-
1
-
-
85039998984
-
Analytical methods in untargeted metabolomics: state of the art in 2015
-
Alonso, A., Marsal, S., and Antonio, J. (2015). Analytical methods in untargeted metabolomics: state of the art in 2015. Front. Bioeng. Biotechnol. 3:23. doi: 10.3389/fbioe.2015.00023
-
(2015)
Front. Bioeng. Biotechnol
, vol.3
, pp. 23
-
-
Alonso, A.1
Marsal, S.2
Antonio, J.3
-
2
-
-
84890601822
-
Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension
-
Archer, S. L., Fang, Y. H., Ryan, J. J., and Piao, L. (2013). Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension. Pulm. Circ. 3, 144-152. doi: 10.4103/2045-8932.109960
-
(2013)
Pulm. Circ
, vol.3
, pp. 144-152
-
-
Archer, S.L.1
Fang, Y.H.2
Ryan, J.J.3
Piao, L.4
-
3
-
-
79952214267
-
Metabolomic profiling for identification of novel potential biomarkers in cardiovascular diseases
-
Barderas, M. G., Laborde, C. M., Posada, M., de la Cuesta, F., Zubiri, I., Vivanco, F., et al. (2011). Metabolomic profiling for identification of novel potential biomarkers in cardiovascular diseases. J. Biomed. Biotechnol. 2011:790132. doi: 10.1155/2011/790132
-
(2011)
J. Biomed. Biotechnol
, vol.2011
-
-
Barderas, M.G.1
Laborde, C.M.2
Posada, M.3
de la Cuesta, F.4
Zubiri, I.5
Vivanco, F.6
-
4
-
-
0037350844
-
Partial least squares for discrimination
-
Barker, M., and Rayens, W. (2003). Partial least squares for discrimination. J. Chemom. 17, 166-173. doi: 10.1002/cem.785
-
(2003)
J. Chemom
, vol.17
, pp. 166-173
-
-
Barker, M.1
Rayens, W.2
-
5
-
-
66349086742
-
Bioactive sphingolipids: metabolism and function
-
Bartke, N., and Hannun, Y. A. (2009). Bioactive sphingolipids: metabolism and function. J. Lipid Res. 50, 91-96. doi: 10.1194/jlr. R800080-JLR200
-
(2009)
J. Lipid Res
, vol.50
, pp. 91-96
-
-
Bartke, N.1
Hannun, Y.A.2
-
6
-
-
33846240326
-
Statistical strategies for avoiding false discoveries in metabolomics and related experiments
-
Broadhurst, D. I., and Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2, 171-196. doi: 10.1007/s11306-006-0037-z
-
(2006)
Metabolomics
, vol.2
, pp. 171-196
-
-
Broadhurst, D.I.1
Kell, D.B.2
-
7
-
-
76649092281
-
Controlling the false discovery rate for feature selection in high-resolution NMR spectra
-
Bum Kim, S., Chen, V. C. P., Park, Y., Ziegler, T. R., and Jones, D. P. (2008). Controlling the false discovery rate for feature selection in high-resolution NMR spectra. Stat. Anal. Data Min. 1, 57-66. doi: 10.1002/sam.10005
-
(2008)
Stat. Anal. Data Min
, vol.1
, pp. 57-66
-
-
Bum Kim, S.1
Chen, V.C.P.2
Park, Y.3
Ziegler, T.R.4
Jones, D.P.5
-
8
-
-
84870947005
-
Combination of LC-MS-and GC-MS-based metabolomics to study the effect of ozonated autohemotherapy on human blood
-
Ciborowski, M., Lipska, A., Godzien, J., Ferrarini, A., Korsak, J., Radziwon, P., et al. (2014). Combination of LC-MS-and GC-MS-based metabolomics to study the effect of ozonated autohemotherapy on human blood. J. Proteome Res. 11, 6231-6241. doi: 10.1021/pr3008946
-
(2014)
J. Proteome Res
, vol.11
, pp. 6231-6241
-
-
Ciborowski, M.1
Lipska, A.2
Godzien, J.3
Ferrarini, A.4
Korsak, J.5
Radziwon, P.6
-
9
-
-
84948388423
-
Least absolute shrinkage and selection operator and dimensionality reduction techniques in quantitative structure retention relationship modeling of retention in hydrophilic interaction liquid chromatography
-
