-
1
-
-
85019211333
-
Fully-convolutional siamese networks for object tracking
-
L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr. Fully-convolutional siamese networks for object tracking. In ECCV VOT Workshop, 2016.
-
(2016)
ECCV VOT Workshop
-
-
Bertinetto, L.1
Valmadre, J.2
Henriques, J.F.3
Vedaldi, A.4
Torr, P.H.S.5
-
3
-
-
85018938177
-
R-FCN: Object detection via region-based fully convolutional networks
-
J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection via region-based fully convolutional networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Dai, J.1
Li, Y.2
He, K.3
Sun, J.4
-
4
-
-
85036616060
-
Beyond correlation filters: Learning continuous convolution operators for visual tracking
-
M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg. Beyond correlation filters: Learning continuous convolution operators for visual tracking. In Proc. ECCV, 2016.
-
(2016)
Proc. ECCV
-
-
Danelljan, M.1
Robinson, A.2
Khan, F.S.3
Felsberg, M.4
-
5
-
-
84973904859
-
Flownet: Learning optical flow with convolutional networks
-
A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers, and T. Brox. Flownet: Learning optical flow with convolutional networks. In Proc. ICCV, 2015.
-
(2015)
Proc. ICCV
-
-
Dosovitskiy, A.1
Fischer, P.2
Ilg, E.3
Hausser, P.4
Hazirbas, C.5
Golkov, V.6
Smagt Der Van, P.7
Cremers, D.8
Brox, T.9
-
6
-
-
85019227137
-
Spatiotemporal residual networks for video action recognition
-
C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal residual networks for video action recognition. In NIPS, 2016.
-
(2016)
NIPS
-
-
Feichtenhofer, C.1
Pinz, A.2
Wildes, R.3
-
7
-
-
84986266741
-
Convolutional two-stream network fusion for video action recognition
-
C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional two-stream network fusion for video action recognition. In Proc. CVPR, 2016.
-
(2016)
Proc. CVPR
-
-
Feichtenhofer, C.1
Pinz, A.2
Zisserman, A.3
-
8
-
-
84973864191
-
Object detection via a multiregion and semantic segmentation-aware cnn model
-
S. Gidaris and N. Komodakis. Object detection via a multiregion and semantic segmentation-aware cnn model. In Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Gidaris, S.1
Komodakis, N.2
-
10
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. CVPR, 2014.
-
(2014)
Proc. CVPR
-
-
Girshick, R.B.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
12
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. CVPR, 2016.
-
(2016)
Proc. CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
13
-
-
84996890680
-
Learning to track at 100 FPS with deep regression networks
-
D. Held, S. Thrun, and S. Savarese. Learning to track at 100 FPS with deep regression networks. In Proc. ECCV, 2016.
-
(2016)
Proc. ECCV
-
-
Held, D.1
Thrun, S.2
Savarese, S.3
-
14
-
-
84922907906
-
Highspeed tracking with kernelized correlation filters
-
J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Highspeed tracking with kernelized correlation filters. IEEE PAMI, 37 (3):583-596, 2015.
-
(2015)
IEEE PAMI
, vol.37
, Issue.3
, pp. 583-596
-
-
Henriques, J.F.1
Caseiro, R.2
Martins, P.3
Batista, J.4
-
15
-
-
84943738421
-
Efficient image and video co-localization with frank-wolfe algorithm
-
A. Joulin, K. Tang, and L. Fei-Fei. Efficient image and video co-localization with frank-wolfe algorithm. In Proc. ECCV, 2014.
-
(2014)
Proc. ECCV
-
-
Joulin, A.1
Tang, K.2
Fei-Fei, L.3
-
16
-
-
85041925966
-
Object detection in videos with tubelet proposal networks
-
K. Kang, H. Li, T. Xiao, W. Ouyang, J. Yan, X. Liu, and X. Wang. Object detection in videos with tubelet proposal networks. In Proc. CVPR, 2017.
-
(2017)
Proc. CVPR
-
-
Kang, K.1
Li, H.2
Xiao, T.3
Ouyang, W.4
Yan, J.5
Liu, X.6
Wang, X.7
-
17
-
-
84986301354
-
-
ArXiv Preprint
-
K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang, R. Wang, X. Wang, andW. Ouyang. T-CNN: tubelets with convolutional neural networks for object detection from videos. arXiv preprint, 2016.
-
(2016)
T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos
-
-
Kang, K.1
Li, H.2
Yan, J.3
Zeng, X.4
Yang, B.5
Xiao, T.6
Zhang, C.7
Wang, Z.8
Wang, R.9
Wang, X.10
Ouyang, W.11
-
18
-
-
84986331475
-
Object detection from video tubelets with convolutional neural networks
-
K. Kang, W. Ouyang, H. Li, and X. Wang. Object detection from video tubelets with convolutional neural networks. In Proc. CVPR, 2016.
-
(2016)
Proc. CVPR
-
-
Kang, K.1
Ouyang, W.2
Li, H.3
Wang, X.4
-
19
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, pages 1106-1114, 2012.
