메뉴 건너뛰기




Volumn 3, Issue JUL, 2016, Pages

PLS-based and regularization-based methods for the selection of relevant variables in non-targeted metabolomics data

Author keywords

Least absolute shrinkage and selection operator; Mass spectrometry; Non targeted metabolomics; Orthogonal projections to latent structures discriminant analysis; Statistical analysis

Indexed keywords


EID: 85032362121     PISSN: None     EISSN: 2296889X     Source Type: Journal    
DOI: 10.3389/fmolb.2016.00035     Document Type: Article
Times cited : (47)

References (42)
  • 1
    • 85039998984 scopus 로고    scopus 로고
    • Analytical methods in untargeted metabolomics: state of the art in 2015
    • Alonso, A., Marsal, S., and Antonio, J. (2015). Analytical methods in untargeted metabolomics: state of the art in 2015. Front. Bioeng. Biotechnol. 3:23. doi: 10.3389/fbioe.2015.00023
    • (2015) Front. Bioeng. Biotechnol , vol.3 , pp. 23
    • Alonso, A.1    Marsal, S.2    Antonio, J.3
  • 2
    • 84890601822 scopus 로고    scopus 로고
    • Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension
    • Archer, S. L., Fang, Y. H., Ryan, J. J., and Piao, L. (2013). Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension. Pulm. Circ. 3, 144-152. doi: 10.4103/2045-8932.109960
    • (2013) Pulm. Circ , vol.3 , pp. 144-152
    • Archer, S.L.1    Fang, Y.H.2    Ryan, J.J.3    Piao, L.4
  • 3
    • 79952214267 scopus 로고    scopus 로고
    • Metabolomic profiling for identification of novel potential biomarkers in cardiovascular diseases
    • Barderas, M. G., Laborde, C. M., Posada, M., de la Cuesta, F., Zubiri, I., Vivanco, F., et al. (2011). Metabolomic profiling for identification of novel potential biomarkers in cardiovascular diseases. J. Biomed. Biotechnol. 2011:790132. doi: 10.1155/2011/790132
    • (2011) J. Biomed. Biotechnol , vol.2011
    • Barderas, M.G.1    Laborde, C.M.2    Posada, M.3    de la Cuesta, F.4    Zubiri, I.5    Vivanco, F.6
  • 4
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • Barker, M., and Rayens, W. (2003). Partial least squares for discrimination. J. Chemom. 17, 166-173. doi: 10.1002/cem.785
    • (2003) J. Chemom , vol.17 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 5
    • 66349086742 scopus 로고    scopus 로고
    • Bioactive sphingolipids: metabolism and function
    • Bartke, N., and Hannun, Y. A. (2009). Bioactive sphingolipids: metabolism and function. J. Lipid Res. 50, 91-96. doi: 10.1194/jlr. R800080-JLR200
    • (2009) J. Lipid Res , vol.50 , pp. 91-96
    • Bartke, N.1    Hannun, Y.A.2
  • 6
    • 33846240326 scopus 로고    scopus 로고
    • Statistical strategies for avoiding false discoveries in metabolomics and related experiments
    • Broadhurst, D. I., and Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2, 171-196. doi: 10.1007/s11306-006-0037-z
    • (2006) Metabolomics , vol.2 , pp. 171-196
    • Broadhurst, D.I.1    Kell, D.B.2
  • 7
    • 76649092281 scopus 로고    scopus 로고
    • Controlling the false discovery rate for feature selection in high-resolution NMR spectra
    • Bum Kim, S., Chen, V. C. P., Park, Y., Ziegler, T. R., and Jones, D. P. (2008). Controlling the false discovery rate for feature selection in high-resolution NMR spectra. Stat. Anal. Data Min. 1, 57-66. doi: 10.1002/sam.10005
    • (2008) Stat. Anal. Data Min , vol.1 , pp. 57-66
    • Bum Kim, S.1    Chen, V.C.P.2    Park, Y.3    Ziegler, T.R.4    Jones, D.P.5
  • 8
    • 84870947005 scopus 로고    scopus 로고
    • Combination of LC-MS-and GC-MS-based metabolomics to study the effect of ozonated autohemotherapy on human blood
