메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 759-768

Finding action tubes

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; NEURAL NETWORKS;

EID: 84959196122     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298676     Document Type: Conference Paper
Times cited : (594)

References (44)
  • 4
    • 18844364899 scopus 로고    scopus 로고
    • High accuracy optical flow estimation based on a theory for warping
    • T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. In ECCV, 2004
    • (2004) ECCV
    • Brox, T.1    Bruhn, A.2    Papenberg, N.3    Weickert, J.4
  • 5
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 6
    • 34948855444 scopus 로고    scopus 로고
    • Human detection using oriented histograms of flow and appearance
    • N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of flow and appearance. In ECCV, 2006
    • (2006) ECCV
    • Dalal, N.1    Triggs, B.2    Schmid, C.3
  • 13
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 14
    • 0026565214 scopus 로고
    • Separate visual pathways for perception and action
    • M. A. Goodale and A. D. Milner. Separate visual pathways for perception and action. Trends in Neurosciences, 15:20-25, 1992
    • (1992) Trends in Neurosciences , vol.15 , pp. 20-25
    • Goodale, M.A.1    Milner, A.D.2
  • 16
    • 84887398298 scopus 로고    scopus 로고
    • Better exploiting motion for better action recognition
    • M. Jain, H. Jegou, and P. Bouthemy. Better exploiting motion for better action recognition. In CVPR, 2013
    • (2013) CVPR
    • Jain, M.1    Jegou, H.2    Bouthemy, P.3
  • 18
    • 50649099025 scopus 로고    scopus 로고
    • A biologically inspired system for action recognition
    • H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically inspired system for action recognition. In ICCV, 2007
    • (2007) ICCV
    • Jhuang, H.1    Serre, T.2    Wolf, L.3    Poggio, T.4
  • 19
    • 84870183903 scopus 로고    scopus 로고
    • 3d convolutional neural networks for human action recognition
    • S. Ji, W. Hu, M. Yang, and K. Yu. 3d convolutional neural networks for human action recognition. In PAMI, 2013
    • (2013) PAMI
    • Ji, S.1    Hu, W.2    Yang, M.3    Yu, K.4
  • 23
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 25
    • 84863083227 scopus 로고    scopus 로고
    • Discriminative figure-centric models for joint action localization and recognition
    • T. Lan, Y. Wang, and G. Mori. Discriminative figure-centric models for joint action localization and recognition. In ICCV, 2011
    • (2011) ICCV
    • Lan, T.1    Wang, Y.2    Mori, G.3
  • 28
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004
    • (2004) IJCV
    • Lowe, D.1
  • 29
    • 84893353862 scopus 로고    scopus 로고
    • Dynamic eye movement datasets and learned saliency models for visual action recognition
    • S. Mathe and C. Sminchisescu. Dynamic Eye Movement Datasets and Learned Saliency Models for Visual Action Recognition. In ECCV, 2012
    • (2012) ECCV
    • Mathe, S.1    Sminchisescu, C.2
  • 30
    • 77949275097 scopus 로고    scopus 로고
    • A survey on vision-based human action recognition
    • R. Poppe. A survey on vision-based human action recognition. Image Vision Computing, 2010
    • (2010) Image Vision Computing
    • Poppe, R.1
  • 31
    • 84897434404 scopus 로고    scopus 로고
    • Explicit modeling of human-object interactions in realistic videos
    • A. Prest, V. Ferrari, and C. Schmid. Explicit modeling of human-object interactions in realistic videos. PAMI, 2012
    • (2012) PAMI
    • Prest, A.1    Ferrari, V.2    Schmid, C.3
  • 32
    • 84866661728 scopus 로고    scopus 로고
    • Discovering discriminative action parts from mid-level video representations
    • M. Raptis, I. Kokkinos, and S. Soatto. Discovering discriminative action parts from mid-level video representations. In CVPR, 2012
    • (2012) CVPR
    • Raptis, M.1    Kokkinos, I.2    Soatto, S.3
  • 33
    • 51949084792 scopus 로고    scopus 로고
    • Action Mach: A spatio-temporal maximum average correlation height filter for action recognition
    • M. D. Rodriguez, J. Ahmed, and M. Shah. Action Mach: a spatio-temporal maximum average correlation height filter for action recognition. In CVPR, 2008
    • (2008) CVPR
    • Rodriguez, M.D.1    Ahmed, J.2    Shah, M.3
  • 34
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local SVM approach
    • C. Schüldt, I. Laptev, and B. Caputo. Recognizing human actions: A local SVM approach. In ICPR, 2004
    • (2004) ICPR
    • Schüldt, C.1    Laptev, I.2    Caputo, B.3
  • 35
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014
    • (2014) NIPS
    • Simonyan, K.1    Zisserman, A.2
  • 36
    • 84904972001 scopus 로고    scopus 로고
    • Ucf101: A dataset of 101 human action classes from videos in the wild
    • K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human action classes from videos in the wild. In CRCVTR-12-01, 2012
    • (2012) CRCVTR-12-01
    • Soomro, K.1    Zamir, A.R.2    Shah, M.3
  • 37
    • 84867652321 scopus 로고    scopus 로고
    • Convolutional learning of spatio-temporal features
    • G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning of spatio-temporal features. In ECCV, 2010
    • (2010) ECCV
    • Taylor, G.W.1    Fergus, R.2    LeCun, Y.3    Bregler, C.4
  • 38
    • 84887356306 scopus 로고    scopus 로고
    • Spatiotemporal deformable part models for action detection
    • Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal deformable part models for action detection. In CVPR, 2013
    • (2013) CVPR
    • Tian, Y.1    Sukthankar, R.2    Shah, M.3
  • 40
    • 80052877143 scopus 로고    scopus 로고
    • Action recognition by dense trajectories
    • H. Wang, A. Kläser, C. Schmid, and C. Liu. Action recognition by dense trajectories. In CVPR, 2011
    • (2011) CVPR
    • Wang, H.1    Kläser, A.2    Schmid, C.3    Liu, C.4
  • 41
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 42
    • 84959205018 scopus 로고    scopus 로고
    • Video action detection with relational dynamic-poselets
    • L. Wang, Y. Qiao, and X. Tang. Video action detection with relational dynamic-poselets. In ECCV, 2014
    • (2014) ECCV
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 44
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.