-
(2012)
NIPS
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
20
-
-
84986284416
-
Unsupervised object discovery and tracking in video collections
-
S. Kwak, M. Cho, I. Laptev, J. Ponce, and C. Schmid. Unsupervised object discovery and tracking in video collections. In Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Kwak, S.1
Cho, M.2
Laptev, I.3
Ponce, J.4
Schmid, C.5
-
21
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1 (4):541-551, 1989.
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
22
-
-
84937834115
-
Microsoft coco: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In Proc. ECCV, 2014.
-
(2014)
Proc. ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
23
-
-
85011302702
-
Ssd: Single shot multibox detector
-
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector. In Proc. ECCV, 2016.
-
(2016)
Proc. ECCV
-
-
Liu, W.1
Anguelov, D.2
Erhan, D.3
Szegedy, C.4
Reed, S.5
Fu, C.-Y.6
Berg, A.C.7
-
24
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
26
-
-
84986296977
-
Learning multi-domain convolutional neural networks for visual tracking
-
H. Nam and B. Han. Learning multi-domain convolutional neural networks for visual tracking. In Proc. CVPR, 2016.
-
(2016)
Proc. CVPR
-
-
Nam, H.1
Han, B.2
-
27
-
-
85041902452
-
Multi-region two-stream R-CNN for action detection
-
X. Peng and C. Schmid. Multi-region two-stream R-CNN for action detection. In Proc. ECCV, 2016.
-
(2016)
Proc. ECCV
-
-
Peng, X.1
Schmid, C.2
-
28
-
-
84866674032
-
Learning object class detectors from weakly annotated video
-
A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning object class detectors from weakly annotated video. In Proc. CVPR, 2012.
-
(2012)
Proc. CVPR
-
-
Prest, A.1
Leistner, C.2
Civera, J.3
Schmid, C.4
Ferrari, V.5
-
29
-
-
85030260094
-
-
arXiv e-prints
-
E. Real, J. Shlens, S. Mazzocchi, X. Pan, and V. Vanhoucke. YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set for Object Detection in Video. ArXiv e-prints, 2017.
-
(2017)
YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set for Object Detection in Video
-
-
Real, E.1
Shlens, J.2
Mazzocchi, S.3
Pan, X.4
Vanhoucke, V.5
-
30
-
-
84986308404
-
You only look once: Unified, real-time object detection
-
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In Proc. CVPR, 2016.
-
(2016)
Proc. CVPR
-
-
Redmon, J.1
Divvala, S.2
Girshick, R.3
Farhadi, A.4
-
31
-
-
84955283951
-
Faster R-CNN: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE PAMI, 2016.
-
(2016)
IEEE PAMI
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
32
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 115 (3):211-252, 2015.
-
(2015)
IJCV
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
33
-
-
85041898314
-
Deep learning for detecting multiple space-time action tubes in videos
-
S. Saha, G. Singh, M. Sapienza, P. H. Torr, and F. Cuzzolin. Deep learning for detecting multiple space-time action tubes in videos. In Proc. BMVC., 2016.
-
(2016)
Proc. BMVC.
-
-
Saha, S.1
Singh, G.2
Sapienza, M.3
Torr, P.H.4
Cuzzolin, F.5
-
34
-
-
84986317469
-
Training regionbased object detectors with online hard example mining
-
A. Shrivastava, A. Gupta, and R. Girshick. Training regionbased object detectors with online hard example mining. In Proc. CVPR, 2016.
-
(2016)
Proc. CVPR
-
-
Shrivastava, A.1
Gupta, A.2
Girshick, R.3
-
35
-
-
84937862424
-
Two-stream convolutional networks for action recognition in videos
-
K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014.
-
(2014)
NIPS
-
-
Simonyan, K.1
Zisserman, A.2
-
36
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Proc. ICLR, 2015.
-
(2015)
Proc. ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
37
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
38
-
-
84973856013
-
Visual tracking with fully convolutional networks
-
L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking with fully convolutional networks. In Proc. ICCV, 2015.
-
(2015)
Proc. ICCV
-
-
Wang, L.1
Ouyang, W.2
Wang, X.3
Lu, H.4
-
39
-
-
85041892418
-
-
J. Yang, H. Shuai, Z. Yu, R. Fan, Q. Ma, Q. Liu, and J. Deng. ILSVRC2016 object detection from video: Team NUIST. http://image-net. org/challenges/talks/ 2016/Imagenet%202016%20VID. pptx, 2016.
-
(2016)
ILSVRC2016 Object Detection from Video: Team NUIST
-
-
Yang, J.1
Shuai, H.2
Yu, Z.3
Fan, R.4
Ma, Q.5
Liu, Q.6
Deng, J.7
-
40
-
-
85041896573
-
Deep feature flow for video recognition
-
X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei. Deep feature flow for video recognition. In Proc. CVPR, 2017.
-
(2017)
Proc. CVPR
-
-
Zhu, X.1
Xiong, Y.2
Dai, J.3
Yuan, L.4
Wei, Y.5
|