    • Ciborowski, M., Lipska, A., Godzien, J., Ferrarini, A., Korsak, J., Radziwon, P., et al. (2014). Combination of LC-MS-and GC-MS-based metabolomics to study the effect of ozonated autohemotherapy on human blood. J. Proteome Res. 11, 6231-6241. doi: 10.1021/pr3008946
    • (2014) J. Proteome Res , vol.11 , pp. 6231-6241
    • Ciborowski, M.1    Lipska, A.2    Godzien, J.3    Ferrarini, A.4    Korsak, J.5    Radziwon, P.6
  • 9
    • 84948388423 scopus 로고    scopus 로고
    • Least absolute shrinkage and selection operator and dimensionality reduction techniques in quantitative structure retention relationship modeling of retention in hydrophilic interaction liquid chromatography
    • Daghir-Wojtkowiak, E., Wiczling, P., Bocian, S., Kubik, L., Koslinski, P., Buszewski, B., et al. (2015). Least absolute shrinkage and selection operator and dimensionality reduction techniques in quantitative structure retention relationship modeling of retention in hydrophilic interaction liquid chromatography. J. Chromatogr. A. 1403, 54-62 doi: 10.1016/j.chroma.2015.05.025
    • (2015) J. Chromatogr. A , vol.1403 , pp. 54-62
    • Daghir-Wojtkowiak, E.1    Wiczling, P.2    Bocian, S.3    Kubik, L.4    Koslinski, P.5    Buszewski, B.6
  • 11
    • 79959913950 scopus 로고    scopus 로고
    • Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry
    • Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., and Anderson, N. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060-1083. doi: 10.1038/nprot.2011.335
    • (2011) Nat. Protoc , vol.6 , pp. 1060-1083
    • Dunn, W.B.1    Broadhurst, D.2    Begley, P.3    Zelena, E.4    Francis-McIntyre, S.5    Anderson, N.6
  • 12
    • 84862965840 scopus 로고    scopus 로고
    • Primary fatty acid amide metabolism: conversion of fatty acids and an ethanolamine in N 18 TG 2 and SCP cells 1
    • Farrell, E. K., Chen, Y., Barazanji, M., Jeffries, K. A., Cameroamortegui, F., and Merkler, D. J. (2012). Primary fatty acid amide metabolism: conversion of fatty acids and an ethanolamine in N 18 TG 2 and SCP cells 1. J. Lipid Res. 53, 247-256. doi: 10.1194/jlr. M018606
    • (2012) J. Lipid Res , vol.53 , pp. 247-256
    • Farrell, E.K.1    Chen, Y.2    Barazanji, M.3    Jeffries, K.A.4    Cameroamortegui, F.5    Merkler, D.J.6
  • 13
    • 0034959944 scopus 로고    scopus 로고
    • Combining genomics, metabolome analysis, and biochemical modeling to understand metabolic networks
    • Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modeling to understand metabolic networks. Comp. Funct. Genomics 2, 155-168. doi: 10.1002/cfg.82
    • (2001) Comp. Funct. Genomics , vol.2 , pp. 155-168
    • Fiehn, O.1
  • 15
    • 34748839546 scopus 로고    scopus 로고
    • Proposed minimum reporting standards for data analysis in metabolomics
    • Goodacre, R., Broadhurst, D., Smilde, A., Kristal, B., Baker, J., Beger, R., et al. (2007). Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 3, 231-241. doi: 10.1007/s11306-007-0081-3
    • (2007) Metabolomics , vol.3 , pp. 231-241
    • Goodacre, R.1    Broadhurst, D.2    Smilde, A.3    Kristal, B.4    Baker, J.5    Beger, R.6
  • 16
    • 84870238114 scopus 로고    scopus 로고
    • QSRR modeling for diverse drugs using different feature selection methods coupled with linear and nonlinear regressions
    • Goodarzi, M., Jensen, R., and Vander Heyden, Y. (2012). QSRR modeling for diverse drugs using different feature selection methods coupled with linear and nonlinear regressions. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 1, 84-94. doi: 10.1016/j.jchromb.2012.01.012
