeration of cell subsets from tissue expression profiles
    • Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457. 10.1038/nmeth.3337
    • (2015) Nat Methods , vol.12 , pp. 453-457
    • Newman, A.M.1    Liu, C.L.2    Green, M.R.3
  • 20
    • 84983347823 scopus 로고    scopus 로고
    • Comprehensive analyses of tumor immunity: implications for cancer immunotherapy
    • Li B, Severson E, Pignon J-C et al (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17:174. 10.1186/s13059-016-1028-7
    • (2016) Genome Biol , vol.17 , pp. 174
    • Li, B.1    Severson, E.2    Pignon, J.-C.3
  • 21
    • 85041021997 scopus 로고    scopus 로고
    • Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data
    • Racle J, de Jonge K, Baumgaertner P et al (2017) Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. eLIFE 6:e26476. 10.7554/eLife.26476
    • (2017) eLIFE , vol.6
    • Racle, J.1    de Jonge, K.2    Baumgaertner, P.3
  • 22
    • 85055355281 scopus 로고    scopus 로고
    • quanTIseq: quantifying immune contexture of human tumors
    • Finotello F, Mayer C, Plattner C et al (2017) quanTIseq: quantifying immune contexture of human tumors. bioRxiv. 10.1101/223180
    • (2017) bioRxiv
    • Finotello, F.1    Mayer, C.2    Plattner, C.3
  • 23
    • 77249157887 scopus 로고    scopus 로고
    • Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach
    • Repsilber D, Kern S, Telaar A et al (2010) Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach. BMC Bioinform 11:27. 10.1186/1471-2105-11-27
    • (2010) BMC Bioinform , vol.11 , pp. 27
    • Repsilber, D.1    Kern, S.2    Telaar, A.3
  • 24
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • Brunet J-P, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci USA 101:4164–4169. 10.1073/pnas.0308531101
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 4164-4169
    • Brunet, J.-P.1    Tamayo, P.2    Golub, T.R.3    Mesirov, J.P.4
  • 26
    • 84874608326 scopus 로고    scopus 로고
    • Digital sorting of complex tissues for cell type-specific gene expression profiles
    • Zhong Y, Wan Y-W, Pang K et al (2013) Digital sorting of complex tissues for cell type-specific gene expression profiles. BMC Bioinform 14:89. 10.1186/1471-2105-14-89
    • (2013) BMC Bioinform , vol.14 , pp. 89
    • Zhong, Y.1    Wan, Y.-W.2    Pang, K.3
  • 27
    • 84897706458 scopus 로고    scopus 로고
    • MMAD: microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples
    • Liebner DA, Huang K, Parvin JD (2014) MMAD: microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples. Bioinformatics 30:682–689. 10.1093/bioinformatics/btt566
    • (2014) Bioinformatics , vol.30 , pp. 682-689
    • Liebner, D.A.1    Huang, K.2    Parvin, J.D.3
  • 28
    • 70449091786 scopus 로고    scopus 로고
    • Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
    • Barbie DA, Tamayo P, Boehm JS et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108–112. 10.1038/nature08460
    • (2009) Nature , vol.462 , pp. 108-112
    • Barbie, D.A.1    Tamayo, P.2    Boehm, J.S.3
  • 29
    • 84939209563 scopus 로고    scopus 로고
    • Gateways to the FANTOM5 promoter level mammalian expression atlas
    • Lizio M, Harshbarger J, Shimoji H et al (2015) Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol 16:22. 10.1186/s13059-014-0560-6
    • (2015) Genome Biol , vol.16 , pp. 22
    • Lizio, M.1    Harshbarger, J.2    Shimoji, H.3
  • 30
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. 10.1038/nature11247
    • (2012) Nature , vol.489 , pp. 57-74
  • 31
    • 84996946747 scopus 로고    scopus 로고
    • The BLUEPRINT data analysis portal
    • Fernández JM, de la Torre V, Richardson D et al (2016) The BLUEPRINT data analysis portal. Cell Syst 3:491–495.e5. 10.1016/j.cels.2016.10.021
    • (2016) Cell Syst , vol.3 , pp. 491-495
    • Fernández, J.M.1    de la Torre, V.2    Richardson, D.3
  • 32
    • 21344446363 scopus 로고    scopus 로고
    • Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data
    • Abbas AR, Baldwin D, Ma Y et al (2005) Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun 6:319–331. 10.1038/sj.gene.6364173
    • (2005) Genes Immun , vol.6 , pp. 319-331
    • Abbas, A.R.1    Baldwin, D.2    Ma, Y.3
  • 33
    • 84884297351 scopus 로고    scopus 로고