Daghir-Wojtkowiak, E., Wiczling, P., Bocian, S., Kubik, L., Koslinski, P., Buszewski, B., et al. (2015). Least absolute shrinkage and selection operator and dimensionality reduction techniques in quantitative structure retention relationship modeling of retention in hydrophilic interaction liquid chromatography. J. Chromatogr. A. 1403, 54-62 doi: 10.1016/j.chroma.2015.05.025
-
(2015)
J. Chromatogr. A
, vol.1403
, pp. 54-62
-
-
Daghir-Wojtkowiak, E.1
Wiczling, P.2
Bocian, S.3
Kubik, L.4
Koslinski, P.5
Buszewski, B.6
-
10
-
-
78649829438
-
Targeted metabolomics and mass spectrometry
-
Dudley, E., Yousef, M., Wang, Y., and Griffiths, W. J. (2010). Targeted metabolomics and mass spectrometry. Adv. Protein Chem. Struct. Biol. 80, 45-83, doi: 10.1016/B978-0-12-381264-3.00002-3
-
(2010)
Adv. Protein Chem. Struct. Biol
, vol.80
, pp. 45-83
-
-
Dudley, E.1
Yousef, M.2
Wang, Y.3
Griffiths, W.J.4
-
11
-
-
79959913950
-
Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry
-
Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., and Anderson, N. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060-1083. doi: 10.1038/nprot.2011.335
-
(2011)
Nat. Protoc
, vol.6
, pp. 1060-1083
-
-
Dunn, W.B.1
Broadhurst, D.2
Begley, P.3
Zelena, E.4
Francis-McIntyre, S.5
Anderson, N.6
-
12
-
-
84862965840
-
Primary fatty acid amide metabolism: conversion of fatty acids and an ethanolamine in N 18 TG 2 and SCP cells 1
-
Farrell, E. K., Chen, Y., Barazanji, M., Jeffries, K. A., Cameroamortegui, F., and Merkler, D. J. (2012). Primary fatty acid amide metabolism: conversion of fatty acids and an ethanolamine in N 18 TG 2 and SCP cells 1. J. Lipid Res. 53, 247-256. doi: 10.1194/jlr. M018606
-
(2012)
J. Lipid Res
, vol.53
, pp. 247-256
-
-
Farrell, E.K.1
Chen, Y.2
Barazanji, M.3
Jeffries, K.A.4
Cameroamortegui, F.5
Merkler, D.J.6
-
13
-
-
0034959944
-
Combining genomics, metabolome analysis, and biochemical modeling to understand metabolic networks
-
Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modeling to understand metabolic networks. Comp. Funct. Genomics 2, 155-168. doi: 10.1002/cfg.82
-
(2001)
Comp. Funct. Genomics
, vol.2
, pp. 155-168
-
-
Fiehn, O.1
-
15
-
-
34748839546
-
Proposed minimum reporting standards for data analysis in metabolomics
-
Goodacre, R., Broadhurst, D., Smilde, A., Kristal, B., Baker, J., Beger, R., et al. (2007). Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 3, 231-241. doi: 10.1007/s11306-007-0081-3
-
(2007)
Metabolomics
, vol.3
, pp. 231-241
-
-
Goodacre, R.1
Broadhurst, D.2
Smilde, A.3
Kristal, B.4
Baker, J.5
Beger, R.6
-
16
-
-
84870238114
-
QSRR modeling for diverse drugs using different feature selection methods coupled with linear and nonlinear regressions
-
Goodarzi, M., Jensen, R., and Vander Heyden, Y. (2012). QSRR modeling for diverse drugs using different feature selection methods coupled with linear and nonlinear regressions. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 1, 84-94. doi: 10.1016/j.jchromb.2012.01.012
-
(2012)
J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci
, vol.1
, pp. 84-94
-
-
Goodarzi, M.1
Jensen, R.2
Vander Heyden, Y.3
-
17
-
-
84939138183
-
The influence of scaling metabolomics data on model classification accuracy
-
Gromski, P. S., Xu, Y., Hollywood, K. A., Turner, M. L., and Goodacre, R. (2015). The influence of scaling metabolomics data on model classification accuracy. Metabolomics 11, 684-695. doi: 10.1007/s11306-014-0738-7
-
(2015)
Metabolomics
