메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 3057-3065

Detect to Track and Track to Detect

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; OBJECT RECOGNITION;

EID: 85041910397     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.330     Document Type: Conference Paper
Times cited : (591)

References (40)
  • 3
    • 85018938177 scopus 로고    scopus 로고
    • R-FCN: Object detection via region-based fully convolutional networks
    • J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection via region-based fully convolutional networks. In NIPS, 2016.
    • (2016) NIPS
    • Dai, J.1    Li, Y.2    He, K.3    Sun, J.4
  • 4
    • 85036616060 scopus 로고    scopus 로고
    • Beyond correlation filters: Learning continuous convolution operators for visual tracking
    • M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg. Beyond correlation filters: Learning continuous convolution operators for visual tracking. In Proc. ECCV, 2016.
    • (2016) Proc. ECCV
    • Danelljan, M.1    Robinson, A.2    Khan, F.S.3    Felsberg, M.4
  • 6
    • 85019227137 scopus 로고    scopus 로고
    • Spatiotemporal residual networks for video action recognition
    • C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal residual networks for video action recognition. In NIPS, 2016.
    • (2016) NIPS
    • Feichtenhofer, C.1    Pinz, A.2    Wildes, R.3
  • 7
    • 84986266741 scopus 로고    scopus 로고
    • Convolutional two-stream network fusion for video action recognition
    • C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional two-stream network fusion for video action recognition. In Proc. CVPR, 2016.
    • (2016) Proc. CVPR
    • Feichtenhofer, C.1    Pinz, A.2    Zisserman, A.3
  • 8
    • 84973864191 scopus 로고    scopus 로고
    • Object detection via a multiregion and semantic segmentation-aware cnn model
    • S. Gidaris and N. Komodakis. Object detection via a multiregion and semantic segmentation-aware cnn model. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Gidaris, S.1    Komodakis, N.2
  • 10
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Girshick, R.B.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 12
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. CVPR, 2016.
    • (2016) Proc. CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 13
    • 84996890680 scopus 로고    scopus 로고
    • Learning to track at 100 FPS with deep regression networks
    • D. Held, S. Thrun, and S. Savarese. Learning to track at 100 FPS with deep regression networks. In Proc. ECCV, 2016.
    • (2016) Proc. ECCV
    • Held, D.1    Thrun, S.2    Savarese, S.3
  • 14
    • 84922907906 scopus 로고    scopus 로고
    • Highspeed tracking with kernelized correlation filters
    • J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Highspeed tracking with kernelized correlation filters. IEEE PAMI, 37 (3):583-596, 2015.
    • (2015) IEEE PAMI , vol.37 , Issue.3 , pp. 583-596
    • Henriques, J.F.1    Caseiro, R.2    Martins, P.3    Batista, J.4
  • 15
    • 84943738421 scopus 로고    scopus 로고
    • Efficient image and video co-localization with frank-wolfe algorithm
    • A. Joulin, K. Tang, and L. Fei-Fei. Efficient image and video co-localization with frank-wolfe algorithm. In Proc. ECCV, 2014.
    • (2014) Proc. ECCV
    • Joulin, A.1    Tang, K.2    Fei-Fei, L.3
  • 18
    • 84986331475 scopus 로고    scopus 로고
    • Object detection from video tubelets with convolutional neural networks
    • K. Kang, W. Ouyang, H. Li, and X. Wang. Object detection from video tubelets with convolutional neural networks. In Proc. CVPR, 2016.
    • (2016) Proc. CVPR
    • Kang, K.1    Ouyang, W.2    Li, H.3    Wang, X.4
  • 19
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, pages 1106-1114, 2012.
    • (2012) NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 20
    • 84986284416 scopus 로고    scopus 로고
    • Unsupervised object discovery and tracking in video collections
    • S. Kwak, M. Cho, I. Laptev, J. Ponce, and C. Schmid. Unsupervised object discovery and tracking in video collections. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Kwak, S.1    Cho, M.2    Laptev, I.3    Ponce, J.4    Schmid, C.5
  • 24
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 25
    • 84973869904 scopus 로고    scopus 로고
    • Hierarchical convolutional features for visual tracking
    • C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical convolutional features for visual tracking. In Proc. ICCV, 2015.
    • (2015) Proc. ICCV
    • Ma, C.1    Huang, J.-B.2    Yang, X.3    Yang, M.-H.4
  • 26
    • 84986296977 scopus 로고    scopus 로고
    • Learning multi-domain convolutional neural networks for visual tracking
    • H. Nam and B. Han. Learning multi-domain convolutional neural networks for visual tracking. In Proc. CVPR, 2016.
    • (2016) Proc. CVPR
    • Nam, H.1    Han, B.2
  • 27
    • 85041902452 scopus 로고    scopus 로고
    • Multi-region two-stream R-CNN for action detection
    • X. Peng and C. Schmid. Multi-region two-stream R-CNN for action detection. In Proc. ECCV, 2016.
    • (2016) Proc. ECCV
    • Peng, X.1    Schmid, C.2
  • 31
    • 84955283951 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE PAMI, 2016.
    • (2016) IEEE PAMI
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 33
    • 85041898314 scopus 로고    scopus 로고
    • Deep learning for detecting multiple space-time action tubes in videos
    • S. Saha, G. Singh, M. Sapienza, P. H. Torr, and F. Cuzzolin. Deep learning for detecting multiple space-time action tubes in videos. In Proc. BMVC., 2016.
    • (2016) Proc. BMVC.
    • Saha, S.1    Singh, G.2    Sapienza, M.3    Torr, P.H.4    Cuzzolin, F.5
  • 34
    • 84986317469 scopus 로고    scopus 로고
    • Training regionbased object detectors with online hard example mining
    • A. Shrivastava, A. Gupta, and R. Girshick. Training regionbased object detectors with online hard example mining. In Proc. CVPR, 2016.
    • (2016) Proc. CVPR
    • Shrivastava, A.1    Gupta, A.2    Girshick, R.3
  • 35
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014.
    • (2014) NIPS
    • Simonyan, K.1    Zisserman, A.2
  • 36
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Proc. ICLR, 2015.
    • (2015) Proc. ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 38
    • 84973856013 scopus 로고    scopus 로고
    • Visual tracking with fully convolutional networks
    • L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking with fully convolutional networks. In Proc. ICCV, 2015.
    • (2015) Proc. ICCV
    • Wang, L.1    Ouyang, W.2    Wang, X.3    Lu, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.