메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 817-825

Object detection from video tubelets with convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; IMAGE PROCESSING; IMAGE SEGMENTATION; NEURAL NETWORKS; OBJECT RECOGNITION; PATTERN RECOGNITION; SEMANTICS;

EID: 84986331475     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.95     Document Type: Conference Paper
Times cited : (413)

References (38)
  • 1
    • 51949100471 scopus 로고    scopus 로고
    • People-tracking-bydetection and people-detection-by-tracking
    • 2
    • M. Andriluka, S. Roth, and B. Schiele. People-tracking-bydetection and people-detection-by-tracking. CVPR, 2008.
    • (2008) CVPR
    • Andriluka, M.1    Roth, S.2    Schiele, B.3
  • 2
    • 84866674830 scopus 로고    scopus 로고
    • Discretecontinuous optimization for multi-target tracking
    • 2
    • A. Andriyenko, K. Schindler, and S. Roth. Discretecontinuous optimization for multi-target tracking. CVPR, 2012.
    • (2012) CVPR
    • Andriyenko, A.1    Schindler, K.2    Roth, S.3
  • 3
    • 84911445394 scopus 로고    scopus 로고
    • Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning
    • 2
    • S.-H. Bae and K.-J. Yoon. Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. CVPR, 2014.
    • (2014) CVPR
    • Bae, S.-H.1    Yoon, K.-J.2
  • 4
    • 85009841575 scopus 로고    scopus 로고
    • Structured feature learning for pose estimation
    • 1
    • X. Chu, W. Ouyang, H. Li, and X. Wang. Structured feature learning for pose estimation. In CVPR, 2016.
    • (2016) CVPR
    • Chu, X.1    Ouyang, W.2    Li, H.3    Wang, X.4
  • 5
    • 84973890848 scopus 로고    scopus 로고
    • Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
    • 1
    • J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. ICCV, 2015.
    • (2015) ICCV
    • Dai, J.1    He, K.2    Sun, J.3
  • 7
    • 79959728283 scopus 로고    scopus 로고
    • Localizing objects while learning their appearance
    • 2, 8
    • T. Deselaers, B. Alexe, and V. Ferrari. Localizing Objects While Learning Their Appearance. ECCV, 2010.
    • (2010) ECCV
    • Deselaers, T.1    Alexe, B.2    Ferrari, V.3
  • 9
    • 85029359197 scopus 로고    scopus 로고
    • Fast r-cnn
    • 1, 2
    • R. Girshick. Fast r-cnn. ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 10
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 1, 2
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 11
    • 84977644905 scopus 로고    scopus 로고
    • Finding action tubes
    • 1, 3
    • G. Gkioxari and J. Malik. Finding action tubes. CVPR, 2014.
    • (2014) CVPR
    • Gkioxari, G.1    Malik, J.2
  • 12
    • 84959254211 scopus 로고    scopus 로고
    • Multi-store tracker (muster): A cognitive psychology inspired approach to object tracking
    • 3
    • Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov, and D. Tao. Multi-store tracker (muster): A cognitive psychology inspired approach to object tracking. CVPR, 2015.
    • (2015) CVPR
    • Hong, Z.1    Chen, Z.2    Wang, C.3    Mei, X.4    Prokhorov, D.5    Tao, D.6
  • 14
    • 84943738421 scopus 로고    scopus 로고
    • Efficient image and video co-localization with frank-wolfe algorithm
    • 2, 8
    • A. Joulin, K. Tang, and L. Fei-Fei. Efficient Image and Video Co-localization with Frank-Wolfe Algorithm. ECCV, 2014.
    • (2014) ECCV
    • Joulin, A.1    Tang, K.2    Fei-Fei, L.3
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1, 3
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. NIPS, pages 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 18
    • 84973884868 scopus 로고    scopus 로고
    • Unsupervised object discovery and tracking in video collections
    • 2, 8
    • S. Kwak, M. Cho, I. Laptev, J. Ponce, and C. Schmid. Unsupervised Object Discovery and Tracking in Video Collections. ICCV, 2015.