, vol.11
, pp. 684-695
-
-
Gromski, P.S.1
Xu, Y.2
Hollywood, K.A.3
Turner, M.L.4
Goodacre, R.5
-
18
-
-
80053612060
-
Data-processing strategies for metabolomics studies
-
Hendriks, M. M. W. B., Eeuwijk, F. A., Jellema, R. H., Westerhuis, J. A., Reijmers, T. H., Hoefsloot, H. C. J., et al. (2011). Data-processing strategies for metabolomics studies. Trends Anal. Chem. 30, 1685-1698. doi: 10.1016/j.trac.2011.04.019
-
(2011)
Trends Anal. Chem
, vol.30
, pp. 1685-1698
-
-
Hendriks, M.M.W.B.1
Eeuwijk, F.A.2
Jellema, R.H.3
Westerhuis, J.A.4
Reijmers, T.H.5
Hoefsloot, H.C.J.6
-
19
-
-
43749087841
-
Human metabolic phenotype diversity and its association with diet and blood pressure
-
Holmes, E., Loo, R. L., Stamler, J., Bictash, M., Yap, I. K. S., Chan, Q., et al. (2008). Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453, 396-400. doi: 10.1038/nature06882
-
(2008)
Nature
, vol.453
, pp. 396-400
-
-
Holmes, E.1
Loo, R.L.2
Stamler, J.3
Bictash, M.4
Yap, I.K.S.5
Chan, Q.6
-
20
-
-
0035852404
-
Variable and subset selection in PLS regression
-
Hoskuldsson, A. (2001). Variable and subset selection in PLS regression. Chemometrics Intell. Lab. Syst. 55, 23-38. doi: 10.1016/S0169-7439(00)00113-1
-
(2001)
Chemometrics Intell. Lab. Syst
, vol.55
, pp. 23-38
-
-
Hoskuldsson, A.1
-
21
-
-
79956328118
-
Multivariate methods in metabolomics-from pre-processing to dimension reduction and statistical analysis
-
Hovde, K. L. (2011). Multivariate methods in metabolomics-from pre-processing to dimension reduction and statistical analysis. Trends Anal. Chem. 30, 827-841. doi: 10.1016/j.trac.2011.02.007
-
(2011)
Trends Anal. Chem
, vol.30
, pp. 827-841
-
-
Hovde, K.L.1
-
22
-
-
84862766223
-
Overview of two-norm (L2) and one-norm (L1) Tikhonov regularization variants for full wavelength or sparse spectral multivariate calibration models or maintenance
-
Kalivas, J. H. (2012). Overview of two-norm (L2) and one-norm (L1) Tikhonov regularization variants for full wavelength or sparse spectral multivariate calibration models or maintenance. J. Chemom. 26, 218-230. doi: 10.1002/cem.2429
-
(2012)
J. Chemom
, vol.26
, pp. 218-230
-
-
Kalivas, J.H.1
-
23
-
-
63049134550
-
Urine metabolomics analysis for kidney cancer detection and biomarker discovery
-
Kim, K., Aronov, P., Zakharkin, S. O., Anderson, D., Perroud, B., Thompson, I. M., et al. (2009). Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Mol. Cell. Proteomics 8, 558-570. doi: 10.1074/mcp. M800165-MCP200
-
(2009)
Mol. Cell. Proteomics
, vol.8
, pp. 558-570
-
-
Kim, K.1
Aronov, P.2
Zakharkin, S.O.3
Anderson, D.4
Perroud, B.5
Thompson, I.M.6
-
24
-
-
80054018310
-
A method for handling metabonomics data from liquid chromatography/mass spectrometry: combinational use of support vector machine recursive feature elimination, genetic algorithm and random forest for feature selection
-
Lin, X., Wang, Q., Yin, P., Tang, L., Tan, Y., Li, H., et al. (2011). A method for handling metabonomics data from liquid chromatography/mass spectrometry: combinational use of support vector machine recursive feature elimination, genetic algorithm and random forest for feature selection. Metabolomics 7, 549-558. doi: 10.1007/s11306-011-0274-7
-
(2011)
Metabolomics
, vol.7
, pp. 549-558
-
-
Lin, X.1
Wang, Q.2
Yin, P.3
Tang, L.4
Tan, Y.5
Li, H.6
-
25
-
-
0033774752
-
5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension
-
