메뉴 건너뛰기




Volumn 105, Issue 2, 2017, Pages 340-366

A Critical Survey of Deconvolution Methods for Separating Cell Types in Complex Tissues

Author keywords

Deconvolution; feature selection; gene expression; linear regression; loss function; range filtering; regularization

Indexed keywords

AUDIO ACOUSTICS; CELL CULTURE; CELL PROLIFERATION; FEATURE EXTRACTION; FILTRATION; FUNCTION EVALUATION; GENE EXPRESSION; HISTOLOGY; HYPERSPECTRAL IMAGING; LINEAR REGRESSION; MIXING; MIXTURES; SPECTROSCOPY; SURVEYS; TISSUE;

EID: 85014894756     PISSN: 00189219     EISSN: 15582256     Source Type: Journal    
DOI: 10.1109/JPROC.2016.2607121     Document Type: Article
Times cited : (42)

References (56)
  • 2
    • 84255161615 scopus 로고    scopus 로고
    • Multi-channel l1 regularized convex speech enhancement model and fast computation by the split bregman method
    • M. Yu, W. Ma, J. Xin, and S. Osher, "Multi-channel l1 regularized convex speech enhancement model and fast computation by the split bregman method, " IEEE Trans. Audio, Speech, Language Process., vol. 20, no. 2, pp. 661-675, 2012.
    • (2012) IEEE Trans. Audio, Speech, Language Process. , vol.20 , Issue.2 , pp. 661-675
    • Yu, M.1    Ma, W.2    Xin, J.3    Osher, S.4
  • 3
    • 85032775586 scopus 로고    scopus 로고
    • From blind to guided audio source separation: How models and side information can improve the separation of sound
    • May
    • E. Vincent, N. Bertin, R. Gribonval, and F. Bimbot, "From blind to guided audio source separation: How models and side information can improve the separation of sound, " IEEE Signal Process. Mag., vol. 31, no. 3, pp. 107-115, May 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.3 , pp. 107-115
    • Vincent, E.1    Bertin, N.2    Gribonval, R.3    Bimbot, F.4
  • 5
    • 84903386859 scopus 로고    scopus 로고
    • Successive nonnegative projection algorithm for robust nonnegative blind source separation
    • Jan
    • N. Gillis, "Successive nonnegative projection algorithm for robust nonnegative blind source separation, " SIAM J. Imaging Sci., vol. 7, no. 2, pp. 1420-1450, Jan. 2014.
    • (2014) SIAM J. Imaging Sci. , vol.7 , Issue.2 , pp. 1420-1450
    • Gillis, N.1
  • 6
    • 85032751209 scopus 로고    scopus 로고
    • A signal processing perspective on hyperspectral unmixing: Insights from remote sensing
    • Jan
    • W.-K. Ma et al., "A signal processing perspective on hyperspectral unmixing: Insights from remote sensing, " IEEE Signal Process. Mag., vol. 31, no. 1, pp. 67-81, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 67-81
    • Ma, W.-K.1
  • 7
    • 0002375263 scopus 로고    scopus 로고
    • Blind source separation and analysis of multispectral astronomical images
    • Nov
    • D. Nuzillard and A. Bijaoui, "Blind source separation and analysis of multispectral astronomical images, " Astronomy, Astrophysics Suppl. Series, vol. 147, pp. 129-138, Nov. 2000.
    • (2000) Astronomy, Astrophysics Suppl. Series , vol.147 , pp. 129-138
    • Nuzillard, D.1    Bijaoui, A.2
  • 8
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • Jul
    • V. P. Pauca, J. Piper, and R. J. Plemmons, "Nonnegative matrix factorization for spectral data analysis, " Linear Algebra Appl., vol. 416, no. 1, pp. 29-47, Jul. 2006.
    • (2006) Linear Algebra Appl. , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 9
    • 84869832305 scopus 로고    scopus 로고
    • Hyperspectral data deconvolution for galaxy kinematics with mcmc
    • E. Villeneuve and H. Carfantan, "Hyperspectral data deconvolution for galaxy kinematics with mcmc, " in Proc. 20th Eur. Signal Process. Conf., 2012, pp. 2477-2481.
