메뉴 건너뛰기




Volumn 0, Issue , 2016, Pages 3476-3484

Spatiotemporal residual networks for video action recognition

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION;

EID: 85019227137     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (746)

References (32)
  • 1
    • 85083954507 scopus 로고    scopus 로고
    • Delving deeper into convolutional networks for learning video representations
    • Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville. Delving deeper into convolutional networks for learning video representations. In Proc. ICLR, 2016.
    • (2016) Proc. ICLR
    • Ballas, N.1    Yao, L.2    Pal, C.3    Courville, A.4
  • 3
    • 0026682661 scopus 로고
    • Segregation of global and local motion processing in primate middle temporal visual area
    • Richard T Born and Roger BH Tootell. Segregation of global and local motion processing in primate middle temporal visual area. Nature, 357(6378): 497-499, 1992.
    • (1992) Nature , vol.357 , Issue.6378 , pp. 497-499
    • Born, R.T.1    Tootell, R.B.H.2
  • 5
    • 85066903360 scopus 로고    scopus 로고
    • Convolutional two-stream network fusion for video action recognition
    • 20116
    • Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-stream network fusion for video action recognition. In Proc. CVPR, 20116.
    • Proc. CVPR
    • Feichtenhofer, C.1    Pinz, A.2    Zisserman, A.3
  • 6
    • 0026565214 scopus 로고
    • Separate visual pathways for perception and action
    • M. A. Goodale and A. D. Milner. Separate visual pathways for perception and action. Trends in Neurosciences, 15(1): 20-25, 1992.
    • (1992) Trends in Neurosciences , vol.15 , Issue.1 , pp. 20-25
    • Goodale, M.A.1    Milner, A.D.2
  • 10
  • 11
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proc. ICML, 2015.
    • (2015) Proc. ICML
    • Ioffe, S.1    Szegedy, C.2
  • 12
    • 84870183903 scopus 로고    scopus 로고
    • 3D convolutional neural networks for human action recognition
    • S. Ji, W. Xu, M. Yang, and K. Yu. 3D convolutional neural networks for human action recognition. IEEE PAMI, 35(1): 221-231, 2013.
    • (2013) IEEE PAMI , vol.35 , Issue.1 , pp. 221-231
    • Ji, S.1    Xu, W.2    Yang, M.3    Yu, K.4
  • 14
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 15
    • 84856682691 scopus 로고    scopus 로고
    • HMDB: A large video database for human motion recognition
    • Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre. HMDB: a large video database for human motion recognition. In Proc. ICCV, 2011.
    • (2011) Proc. ICCV
    • Kuehne, H.1    Jhuang, H.2    Garrote, E.3    Poggio, T.4    Serre, T.5
  • 16
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis
    • Quoc V Le, Will Y Zou, Serena Y Yeung, and Andrew Y Ng. Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis. In Proc. CVPR, 2011.
    • (2011) Proc. CVPR
    • Le, Q.V.1    Zou, W.Y.2    Yeung, S.Y.3    Ng, A.Y.4
  • 20
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014.
    • (2014) NIPS
    • Simonyan, K.1    Zisserman, A.2
  • 21
    • 84925410541 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In Proc. ICLR, 2014.
    • (2014) Proc. ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 22
    • 84884955228 scopus 로고    scopus 로고
    • UCF101: A dataset of 101 human actions calsses from videos in the wild
    • Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of 101 human actions calsses from videos in the wild. Technical Report CRCV-TR-12-01, 2012.
    • (2012) Technical Report CRCV-TR-12-01
    • Soomro, K.1    Zamir, A.R.2    Shah, M.3
  • 27
    • 0028088013 scopus 로고
    • Neural mechanisms of form and motion processing in the primate visual system
    • David C Van Essen and Jack L Gallant. Neural mechanisms of form and motion processing in the primate visual system. Neuron, 13(1): 1-10, 1994.
    • (1994) Neuron , vol.13 , Issue.1 , pp. 1-10
    • Van Essen, D.C.1    Gallant, J.L.2
  • 29
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • Heng Wang and Cordelia Schmid. Action recognition with improved trajectories. In Proc. ICCV, 2013.
    • (2013) Proc. ICCV
    • Wang, H.1    Schmid, C.2
  • 30
    • 84955282488 scopus 로고    scopus 로고
    • Action recognition with trajectory-pooled deep-convolutional descriptors
    • Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with trajectory-pooled deep-convolutional descriptors. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 32
    • 38349007037 scopus 로고    scopus 로고
    • A duality based approach for realtime TV-L1 optical flow
    • C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime TV-L1 optical flow. In Proc. DAGM, pages 214-223, 2007.
    • (2007) Proc. DAGM , pp. 214-223
    • Zach, C.1    Pock, T.2    Bischof, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.