    • (2015) ICCV
    • Kwak, S.1    Cho, M.2    Laptev, I.3    Ponce, J.4    Schmid, C.5
  • 19
    • 84956664019 scopus 로고    scopus 로고
    • Integrating context and occlusion for car detection by hierarchical and-or model
    • 1
    • B. Li, T. Wu, and S.-C. Zhu. Integrating context and occlusion for car detection by hierarchical and-or model. ECCV, 2014.
    • (2014) ECCV
    • Li, B.1    Wu, T.2    Zhu, S.-C.3
  • 20
    • 84959247253 scopus 로고    scopus 로고
    • Reliable patch trackers: Robust visual tracking by exploiting reliable patches
    • 3
    • Y. Li, J. Zhu, and S. C. Hoi. Reliable patch trackers: Robust visual tracking by exploiting reliable patches. CVPR, 2015.
    • (2015) CVPR
    • Li, Y.1    Zhu, J.2    Hoi, S.C.3
  • 21
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • 1
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 24
    • 84986302036 scopus 로고    scopus 로고
    • Factors in finetuning deep model for object detection with long-tail
    • 1
    • W. Ouyang, X. Wang, C. Zhang, and X. Yang. Factors in finetuning deep model for object detection with long-tail. In CVPR, 2016.
    • (2016) CVPR
    • Ouyang, W.1    Wang, X.2    Zhang, C.3    Yang, X.4
  • 25
    • 84898831797 scopus 로고    scopus 로고
    • Fast object segmentation in unconstrained video
    • 2
    • A. Papazoglou and V. Ferrari. Fast Object Segmentation in Unconstrained Video. ICCV, 2013.
    • (2013) ICCV
    • Papazoglou, A.1    Ferrari, V.2
  • 26
  • 27
  • 28
    • 84960980241 scopus 로고    scopus 로고
    • Faster r-cnn: Towards real-time object detection with region proposal networks
    • 1, 2
    • S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. NIPS, 2015.
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 29
    • 84965161185 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • 1
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. ICLR, 2014.
    • (2014) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 31
    • 84983677761 scopus 로고    scopus 로고
    • Pedestrian detection aided by deep learning semantic tasks
    • 1
    • Y. Tian, P. Luo, X. Wang, and X. Tang. Pedestrian detection aided by deep learning semantic tasks. CVPR, 2014.
    • (2014) CVPR
    • Tian, Y.1    Luo, P.2    Wang, X.3    Tang, X.4
  • 32
  • 33
    • 84911381180 scopus 로고    scopus 로고
    • Deeppose: Human pose estimation via deep neural networks
    • 1
    • A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Toshev, A.1    Szegedy, C.2
  • 35
    • 84986313416 scopus 로고    scopus 로고
    • Stct: Sequentially training convolutional networks for visual tracking
    • 3
    • L. Wang, W. Ouyang, X. Wang, and L. Huchuan. Stct: Sequentially training convolutional networks for visual tracking. In CVPR, 2016.
    • (2016) CVPR
    • Wang, L.1    Ouyang, W.2    Wang, X.3    Huchuan, L.4
  • 36
    • 84973856013 scopus 로고    scopus 로고
    • Visual tracking with fully convolutional networks
    • 2, 3
    • L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking with fully convolutional networks. ICCV, 2015.
    • (2015) ICCV
    • Wang, L.1    Ouyang, W.2    Wang, X.3    Lu, H.4
  • 37
    • 84986295323 scopus 로고    scopus 로고
    • End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation
    • 1
    • W. Yang, W. Ouyang, H. Li, and X. Wang. End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation. In CVPR, 2016.
    • (2016) CVPR
    • Yang, W.1    Ouyang, W.2    Li, H.3    Wang, X.4
  • 38
    • 84959191147 scopus 로고    scopus 로고
    • Fast action proposals for human action detection and search
    • 2
    • G. Yu and J. Yuan. Fast action proposals for human action detection and search. CVPR, 2015.
    • (2015) CVPR
    • Yu, G.1    Yuan, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.