    • (2012) Proc. 20th Eur. Signal Process. Conf , pp. 2477-2481
    • Villeneuve, E.1    Carfantan, H.2
  • 10
    • 4243406438 scopus 로고    scopus 로고
    • Blind source separation of multichannel neuromagnetic responses
    • A. C. Tang, B. A. Pearlmutter, M. Zibulevsky, and S. A. Carter, "Blind source separation of multichannel neuromagnetic responses, " Neurocomputing, vol. 3233, pp. 1115-1120, 2000.
    • (2000) Neurocomputing , vol.3233 , pp. 1115-1120
    • Tang, A.C.1    Pearlmutter, B.A.2    Zibulevsky, M.3    Carter, S.A.4
  • 11
    • 33845898221 scopus 로고    scopus 로고
    • On semi-blind source separation using spatial constraints with applications in EEG analysis
    • C. Hesse and C. James, "On semi-blind source separation using spatial constraints with applications in eeg analysis, " IEEE Trans. Biomed. Eng., vol. 53, no. 12, pp. 2525-2534, 2006.
    • (2006) IEEE Trans. Biomed. Eng. , vol.53 , Issue.12 , pp. 2525-2534
    • Hesse, C.1    James, C.2
  • 12
    • 34447529087 scopus 로고    scopus 로고
    • Convolutive blind source separation algorithms applied to the electrocardiogram of atrial fibrillation: Study of performance
    • C. Vaya, J. J. Rieta, C. Sanchez, and D. Moratal, "Convolutive blind source separation algorithms applied to the electrocardiogram of atrial fibrillation: Study of performance, " IEEE Trans. Biomed. Eng., vol. 54, no. 8, pp. 1530-1533, 2007.
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , Issue.8 , pp. 1530-1533
    • Vaya, C.1    Rieta, J.J.2    Sanchez, C.3    Moratal, D.4
  • 13
    • 84901271615 scopus 로고    scopus 로고
    • Source separation and higher-order causal analysis of MEG and EEG
    • K. Zhang and A. Hyvärinen, "Source separation and higher-order causal analysis of MEG and EEG, " Comput. Res. Repository, vol. abs/1203. 3533, 2012.
    • (2012) Comput. Res. Repository , vol.ABS1203 , pp. 3533
    • Zhang, K.1    Hyvärinen, A.2
  • 15
    • 84928927858 scopus 로고    scopus 로고
    • Robust enumeration of cell subsets from tissue expression profiles
    • A. M. Newman et al., "Robust enumeration of cell subsets from tissue expression profiles, " Nature Methods, vol. 12, no. 5, pp. 453-457, 2015.
    • (2015) Nature Methods , vol.12 , Issue.5 , pp. 453-457
    • Newman, A.M.1
  • 16
    • 84898018919 scopus 로고    scopus 로고
    • Computational deconvolution: Extracting cell type-specific information from heterogeneous samples
    • Oct
    • S. S. Shen-Orr and R. Gaujoux, "Computational deconvolution: Extracting cell type-specific information from heterogeneous samples, " Current Opinion in Immunology, vol. 25, no. 5, pp. 571-578, Oct. 2013.
    • (2013) Current Opinion in Immunology , vol.25 , Issue.5 , pp. 571-578
    • Shen-Orr, S.S.1    Gaujoux, R.2
  • 17
    • 84895057098 scopus 로고    scopus 로고
    • Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework
    • J. Kim, Y. He, and H. Park, "Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework, " J. Global Optimization, vol. 58, no. 2, pp. 285-319, 2013.
    • (2013) J. Global Optimization , vol.58 , Issue.2 , pp. 285-319
    • Kim, J.1    He, Y.2    Park, H.3
  • 20
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A. J. Smola and B. Schölkopf, "A tutorial on support vector regression, " Statist. Comput., vol. 14, no. 3, pp. 199-222, 2004.