    • An expression atlas of human primary cells: inference of gene function from coexpression networks
    • Mabbott NA, Baillie JK, Brown H et al (2013) An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 14:632. 10.1186/1471-2164-14-632
    • (2013) BMC Genomics , vol.14 , pp. 632
    • Mabbott, N.A.1    Baillie, J.K.2    Brown, H.3
  • 34
    • 78651486442 scopus 로고    scopus 로고
    • Densely interconnected transcriptional circuits control cell states in human hematopoiesis
    • Novershtern N, Subramanian A, Lawton LN et al (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144:296–309. 10.1016/j.cell.2011.01.004
    • (2011) Cell , vol.144 , pp. 296-309
    • Novershtern, N.1    Subramanian, A.2    Lawton, L.N.3
  • 35
    • 84872202078 scopus 로고    scopus 로고
    • GSVA: gene set variation analysis for microarray and RNA-seq data
    • Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform 14:7. 10.1186/1471-2105-14-7
    • (2013) BMC Bioinform , vol.14 , pp. 7
    • Hänzelmann, S.1    Castelo, R.2    Guinney, J.3
  • 36
    • 84898018919 scopus 로고    scopus 로고
    • Computational deconvolution: extracting cell type-specific information from heterogeneous samples
    • Shen-Orr SS, Gaujoux R (2013) Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Curr Opin Immunol 25:571–578. 10.1016/j.coi.2013.09.015
    • (2013) Curr Opin Immunol , vol.25 , pp. 571-578
    • Shen-Orr, S.S.1    Gaujoux, R.2
  • 37
    • 56749098074 scopus 로고    scopus 로고
    • Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
    • Pan Q, Shai O, Lee LJ et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415. 10.1038/ng.259
    • (2008) Nat Genet , vol.40 , pp. 1413-1415
    • Pan, Q.1    Shai, O.2    Lee, L.J.3
  • 39
    • 84938984463 scopus 로고    scopus 로고
    • The prognostic landscape of genes and infiltrating immune cells across human cancers
    • Gentles AJ, Newman AM, Liu CL et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938–945. 10.1038/nm.3909
    • (2015) Nat Med , vol.21 , pp. 938-945
    • Gentles, A.J.1    Newman, A.M.2    Liu, C.L.3
  • 40
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical Bayes methods
    • Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127. 10.1093/biostatistics/kxj037
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Li, C.2    Rabinovic, A.3
  • 41
    • 85021730526 scopus 로고    scopus 로고
    • Revisit linear regression-based deconvolution methods for tumor gene expression data
    • Li B, Liu JS, Liu XS (2017) Revisit linear regression-based deconvolution methods for tumor gene expression data. Genome Biol 18:127. 10.1186/s13059-017-1256-5
    • (2017) Genome Biol , vol.18 , pp. 127
    • Li, B.1    Liu, J.S.2    Liu, X.S.3
  • 42
    • 85035064069 scopus 로고    scopus 로고
    • TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells
    • Li T, Fan J, Wang B et al (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77:e108–e110. 10.1158/0008-5472.CAN-17-0307
    • (2017) Cancer Res , vol.77 , pp. e108-e110
    • Li, T.1    Fan, J.2    Wang, B.3
  • 43
    • 84963614956 scopus 로고    scopus 로고
    • Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-sEq
    • Tirosh I, Izar B, Prakadan SM et al (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-sEq. Science 352:189–196. 10.1126/science.aad0501
    • (2016) Science , vol.352 , pp. 189-196
    • Tirosh, I.1    Izar, B.2    Prakadan, S.M.3
  • 44
    • 84906930512 scopus 로고    scopus 로고
    • Digital cell quantification identifies global immune cell dynamics during influenza infection
    • Altboum Z, Steuerman Y, David E et al (2014) Digital cell quantification identifies global immune cell dynamics during influenza infection. Mol Syst Biol 10:720. 10.1002/msb.134947
    • (2014) Mol Syst Biol , vol.10 , pp. 720
    • Altboum, Z.1    Steuerman, Y.2    David, E.3
  • 45
    • 84950246390 scopus 로고    scopus 로고
    • CoD: inferring immune-cell quantities related to disease states
    • Frishberg A, Steuerman Y, Gat-Viks I (2015) CoD: inferring immune-cell quantities related to disease states. Bioinformatics 31:3961–3969. 10.1093/bioinformatics/btv498
    • (2015) Bioinformatics , vol.31 , pp. 3961-3969
    • Frishberg, A.1    Steuerman, Y.2    Gat-Viks, I.3
  • 46
    • 85009507861 scopus 로고    scopus 로고