    • (2012) J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci , vol.1 , pp. 84-94
    • Goodarzi, M.1    Jensen, R.2    Vander Heyden, Y.3
  • 17
    • 84939138183 scopus 로고    scopus 로고
    • The influence of scaling metabolomics data on model classification accuracy
    • Gromski, P. S., Xu, Y., Hollywood, K. A., Turner, M. L., and Goodacre, R. (2015). The influence of scaling metabolomics data on model classification accuracy. Metabolomics 11, 684-695. doi: 10.1007/s11306-014-0738-7
    • (2015) Metabolomics , vol.11 , pp. 684-695
    • Gromski, P.S.1    Xu, Y.2    Hollywood, K.A.3    Turner, M.L.4    Goodacre, R.5
  • 19
    • 43749087841 scopus 로고    scopus 로고
    • Human metabolic phenotype diversity and its association with diet and blood pressure
    • Holmes, E., Loo, R. L., Stamler, J., Bictash, M., Yap, I. K. S., Chan, Q., et al. (2008). Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453, 396-400. doi: 10.1038/nature06882
    • (2008) Nature , vol.453 , pp. 396-400
    • Holmes, E.1    Loo, R.L.2    Stamler, J.3    Bictash, M.4    Yap, I.K.S.5    Chan, Q.6
  • 20
    • 0035852404 scopus 로고    scopus 로고
    • Variable and subset selection in PLS regression
    • Hoskuldsson, A. (2001). Variable and subset selection in PLS regression. Chemometrics Intell. Lab. Syst. 55, 23-38. doi: 10.1016/S0169-7439(00)00113-1
    • (2001) Chemometrics Intell. Lab. Syst , vol.55 , pp. 23-38
    • Hoskuldsson, A.1
  • 21
    • 79956328118 scopus 로고    scopus 로고
    • Multivariate methods in metabolomics-from pre-processing to dimension reduction and statistical analysis
    • Hovde, K. L. (2011). Multivariate methods in metabolomics-from pre-processing to dimension reduction and statistical analysis. Trends Anal. Chem. 30, 827-841. doi: 10.1016/j.trac.2011.02.007
    • (2011) Trends Anal. Chem , vol.30 , pp. 827-841
    • Hovde, K.L.1
  • 22
    • 84862766223 scopus 로고    scopus 로고
    • Overview of two-norm (L2) and one-norm (L1) Tikhonov regularization variants for full wavelength or sparse spectral multivariate calibration models or maintenance
    • Kalivas, J. H. (2012). Overview of two-norm (L2) and one-norm (L1) Tikhonov regularization variants for full wavelength or sparse spectral multivariate calibration models or maintenance. J. Chemom. 26, 218-230. doi: 10.1002/cem.2429
    • (2012) J. Chemom , vol.26 , pp. 218-230
    • Kalivas, J.H.1
  • 23
    • 63049134550 scopus 로고    scopus 로고
    • Urine metabolomics analysis for kidney cancer detection and biomarker discovery
    • Kim, K., Aronov, P., Zakharkin, S. O., Anderson, D., Perroud, B., Thompson, I. M., et al. (2009). Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Mol. Cell. Proteomics 8, 558-570. doi: 10.1074/mcp. M800165-MCP200
    • (2009) Mol. Cell. Proteomics , vol.8 , pp. 558-570
    • Kim, K.1    Aronov, P.2    Zakharkin, S.O.3    Anderson, D.4    Perroud, B.5    Thompson, I.M.6
  • 24
    • 80054018310 scopus 로고    scopus 로고
    • A method for handling metabonomics data from liquid chromatography/mass spectrometry: combinational use of support vector machine recursive feature elimination, genetic algorithm and random forest for feature selection
    • Lin, X., Wang, Q., Yin, P., Tang, L., Tan, Y., Li, H., et al. (2011). A method for handling metabonomics data from liquid chromatography/mass spectrometry: combinational use of support vector machine recursive feature elimination, genetic algorithm and random forest for feature selection. Metabolomics 7, 549-558. doi: 10.1007/s11306-011-0274-7