    • (2004) Statist. Comput. , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 21
    • 67749112023 scopus 로고    scopus 로고
    • Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus
    • A. R. Abbas, K. Wolslegel, D. Seshasayee, Z. Modrusan, and H. F. Clark, "Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus, " PloS One, vol. 4, no. 7, p. e6098, 2009.
    • (2009) PloS One , vol.4 , Issue.7 , pp. e6098
    • Abbas, A.R.1    Wolslegel, K.2    Seshasayee, D.3    Modrusan, Z.4    Clark, H.F.5
  • 22
    • 84872023313 scopus 로고    scopus 로고
    • PERT: A method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions
    • W. Qiao, G. Quon, E. Csaszar, M. Yu, Q. Morris, and P. W. Zandstra, "PERT: A method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions, " PLoS Comput. Biology, vol. 8, no. 12, p. e1002838, 2012.
    • (2012) PLoS Comput. Biology , vol.8 , Issue.12 , pp. e1002838
    • Qiao, W.1    Quon, G.2    Csaszar, E.3    Yu, M.4    Morris, Q.5    Zandstra, P.W.6
  • 23
    • 81155135154 scopus 로고    scopus 로고
    • Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples
    • T. Gong et al., "Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples, " PloS One, vol. 6, no. 11, p. e27156, 2011.
    • (2011) PloS One , vol.6 , Issue.11 , pp. e27156
    • Gong, T.1
  • 24
    • 84906930512 scopus 로고    scopus 로고
    • Digital cell quantification identifies global immune cell dynamics during influenza infection
    • Mar
    • Z. Altboum et al., "Digital cell quantification identifies global immune cell dynamics during influenza infection, " Molecular Syst. Biology, vol. 10, no. 2, pp. 720-720, Mar. 2014.
    • (2014) Molecular Syst. Biology , vol.10 , Issue.2 , pp. 720
    • Altboum, Z.1
  • 25
    • 77951634577 scopus 로고    scopus 로고
    • Cell type-specific gene expression differences in complex tissues
    • S. S. Shen-Orr et al., "Cell type-specific gene expression differences in complex tissues, " Nature Methods, vol. 7, no. 4, pp. 287-289, 2010.
    • (2010) Nature Methods , vol.7 , Issue.4 , pp. 287-289
    • Shen-Orr, S.S.1
  • 26
    • 0035224389 scopus 로고    scopus 로고
    • Separation of samples into their constituents using gene expression data
    • D. Venet, F. Pecasse, C. Maenhaut, and H. Bersini, "Separation of samples into their constituents using gene expression data, " Bioinformatics, vol. 17, no. Suppl 1, pp. S279-S287, 2001.
    • (2001) Bioinformatics , vol.17 , pp. S279-S287
    • Venet, D.1    Pecasse, F.2    Maenhaut, C.3    Bersini, H.4
  • 27
    • 77249157887 scopus 로고    scopus 로고
    • Biomarker discovery in heterogeneous tissue samples-taking the in-silico deconfounding approach
    • D. Repsilber et al., "Biomarker discovery in heterogeneous tissue samples-taking the in-silico deconfounding approach, " BMC Bioinformatics, vol. 11, p. 27, 2010.
    • (2010) BMC Bioinformatics , vol.11 , pp. 27
    • Repsilber, D.1
  • 28
    • 84883432733 scopus 로고    scopus 로고
    • A self-directed method for cell-type identification and separation of gene expression microarrays
    • N. S. Zuckerman, Y. Noam, A. J. Goldsmith, and P. P. Lee, "A self-directed method for cell-type identification and separation of gene expression microarrays, " PLoS Comput. Biology, vol. 9, no. 8, p. e1003189, 2013.
    • (2013) PLoS Comput. Biology , vol.9 , Issue.8 , pp. e1003189
    • Zuckerman, N.S.1    Noam, Y.2    Goldsmith, A.J.3    Lee, P.P.4
  • 30
    • 84874608326 scopus 로고    scopus 로고
    • Digital sorting of complex tissues for cell type-specific gene expression profiles
    • Y. Zhong, Y.-W. Wan, K. Pang, L. M. L. Chow, and Z. Liu, "Digital sorting of complex tissues for cell type-specific gene expression profiles, " BMC Bioinformatics, vol. 14, p. 89, 2013.