    • Inference of immune cell composition on the expression profiles of mouse tissue
    • Chen Z, Huang A, Sun J et al (2017) Inference of immune cell composition on the expression profiles of mouse tissue. Sci Rep 7:40508. 10.1038/srep40508
    • (2017) Sci Rep , vol.7 , pp. 40508
    • Chen, Z.1    Huang, A.2    Sun, J.3
  • 47
    • 85016637605 scopus 로고    scopus 로고
    • ImmQuant: a user-friendly tool for inferring immune cell-type composition from gene-expression data
    • Frishberg A, Brodt A, Steuerman Y, Gat-Viks I (2016) ImmQuant: a user-friendly tool for inferring immune cell-type composition from gene-expression data. Bioinformatics 32:3842–3843. 10.1093/bioinformatics/btw535
    • (2016) Bioinformatics , vol.32 , pp. 3842-3843
    • Frishberg, A.1    Brodt, A.2    Steuerman, Y.3    Gat-Viks, I.4
  • 48
    • 85015820103 scopus 로고    scopus 로고
    • Systematic pan-cancer analysis reveals immune cell interactions in the tumor microenvironment
    • Varn FS, Wang Y, Mullins DW et al (2017) Systematic pan-cancer analysis reveals immune cell interactions in the tumor microenvironment. Cancer Res 77:1271–1282. 10.1158/0008-5472.CAN-16-2490
    • (2017) Cancer Res , vol.77 , pp. 1271-1282
    • Varn, F.S.1    Wang, Y.2    Mullins, D.W.3
  • 49
    • 0035224389 scopus 로고    scopus 로고
    • Separation of samples into their constituents using gene expression data
    • PID: 11473019
    • Venet D, Pecasse F, Maenhaut C, Bersini H (2001) Separation of samples into their constituents using gene expression data. Bioinformatics 17(Suppl 1):S279–S287
    • (2001) Bioinformatics , vol.17 , pp. S279-S287
    • Venet, D.1    Pecasse, F.2    Maenhaut, C.3    Bersini, H.4
  • 50
    • 25444507414 scopus 로고    scopus 로고
    • In silico microdissection of microarray data from heterogeneous cell populations
    • Lähdesmäki H, Shmulevich L, Dunmire V et al (2005) In silico microdissection of microarray data from heterogeneous cell populations. BMC Bioinform 6:54. 10.1186/1471-2105-6-54
    • (2005) BMC Bioinform , vol.6 , pp. 54
    • Lähdesmäki, H.1    Shmulevich, L.2    Dunmire, V.3
  • 51
    • 84860370062 scopus 로고    scopus 로고
    • Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study
    • Gaujoux R, Seoighe C (2012) Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study. Infect Genet Evol 12:913–921. 10.1016/j.meegid.2011.08.014
    • (2012) Infect Genet Evol , vol.12 , pp. 913-921
    • Gaujoux, R.1    Seoighe, C.2
  • 52
    • 84875282688 scopus 로고    scopus 로고
    • Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction
    • Quon G, Haider S, Deshwar AG et al (2013) Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction. Genome Med 5:29. 10.1186/gm433
    • (2013) Genome Med , vol.5 , pp. 29
    • Quon, G.1    Haider, S.2    Deshwar, A.G.3
  • 53
    • 84929336616 scopus 로고    scopus 로고
    • ISOpureR: an R implementation of a computational purification algorithm of mixed tumour profiles
    • Anghel CV, Quon G, Haider S et al (2015) ISOpureR: an R implementation of a computational purification algorithm of mixed tumour profiles. BMC Bioinform 16:156. 10.1186/s12859-015-0597-x
    • (2015) BMC Bioinform , vol.16 , pp. 156
    • Anghel, C.V.1    Quon, G.2    Haider, S.3
  • 54
    • 84880530294 scopus 로고    scopus 로고
    • DeMix: deconvolution for mixed cancer transcriptomes using raw measured data
    • Ahn J, Yuan Y, Parmigiani G et al (2013) DeMix: deconvolution for mixed cancer transcriptomes using raw measured data. Bioinformatics 29:1865–1871. 10.1093/bioinformatics/btt301
    • (2013) Bioinformatics , vol.29 , pp. 1865-1871
    • Ahn, J.1    Yuan, Y.2    Parmigiani, G.3
  • 55
    • 85018289156 scopus 로고    scopus 로고
    • RNA-seq mixology: designing realistic control experiments to compare protocols and analysis methods
    • Holik AZ, Law CW, Liu R et al (2017) RNA-seq mixology: designing realistic control experiments to compare protocols and analysis methods. Nucleic Acids Res 45:e30. 10.1093/nar/gkw1063
    • (2017) Nucleic Acids Res , vol.45
    • Holik, A.Z.1    Law, C.W.2    Liu, R.3
  • 56
    • 85028979336 scopus 로고    scopus 로고
    • Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies
    • Petitprez F, Vano YA, Becht E et al (2017) Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies. Cancer Immunol Immunother. 10.1007/s00262-017-2058-z