    • (2011) Metabolomics , vol.7 , pp. 549-558
    • Lin, X.1    Wang, Q.2    Yin, P.3    Tang, L.4    Tan, Y.5    Li, H.6
  • 25
    • 0033774752 scopus 로고    scopus 로고
    • 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension
    • MacLean, M. R., Herve, P., Eddahibi, S., and Adnot, S. (2000). 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br. J. Pharmacol. 131, 161-168. doi: 10.1038/sj.bjp.0703570
    • (2000) Br. J. Pharmacol , vol.131 , pp. 161-168
    • MacLean, M.R.1    Herve, P.2    Eddahibi, S.3    Adnot, S.4
  • 26
    • 0032694577 scopus 로고    scopus 로고
    • Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data
    • Nicholson, J. K., Lindon, J. C., and Holmes, E. (1999). Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29, 1181-1189. doi: 10.1080/004982599238047
    • (1999) Xenobiotica , vol.29 , pp. 1181-1189
    • Nicholson, J.K.1    Lindon, J.C.2    Holmes, E.3
  • 27
    • 85018193104 scopus 로고    scopus 로고
    • Regularized group regression methods for genomic pre-diction: Bridge MCP. SCAD. group bridge. group lasso. sparse group lasso. Group MCP and group SCAD
    • Ogutu, J. O., and Piepho, H. P. (2014). Regularized group regression methods for genomic pre-diction: Bridge. MCP. SCAD. group bridge. group lasso. sparse group lasso. Group MCP and group SCAD. BMC Proc. 8:S7. doi: 10.1186/1753-6561-8-S5-S7
    • (2014) BMC Proc , vol.8 , pp. S7
    • Ogutu, J.O.1    Piepho, H.P.2
  • 28
    • 84858790233 scopus 로고    scopus 로고
    • Innovation: metabolomics: the apogee of the omics trilogy
    • Patti, G. J., Yanes, O., and Siuzdak, G. (2012). Innovation: metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13, 263-269. doi: 10.1038/nrm3314
    • (2012) Nat. Rev. Mol. Cell Biol , vol.13 , pp. 263-269
    • Patti, G.J.1    Yanes, O.2    Siuzdak, G.3
  • 29
    • 84901275033 scopus 로고    scopus 로고
    • Genetic variation in the TP53 pathway and bladder cancer risk A comprehensive analysis
    • Pineda, S., Milne, R. L., Calle, M. L., Rothman, N., Lopez de Maturana, E., Herranz, J., et al. (2014). Genetic variation in the TP53 pathway and bladder cancer risk. A comprehensive analysis. PLoS ONE 9:e89952. doi: 10.1371/journal.pone.0089952
    • (2014) PLoS ONE , vol.9
    • Pineda, S.1    Milne, R.L.2    Calle, M.L.3    Rothman, N.4    Lopez de Maturana, E.5    Herranz, J.6
  • 30
    • 31344450644 scopus 로고    scopus 로고
    • Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms
    • Ramadan, Z., Jacobs, D., Grigorov, M., and Kochhar, S. (2006). Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. Talanta 68, 1683-1691. doi: 10.1016/j.talanta.2005.08.042
    • (2006) Talanta , vol.68 , pp. 1683-1691
    • Ramadan, Z.1    Jacobs, D.2    Grigorov, M.3    Kochhar, S.4
  • 31
    • 84914179053 scopus 로고    scopus 로고
    • Vienna: R Foundation for Statistical Computing
    • R Core Team (2014). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at: http://www. R-project.org/
    • (2014) R: A Language and Environment for Statistical Computing
  • 32
    • 0141812475 scopus 로고    scopus 로고
    • An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra
    • Sjoblom, J., Svensson, O., Josefson, M., Kullberg, H., and Wold, S. (1998). An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra. Chemometrics Intell. Lab. Syst. 44, 229-244. doi: 10.1016/S0169-7439(98)00112-9
    • (1998) Chemometrics Intell. Lab. Syst , vol.44 , pp. 229-244
    • Sjoblom, J.1    Svensson, O.2    Josefson, M.3    Kullberg, H.4    Wold, S.5
  • 33