    • (2013) BMC Bioinformatics , vol.14 , pp. 89
    • Zhong, Y.1    Wan, Y.-W.2    Pang, K.3    Chow, L.M.L.4    Liu, Z.5
  • 31
    • 80255135608 scopus 로고    scopus 로고
    • Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain
    • A. Kuhn, D. Thu, H. J. Waldvogel, R. L. M. Faull, and R. Luthi-Carter, "Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain, " Nature Methods, vol. 8, no. 11, pp. 945-947, 2011.
    • (2011) Nature Methods , vol.8 , Issue.11 , pp. 945-947
    • Kuhn, A.1    Thu, D.2    Waldvogel, H.J.3    Faull, R.L.M.4    Luthi-Carter, R.5
  • 32
    • 84954563283 scopus 로고    scopus 로고
    • Mathematical modelling of transcriptional heterogeneity identifies novel markers and subpopulations in complex tissues
    • N. Wang et al., "Mathematical modelling of transcriptional heterogeneity identifies novel markers and subpopulations in complex tissues, " Scientific Rep., vol. 6, 2016, Art. no. 18 909.
    • (2016) Scientific Rep. , vol.6
    • Wang, N.1
  • 33
    • 80052768992 scopus 로고    scopus 로고
    • CAMCM: A signal deconvolution tool for in vivo dynamic contrast-enhanced imaging of complex tissues
    • L. Chen et al., "CAMCM: A signal deconvolution tool for in vivo dynamic contrast-enhanced imaging of complex tissues, " Bioinformatics, vol. 27, no. 18, pp. 2607-2609, 2011.
    • (2011) Bioinformatics , vol.27 , Issue.18 , pp. 2607-2609
    • Chen, L.1
  • 34
    • 54749083549 scopus 로고    scopus 로고
    • A convex analysis framework for blind separation of non-negative sources
    • T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang, "A convex analysis framework for blind separation of non-negative sources, " IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5120-5134, 2008.
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.10 , pp. 5120-5134
    • Chan, T.-H.1    Ma, W.-K.2    Chi, C.-Y.3    Wang, Y.4
  • 35
    • 76949086352 scopus 로고    scopus 로고
    • Applying unmixing to gene expression data for tumor phylogeny inference
    • R. Schwartz and S. E. Shackney, "Applying unmixing to gene expression data for tumor phylogeny inference, " BMC Bioinformatics, vol. 11, p. 42, 2010.
    • (2010) BMC Bioinformatics , vol.11 , pp. 42
    • Schwartz, R.1    Shackney, S.E.2
  • 37
    • 84884412556 scopus 로고    scopus 로고
    • Defining cell-type specificity at the transcriptional level in human disease
    • W. Ju et al., "Defining cell-type specificity at the transcriptional level in human disease, " Genome Res., vol. 23, no. 11, pp. 1862-1873, 2013.
    • (2013) Genome Res. , vol.23 , Issue.11 , pp. 1862-1873
    • Ju, W.1
  • 38
    • 84875282688 scopus 로고    scopus 로고
    • Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction
    • G. Quon, S. Haider, A. G. Deshwar, A. Cui, P. C. Boutros, and Q. Morris, "Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction, " Genome Medicine, vol. 5, no. 3, p. 29, 2013.
    • (2013) Genome Medicine , vol.5 , Issue.3 , pp. 29
    • Quon, G.1    Haider, S.2    Deshwar, A.G.3    Cui, A.4    Boutros, P.C.5    Morris, Q.6
  • 39
    • 84897706458 scopus 로고    scopus 로고
    • MMAD: Microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples
    • D. A. Liebner, K. Huang, and J. D. Parvin, "MMAD: Microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples, " Bioinformatics, vol. 30, no. 5, pp. 682-689, 2014.