MacLean, M. R., Herve, P., Eddahibi, S., and Adnot, S. (2000). 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br. J. Pharmacol. 131, 161-168. doi: 10.1038/sj.bjp.0703570
-
(2000)
Br. J. Pharmacol
, vol.131
, pp. 161-168
-
-
MacLean, M.R.1
Herve, P.2
Eddahibi, S.3
Adnot, S.4
-
26
-
-
0032694577
-
Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data
-
Nicholson, J. K., Lindon, J. C., and Holmes, E. (1999). Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29, 1181-1189. doi: 10.1080/004982599238047
-
(1999)
Xenobiotica
, vol.29
, pp. 1181-1189
-
-
Nicholson, J.K.1
Lindon, J.C.2
Holmes, E.3
-
27
-
-
85018193104
-
Regularized group regression methods for genomic pre-diction: Bridge MCP. SCAD. group bridge. group lasso. sparse group lasso. Group MCP and group SCAD
-
Ogutu, J. O., and Piepho, H. P. (2014). Regularized group regression methods for genomic pre-diction: Bridge. MCP. SCAD. group bridge. group lasso. sparse group lasso. Group MCP and group SCAD. BMC Proc. 8:S7. doi: 10.1186/1753-6561-8-S5-S7
-
(2014)
BMC Proc
, vol.8
, pp. S7
-
-
Ogutu, J.O.1
Piepho, H.P.2
-
28
-
-
84858790233
-
Innovation: metabolomics: the apogee of the omics trilogy
-
Patti, G. J., Yanes, O., and Siuzdak, G. (2012). Innovation: metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13, 263-269. doi: 10.1038/nrm3314
-
(2012)
Nat. Rev. Mol. Cell Biol
, vol.13
, pp. 263-269
-
-
Patti, G.J.1
Yanes, O.2
Siuzdak, G.3
-
29
-
-
84901275033
-
Genetic variation in the TP53 pathway and bladder cancer risk A comprehensive analysis
-
Pineda, S., Milne, R. L., Calle, M. L., Rothman, N., Lopez de Maturana, E., Herranz, J., et al. (2014). Genetic variation in the TP53 pathway and bladder cancer risk. A comprehensive analysis. PLoS ONE 9:e89952. doi: 10.1371/journal.pone.0089952
-
(2014)
PLoS ONE
, vol.9
-
-
Pineda, S.1
Milne, R.L.2
Calle, M.L.3
Rothman, N.4
Lopez de Maturana, E.5
Herranz, J.6
-
30
-
-
31344450644
-
Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms
-
Ramadan, Z., Jacobs, D., Grigorov, M., and Kochhar, S. (2006). Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. Talanta 68, 1683-1691. doi: 10.1016/j.talanta.2005.08.042
-
(2006)
Talanta
, vol.68
, pp. 1683-1691
-
-
Ramadan, Z.1
Jacobs, D.2
Grigorov, M.3
Kochhar, S.4
-
31
-
-
84914179053
-
-
Vienna: R Foundation for Statistical Computing
-
R Core Team (2014). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at: http://www. R-project.org/
-
(2014)
R: A Language and Environment for Statistical Computing
-
-
-
32
-
-
0141812475
-
An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra
-
Sjoblom, J., Svensson, O., Josefson, M., Kullberg, H., and Wold, S. (1998). An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra. Chemometrics Intell. Lab. Syst. 44, 229-244. doi: 10.1016/S0169-7439(98)00112-9
-
(1998)
Chemometrics Intell. Lab. Syst
, vol.44
, pp. 229-244
-
-
Sjoblom, J.1
Svensson, O.2
Josefson, M.3
Kullberg, H.4
Wold, S.5
-
33
-
-
85194972808
-
Regression shrinkage and selection via the Lasso
-
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 58, 267-288
-
(1996)
J. R. Stat. Soc. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
34
-
-
84918781455
-
PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the K-fold cross-validation quality parameters
-
Triba, M. N., Le Moyec, L., Amathieu, R., Goossens, C., Bouchemal, N., Nahon, P., et al. (2015). PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol. Biosyst. 11, 13-19. doi: 10.1039/C4MB00414K