    • (2017) Cancer Immunol Immunother
    • Petitprez, F.1    Vano, Y.A.2    Becht, E.3
  • 57
    • 85021732319 scopus 로고    scopus 로고
    • Data normalization considerations for digital tumor dissection
    • Newman AM, Gentles AJ, Liu CL et al (2017) Data normalization considerations for digital tumor dissection. Genome Biol 18:128. 10.1186/s13059-017-1257-4
    • (2017) Genome Biol , vol.18 , pp. 128
    • Newman, A.M.1    Gentles, A.J.2    Liu, C.L.3
  • 58
    • 85014894756 scopus 로고    scopus 로고
    • A critical survey of deconvolution methods for separating cell-types in complex tissues
    • Mohammadi S, Zuckerman NS, Goldsmith AJ, Grama A (2017) A critical survey of deconvolution methods for separating cell-types in complex tissues. arXiv. 10.1109/JPROC.2016.2607121
    • (2017) arXiv
    • Mohammadi, S.1    Zuckerman, N.S.2    Goldsmith, A.J.3    Grama, A.4
  • 60
    • 84938698208 scopus 로고    scopus 로고
    • Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis
    • Finotello F, Di Camillo B (2015) Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Br Funct Genomics 14:130–142. 10.1093/bfgp/elu035
    • (2015) Br Funct Genomics , vol.14 , pp. 130-142
    • Finotello, F.1    Di Camillo, B.2
  • 61
    • 85007543412 scopus 로고    scopus 로고
    • Patterns of immune infiltration in breast cancer and their clinical implications: a gene-expression-based retrospective study
    • Ali HR, Chlon L, Pharoah PDP et al (2016) Patterns of immune infiltration in breast cancer and their clinical implications: a gene-expression-based retrospective study. PLoS Med 13:e1002194. 10.1371/journal.pmed.1002194
    • (2016) PLoS Med , vol.13
    • Ali, H.R.1    Chlon, L.2    Pharoah, P.D.P.3
  • 62
    • 84896735766 scopus 로고    scopus 로고
    • voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29. 10.1186/gb-2014-15-2-r29
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 63
    • 85016090201 scopus 로고    scopus 로고
    • Comprehensive evaluation of RNA-seq quantification methods for linearity
    • Jin H, Wan Y-W, Liu Z (2017) Comprehensive evaluation of RNA-seq quantification methods for linearity. BMC Bioinform 18:117. 10.1186/s12859-017-1526-y
    • (2017) BMC Bioinform , vol.18 , pp. 117
    • Jin, H.1    Wan, Y.-W.2    Liu, Z.3
  • 64
    • 84863012015 scopus 로고    scopus 로고
    • Gene expression deconvolution in linear space
    • PID: 22205510
    • Zhong Y, Liu Z (2011) Gene expression deconvolution in linear space. Nat Methods 9:8–9. https://doi.org/10.1038/nmeth.1830
    • (2011) Nat Methods , vol.9 , pp. 8-9
    • Zhong, Y.1    Liu, Z.2
  • 65
    • 84895562012 scopus 로고    scopus 로고
    • From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing
    • Marinov GK, Williams BA, McCue K et al (2014) From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res 24:496–510. 10.1101/gr.161034.113
    • (2014) Genome Res , vol.24 , pp. 496-510
    • Marinov, G.K.1    Williams, B.A.2    McCue, K.3
  • 66
    • 85048532929 scopus 로고    scopus 로고
    • Estimation of immune cell content in tumour tissue using single-cell RNA-seq data
    • Schelker M, Feau S, Du J et al (2017) Estimation of immune cell content in tumour tissue using single-cell RNA-seq data. Nat Commun 8:2032. 10.1038/s41467-017-02289-3
    • (2017) Nat Commun , vol.8 , pp. 2032
    • Schelker, M.1    Feau, S.2    Du, J.3
  • 67
    • 85016985952 scopus 로고    scopus 로고
    • Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis
    • Tsujikawa T, Kumar S, Borkar RN et al (2017) Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep 19:203–217. 10.1016/j.celrep.2017.03.037
    • (2017) Cell Rep , vol.19 , pp. 203-217
    • Tsujikawa, T.1    Kumar, S.2    Borkar, R.N.3
  • 68
    • 84976869597 scopus 로고    scopus 로고
    • Computational genomics tools for dissecting tumour-immune cell interactions
    • Hackl H, Charoentong P, Finotello F, Trajanoski Z (2016) Computational genomics tools for dissecting tumour-immune cell interactions. Nat Rev Genet 17:441–458. 10.1038/nrg.2016.67
    • (2016) Nat Rev Genet , vol.17 , pp. 441-458
    • Hackl, H.1    Charoentong, P.2    Finotello, F.3    Trajanoski, Z.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.