    • (2014) Bioinformatics , vol.30 , Issue.5 , pp. 682-689
    • Liebner, D.A.1    Huang, K.2    Parvin, J.D.3
  • 40
    • 84882727548 scopus 로고    scopus 로고
    • CellMix: A comprehensive toolbox for gene expression deconvolution
    • R. Gaujoux and C. Seoighe, "CellMix: A comprehensive toolbox for gene expression deconvolution, " Bioinformatics, vol. 29, no. 17, pp. 2211-2212, 2013.
    • (2013) Bioinformatics , vol.29 , Issue.17 , pp. 2211-2212
    • Gaujoux, R.1    Seoighe, C.2
  • 41
    • 84857658829 scopus 로고    scopus 로고
    • Transcriptional code and disease map for adult retinal cell types
    • S. Siegert et al., "Transcriptional code and disease map for adult retinal cell types, " Nature Neuroscience, vol. 15, no. 3, pp. 487-495, 2012.
    • (2012) Nature Neuroscience , vol.15 , Issue.3 , pp. 487-495
    • Siegert, S.1
  • 42
    • 36849072045 scopus 로고    scopus 로고
    • Graph implementations for nonsmooth convex programs
    • V. Blondel, S. Boyd, and H. Kimura, Eds., London, U. K.: Springer London
    • M. Grant and S. Boyd, "Graph implementations for nonsmooth convex programs, " in Recent Advances in Learning and Control (Lecture Notes in Control and Information Sciences), V. Blondel, S. Boyd, and H. Kimura, Eds., London, U. K.: Springer London, 2008, pp. 95-110. [Online]. Available: http://stanford. edu/ ~boyd/papers/pdf/graph-dcp. pdf
    • (2008) Recent Advances in Learning and Control (Lecture Notes in Control and Information Sciences) , pp. 95-110
    • Grant, M.1    Boyd, S.2
  • 45
    • 84884416048 scopus 로고    scopus 로고
    • Human Housekeeping Genes, Revisited
    • E. Eisenberg and E. Y. Levanon, "Human Housekeeping Genes, Revisited, " Trends Genet., vol. 10, pp. 569-574, 2013.
    • (2013) Trends Genet. , vol.10 , pp. 569-574
    • Eisenberg, E.1    Levanon, E.Y.2
  • 46
    • 84862250978 scopus 로고    scopus 로고
    • Using control genes to correct for unwanted variation in microarray data
    • J. A. Gagnon-Bartsch and T. P. Speed, "Using control genes to correct for unwanted variation in microarray data, " Biostatistics, vol. 13, no. 3, pp. 539-552, 2012.
    • (2012) Biostatistics , vol.13 , Issue.3 , pp. 539-552
    • Gagnon-Bartsch, J.A.1    Speed, T.P.2
  • 47
    • 84880530294 scopus 로고    scopus 로고
    • DeMix: Deconvolution for mixed cancer transcriptomes using raw measured data
    • J. Ahn et al., "DeMix: Deconvolution for mixed cancer transcriptomes using raw measured data, " Bioinformatics, vol. 29, no. 15, pp. 1865-1871, 2013.
    • (2013) Bioinformatics , vol.29 , Issue.15 , pp. 1865-1871
    • Ahn, J.1
  • 48
    • 84897386188 scopus 로고    scopus 로고
    • Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing
    • Apr
    • H. Kawaji et al., "Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing, " Genome Res., vol. 24, no. 4, pp. 708-717, Apr. 2014.
    • (2014) Genome Res. , vol.24 , Issue.4 , pp. 708-717
    • Kawaji, H.1
  • 49
    • 0037195138 scopus 로고    scopus 로고
    • Quantitative noise analysis for gene expression microarray experiments
    • Y. Tu, G. Stolovitzky, and U. Klein, "Quantitative noise analysis for gene expression microarray experiments, " Proc. Nat. Academy Sci. USA, vol. 99, no. 22, pp. 14 031-14 036, 2002.