-
(2015)
Mol. Biosyst
, vol.11
, pp. 13-19
-
-
Triba, M.N.1
Le Moyec, L.2
Amathieu, R.3
Goossens, C.4
Bouchemal, N.5
Nahon, P.6
-
35
-
-
33747019547
-
Centering, scaling, and transformations: improving the biological information content of metabolomics data
-
van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., and van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142. doi: 10.1186/1471-2164-7-142
-
(2006)
BMC Genomics
, vol.7
, pp. 142
-
-
van den Berg, R.A.1
Hoefsloot, H.C.2
Westerhuis, J.A.3
Smilde, A.K.4
van der Werf, M.J.5
-
36
-
-
84885922460
-
A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data
-
Vinaixa, M., Samino, S., Saez, I., Duran, J., Guinovart, J. J., and Yanes, O. (2012). A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Metabolites 2, 775-795. doi: 10.3390/metabo2040775
-
(2012)
Metabolites
, vol.2
, pp. 775-795
-
-
Vinaixa, M.1
Samino, S.2
Saez, I.3
Duran, J.4
Guinovart, J.J.5
Yanes, O.6
-
37
-
-
41149120242
-
Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models
-
Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 80, 115-122. doi: 10.1021/ac0713510
-
(2008)
Anal. Chem
, vol.80
, pp. 115-122
-
-
Wiklund, S.1
Johansson, E.2
Sjöström, L.3
Mellerowicz, E.J.4
Edlund, U.5
Shockcor, J.P.6
-
38
-
-
0032517819
-
Orthogonal signal correction of near-infrared spectra
-
Wold, S., Antti, H., Lindgren, F., and Ohman, J. (1998). Orthogonal signal correction of near-infrared spectra. Chemometrics Intell. Lab. Syst. 44, 175-185. doi: 10.1016/S0169-7439(98)00109-9
-
(1998)
Chemometrics Intell. Lab. Syst
, vol.44
, pp. 175-185
-
-
Wold, S.1
Antti, H.2
Lindgren, F.3
Ohman, J.4
-
39
-
-
0035965476
-
Pls-regression: a basic tool of chemometrics
-
Wold, S., Sjöström, M., and Eriksson, L. (2001). Pls-regression: a basic tool of chemometrics. Chemometrics Intell. Lab. Syst. 58, 109-130. doi: 10.1016/S0169-7439(01)00155-1
-
(2001)
Chemometrics Intell. Lab. Syst
, vol.58
, pp. 109-130
-
-
Wold, S.1
Sjöström, M.2
Eriksson, L.3
-
40
-
-
67649948769
-
Variable selection using iterative reformulation of training set models for discrimination of samples: application to gas chromatography/mass spectrometry of mouse urinary metabolites
-
Wongravee, K., Heinrich, N., Holmboe, M., Schaefer, M. L., Reed, R. R., Trevejo, J., et al. (2009). Variable selection using iterative reformulation of training set models for discrimination of samples: application to gas chromatography/mass spectrometry of mouse urinary metabolites. Anal. Chem. 81, 5204-5217. doi: 10.1021/ac900251c
-
(2009)
Anal. Chem
, vol.81
, pp. 5204-5217
-
-
Wongravee, K.1
Heinrich, N.2
Holmboe, M.3
Schaefer, M.L.4
Reed, R.R.5
Trevejo, J.6
-
41
-
-
84890226269
-
Multivariate analysis in metabolomics
-
Worley, B., and Powers, R. (2013). Multivariate analysis in metabolomics. Curr. Metabolomics 1, 92-107. doi: 10.2174/2213235X11301010092
-
(2013)
Curr. Metabolomics
, vol.1
, pp. 92-107
-
-
Worley, B.1
Powers, R.2
-
42
-
-
84916228533
-
Statistical analysis and modeling of mass spectrometry-based metabolomics data
-
Xi, B., Gu, H., Baniasadi, H., and Raftery, D. (2014). Statistical analysis and modeling of mass spectrometry-based metabolomics data. Methods Mol. Biol. 1198, 333-353. doi: 10.1007/978-1-4939-1258-2_22
-
(2014)
Methods Mol. Biol
, vol.1198
, pp. 333-353
-
-
Xi, B.1
Gu, H.2
Baniasadi, H.3
Raftery, D.4
|