메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 4293-4302

Learning Multi-domain Convolutional Neural Networks for Visual Tracking

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; BINS; COMPUTER VISION; CONVOLUTION; ITERATIVE METHODS; NEURAL NETWORKS; PATTERN RECOGNITION; TRACKING (POSITION);

EID: 84986296977     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.465     Document Type: Conference Paper
Times cited : (2827)

References (49)
  • 2
    • 77955993278 scopus 로고    scopus 로고
    • Visual object tracking using adaptive correlation filters
    • D. S. Bolme, J. R. Beveridge, B. Draper, Y. M. Lui, et al. Visual object tracking using adaptive correlation filters. In CVPR, 2010.
    • (2010) CVPR
    • Bolme, D.S.1    Beveridge, J.R.2    Draper, B.3    Lui, Y.M.4
  • 3
    • 84892599053 scopus 로고    scopus 로고
    • Structured visual tracking with dynamic graph
    • Z. Cai, L. Wen, J. Yang, Z. Lei, and S. Z. Li. Structured visual tracking with dynamic graph. In ACCV, 2012.
    • (2012) ACCV
    • Cai, Z.1    Wen, L.2    Yang, J.3    Lei, Z.4    Li, S.Z.5
  • 4
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 5
    • 84919754301 scopus 로고    scopus 로고
    • Accurate scale estimation for robust visual tracking
    • M. Danelljan, G. Häger, F. Khan, and M. Felsberg. Accurate scale estimation for robust visual tracking. In BMVC, 2014.
    • (2014) BMVC
    • Danelljan, M.1    Häger, G.2    Khan, F.3    Felsberg, M.4
  • 6
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • H. Daumé III. Frustratingly easy domain adaptation. In ACL, 2007.
    • (2007) ACL
    • Daumé, H.1
  • 7
    • 78650226247 scopus 로고    scopus 로고
    • Multi-domain learning by confidence-weighted parameter combination
    • M. Dredze, A. Kulesza, and K. Crammer. Multi-domain learning by confidence-weighted parameter combination. Machine Learning, 79(1-2):123-149, 2010.
    • (2010) Machine Learning , vol.79 , Issue.1-2 , pp. 123-149
    • Dredze, M.1    Kulesza, A.2    Crammer, K.3
  • 8
    • 79953064532 scopus 로고    scopus 로고
    • Domain adaptation from multiple sources via auxiliary classifiers
    • L. Duan, I. W. Tsang, D. Xu, and T.-S. Chua. Domain adaptation from multiple sources via auxiliary classifiers. In ICML, 2009.
    • (2009) ICML
    • Duan, L.1    Tsang, I.W.2    Xu, D.3    Chua, T.-S.4
  • 9
    • 77957774108 scopus 로고    scopus 로고
    • Human tracking using convolutional neural networks
    • J. Fan, W. Xu, Y. Wu, and Y. Gong. Human tracking using convolutional neural networks. IEEE Trans. Neural Networks, 21(10):1610-1623, 2010.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.10 , pp. 1610-1623
    • Fan, J.1    Xu, W.2    Wu, Y.3    Gong, Y.4
  • 11
    • 84956699399 scopus 로고    scopus 로고
    • Transfer learning based visual tracking with Gaussian processes regression
    • J. Gao, H. Ling,W. Hu, and J. Xing. Transfer learning based visual tracking with Gaussian processes regression. In ECCV, 2014.
    • (2014) ECCV
    • Gao, J.1    Ling, H.2    Hu, W.3    Xing, J.4
  • 12
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 13
    • 84898020313 scopus 로고    scopus 로고
    • Real-time tracking via on-line boosting
    • H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting. In BMVC, 2006.
    • (2006) BMVC
    • Grabner, H.1    Grabner, M.2    Bischof, H.3
  • 14
    • 70350531007 scopus 로고    scopus 로고
    • Semi-supervised on-line boosting for robust tracking
    • H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust tracking. In ECCV, 2008.
    • (2008) ECCV
    • Grabner, H.1    Leistner, C.2    Bischof, H.3
  • 15
    • 45349101870 scopus 로고    scopus 로고
    • Sequential kernel density approximation and its application to real-time visual tracking
    • B. Han, D. Comaniciu, Y. Zhu, and L. Davis. Sequential kernel density approximation and its application to real-time visual tracking. IEEE Trans. Pattern Anal. Mach. Intell., 30(7):1186-1197, 2008.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.7 , pp. 1186-1197
    • Han, B.1    Comaniciu, D.2    Zhu, Y.3    Davis, L.4
  • 16
    • 84856659290 scopus 로고    scopus 로고
    • Struck: Structured output tracking with kernels
    • S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output tracking with kernels. In ICCV, 2011.
    • (2011) ICCV
    • Hare, S.1    Saffari, A.2    Torr, P.H.3
  • 18
    • 84887334107 scopus 로고    scopus 로고
    • Discovering latent domains for multisource domain adaptation
    • J. Hoffman, B. Kulis, T. Darrell, and K. Saenko. Discovering latent domains for multisource domain adaptation. In ECCV, 2012.
    • (2012) ECCV
    • Hoffman, J.1    Kulis, B.2    Darrell, T.3    Saenko, K.4
  • 19
    • 84965099276 scopus 로고    scopus 로고
    • Decoupled deep neural network for semi-supervised semantic segmentation
    • S. Hong, H. Noh, and B. Han. Decoupled deep neural network for semi-supervised semantic segmentation. In NIPS, 2015.
    • (2015) NIPS
    • Hong, S.1    Noh, H.2    Han, B.3
  • 20
    • 84969506912 scopus 로고    scopus 로고
    • Online tracking by learning discriminative saliency map with convolutional neural network