    • (2002) Proc. Nat. Academy Sci. USA , vol.99 , Issue.22 , pp. 14031-14036
    • Tu, Y.1    Stolovitzky, G.2    Klein, U.3
  • 50
    • 77958524801 scopus 로고    scopus 로고
    • Should we abandon the t-test in the analysis of gene expression microarray data: A comparison of variance modeling strategies
    • Jan
    • M. Jeanmougin, A. de Reynies, L. Marisa, C. Paccard, G. Nuel, and M. Guedj, "Should we abandon the t-test in the analysis of gene expression microarray data: A comparison of variance modeling strategies, " PloS One, vol. 5, no. 9, p. e12336, Jan. 2010.
    • (2010) PloS One , vol.5 , Issue.9 , pp. e12336
    • Jeanmougin, M.1    De Reynies, A.2    Marisa, L.3    Paccard, C.4    Nuel, G.5    Guedj, M.6
  • 51
    • 84899086512 scopus 로고    scopus 로고
    • The characteristic direction: A geometrical approach to identify differentially expressed genes
    • N. R. Clark et al., "The characteristic direction: A geometrical approach to identify differentially expressed genes, " BMC Bioinformatics, vol. 15, no. 1, p. 79, 2014.
    • (2014) BMC Bioinformatics , vol.15 , Issue.1 , pp. 79
    • Clark, N.R.1
  • 52
    • 70349856179 scopus 로고    scopus 로고
    • Testing the hypothesis of tissue selectivity: The intersection-union test and a Bayesian approach
    • Oct
    • K. Van Deun, H. Hoijtink, L. Thorrez, L. Van Lommel, F. Schuit, and I. Van Mechelen, "Testing the hypothesis of tissue selectivity: The intersection-union test and a Bayesian approach, " Bioinformatics, vol. 25, no. 19, pp. 2588-2594, Oct. 2009.
    • (2009) Bioinformatics , vol.25 , Issue.19 , pp. 2588-2594
    • Van Deun, K.1    Hoijtink, H.2    Thorrez, L.3    Van Lommel, L.4    Schuit, F.5    Van Mechelen, I.6
  • 53
    • 80054113139 scopus 로고    scopus 로고
    • SpeCond: A method to detect condition-specific gene expression
    • Jan
    • F. M. G. Cavalli, R. Bourgon, W. Huber, J. M. Vaquerizas, and N. M. Luscombe, "SpeCond: A method to detect condition-specific gene expression, " Genome Biology, vol. 12, no. 10, p. R101, Jan. 2011.
    • (2011) Genome Biology , vol.12 , Issue.10 , pp. R101
    • Cavalli, F.M.G.1    Bourgon, R.2    Huber, W.3    Vaquerizas, J.M.4    Luscombe, N.M.5
  • 54
    • 33745951206 scopus 로고    scopus 로고
    • ROKU: A novel method for identification of tissue-specific genes
    • Jan
    • K. Kadota, J. Ye, Y. Nakai, T. Terada, and K. Shimizu, "ROKU: A novel method for identification of tissue-specific genes, " BMC Bioinformatics, vol. 7, p. 294, Jan. 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 294
    • Kadota, K.1    Ye, J.2    Nakai, Y.3    Terada, T.4    Shimizu, K.5
  • 55
    • 82255183220 scopus 로고    scopus 로고
    • Measuring cell identity in noisy biological systems
    • Nov
    • K. D. Birnbaum and E. Kussell, "Measuring cell identity in noisy biological systems, " Nucleic Acids Res., vol. 39, no. 21, pp. 9093-9107, Nov. 2011.
    • (2011) Nucleic Acids Res. , vol.39 , Issue.21 , pp. 9093-9107
    • Birnbaum, K.D.1    Kussell, E.2
  • 56
    • 85014961283 scopus 로고    scopus 로고
    • A Novel Method to Enhance the Sensitivity of Marker Detection Using a Refined Hierarchical Prior of Tissue Similarities
    • Jun.
    • S. Mohammadi and A. Grama, "A Novel Method to Enhance the Sensitivity of Marker Detection Using a Refined Hierarchical Prior of Tissue Similarities, " bioRxiv, Jun. 2015, doi: http://dx. doi. org/ 10. 1101/020685
    • (2015) BioRxiv
    • Mohammadi, S.1    Grama, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.