    • S. Hong, T. You, S. Kwak, and B. Han. Online tracking by learning discriminative saliency map with convolutional neural network. In ICML, 2015.
    • (2015) ICML
    • Hong, S.1    You, T.2    Kwak, S.3    Han, B.4
  • 21
    • 84959254211 scopus 로고    scopus 로고
    • MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking
    • Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov, and D. Tao. MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking. In CVPR, 2015.
    • (2015) CVPR
    • Hong, Z.1    Chen, Z.2    Wang, C.3    Mei, X.4    Prokhorov, D.5    Tao, D.6
  • 28
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 29
    • 85088746113 scopus 로고    scopus 로고
    • DeepTrack: Learning discriminative feature representations by convolutional neural networks for visual tracking
    • H. Li, Y. Li, and F. Porikli. DeepTrack: Learning discriminative feature representations by convolutional neural networks for visual tracking. In BMVC, 2014.
    • (2014) BMVC
    • Li, H.1    Li, Y.2    Porikli, F.3
  • 30
    • 84956693941 scopus 로고    scopus 로고
    • A scale adaptive kernel correlation filter tracker with feature integration
    • Y. Li and J. Zhu. A scale adaptive kernel correlation filter tracker with feature integration. In ECCVW, 2014.
    • (2014) ECCVW
    • Li, Y.1    Zhu, J.2
  • 31
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 32
    • 85097586621 scopus 로고    scopus 로고
    • Robust visual tracking using 1 minimization
    • X. Mei and H. Ling. Robust visual tracking using 1 minimization. In ICCV, 2009.
    • (2009) ICCV
    • Mei, X.1    Ling, H.2
  • 33
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Noh, H.1    Hong, S.2    Han, B.3
  • 34
    • 84986261711 scopus 로고    scopus 로고
    • Image question answering using convolutional neural network with dynamic parameter prediction
    • H. Noh, P. H. Seo, and B. Han. Image question answering using convolutional neural network with dynamic parameter prediction. In CVPR, 2016.
    • (2016) CVPR
    • Noh, H.1    Seo, P.H.2    Han, B.3
  • 35
    • 39749173057 scopus 로고    scopus 로고
    • Incremental learning for robust visual tracking
    • D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for robust visual tracking. IJCV, 77(1-3):125-141, 2008.
    • (2008) IJCV , vol.77 , Issue.1-3 , pp. 125-141
    • Ross, D.A.1    Lim, J.2    Lin, R.-S.3    Yang, M.-H.4
  • 37
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 38
    • 84973924437 scopus 로고    scopus 로고
    • Tracking-bysegmentation with online gradient boosting decision tree
    • J. Son, I. Jung, K. Park, and B. Han. Tracking-bysegmentation with online gradient boosting decision tree. In ICCV, 2015.
    • (2015) ICCV
    • Son, J.1    Jung, I.2    Park, K.3    Han, B.4
  • 39
    • 0031648023 scopus 로고    scopus 로고
    • Example-based learning for viewbased human face detection
    • K.-K. Sung and T. Poggio. Example-based learning for viewbased human face detection. IEEE Trans. Pattern Anal. Mach. Intell., 20(1):39-51, 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.1 , pp. 39-51
    • Sung, K.-K.1    Poggio, T.2
  • 40
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, 2014.
    • (2014) CVPR
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 41
    • 84911381180 scopus 로고    scopus 로고
    • Deeppose: Human pose estimation via deep neural networks
    • A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Toshev, A.1    Szegedy, C.2
  • 42
    • 84986290514 scopus 로고    scopus 로고
    • Matconvnet-convolutional neural networks for matlab
    • A. Vedaldi and K. Lenc. Matconvnet-convolutional neural networks for matlab. In ACM MM, 2015.
    • (2015) ACM MM
    • Vedaldi, A.1    Lenc, K.2
  • 43
    • 84946747440 scopus 로고    scopus 로고
    • Show and tell: A neural image caption generator
    • O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In CVPR, 2015.
    • (2015) CVPR
    • Vinyals, O.1    Toshev, A.2    Bengio, S.3    Erhan, D.4
  • 46
    • 84887348427 scopus 로고    scopus 로고
    • Online object tracking: A benchmark
    • Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, 2013.
    • (2013) CVPR
    • Wu, Y.1    Lim, J.2    Yang, M.-H.3
  • 47
    • 85009901660 scopus 로고    scopus 로고
    • MEEM: Robust tracking via multiple experts using entropy minimization
    • J. Zhang, S. Ma, and S. Sclaroff. MEEM: Robust tracking via multiple experts using entropy minimization. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, J.1    Ma, S.2    Sclaroff, S.3
  • 48
    • 84866678444 scopus 로고    scopus 로고
    • Robust visual tracking via multi-task sparse learning
    • T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual tracking via multi-task sparse learning. In CVPR, 2012.
    • (2012) CVPR
    • Zhang, T.1    Ghanem, B.2    Liu, S.3    Ahuja, N.4
  • 49
    • 84866648566 scopus 로고    scopus 로고
    • Robust object tracking via sparsity-based collaborative model
    • W. Zhong, H. Lu, and M.-H. Yang. Robust object tracking via sparsity-based collaborative model. In CVPR, 2012.
    • (2012) CVPR
    • Zhong, W.1    Lu, H.2    Yang, M.-H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.