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 58, 267-288
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 34
    • 84918781455 scopus 로고    scopus 로고
    • PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the K-fold cross-validation quality parameters
    • Triba, M. N., Le Moyec, L., Amathieu, R., Goossens, C., Bouchemal, N., Nahon, P., et al. (2015). PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol. Biosyst. 11, 13-19. doi: 10.1039/C4MB00414K
    • (2015) Mol. Biosyst , vol.11 , pp. 13-19
    • Triba, M.N.1    Le Moyec, L.2    Amathieu, R.3    Goossens, C.4    Bouchemal, N.5    Nahon, P.6
  • 35
    • 33747019547 scopus 로고    scopus 로고
    • Centering, scaling, and transformations: improving the biological information content of metabolomics data
    • van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., and van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142. doi: 10.1186/1471-2164-7-142
    • (2006) BMC Genomics , vol.7 , pp. 142
    • van den Berg, R.A.1    Hoefsloot, H.C.2    Westerhuis, J.A.3    Smilde, A.K.4    van der Werf, M.J.5
  • 36
    • 84885922460 scopus 로고    scopus 로고
    • A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data
    • Vinaixa, M., Samino, S., Saez, I., Duran, J., Guinovart, J. J., and Yanes, O. (2012). A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Metabolites 2, 775-795. doi: 10.3390/metabo2040775
    • (2012) Metabolites , vol.2 , pp. 775-795
    • Vinaixa, M.1    Samino, S.2    Saez, I.3    Duran, J.4    Guinovart, J.J.5    Yanes, O.6
  • 37
    • 41149120242 scopus 로고    scopus 로고
    • Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models
    • Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 80, 115-122. doi: 10.1021/ac0713510
    • (2008) Anal. Chem , vol.80 , pp. 115-122
    • Wiklund, S.1    Johansson, E.2    Sjöström, L.3    Mellerowicz, E.J.4    Edlund, U.5    Shockcor, J.P.6
  • 38
    • 0032517819 scopus 로고    scopus 로고
    • Orthogonal signal correction of near-infrared spectra
    • Wold, S., Antti, H., Lindgren, F., and Ohman, J. (1998). Orthogonal signal correction of near-infrared spectra. Chemometrics Intell. Lab. Syst. 44, 175-185. doi: 10.1016/S0169-7439(98)00109-9
    • (1998) Chemometrics Intell. Lab. Syst , vol.44 , pp. 175-185
    • Wold, S.1    Antti, H.2    Lindgren, F.3    Ohman, J.4
  • 39
    • 0035965476 scopus 로고    scopus 로고
    • Pls-regression: a basic tool of chemometrics
    • Wold, S., Sjöström, M., and Eriksson, L. (2001). Pls-regression: a basic tool of chemometrics. Chemometrics Intell. Lab. Syst. 58, 109-130. doi: 10.1016/S0169-7439(01)00155-1
    • (2001) Chemometrics Intell. Lab. Syst , vol.58 , pp. 109-130
    • Wold, S.1    Sjöström, M.2    Eriksson, L.3
  • 40
    • 67649948769 scopus 로고    scopus 로고
    • Variable selection using iterative reformulation of training set models for discrimination of samples: application to gas chromatography/mass spectrometry of mouse urinary metabolites
    • Wongravee, K., Heinrich, N., Holmboe, M., Schaefer, M. L., Reed, R. R., Trevejo, J., et al. (2009). Variable selection using iterative reformulation of training set models for discrimination of samples: application to gas chromatography/mass spectrometry of mouse urinary metabolites. Anal. Chem. 81, 5204-5217. doi: 10.1021/ac900251c
    • (2009) Anal. Chem , vol.81 , pp. 5204-5217
    • Wongravee, K.1    Heinrich, N.2    Holmboe, M.3    Schaefer, M.L.4    Reed, R.R.5    Trevejo, J.6
  • 41
    • 84890226269 scopus 로고    scopus 로고
    • Multivariate analysis in metabolomics
    • Worley, B., and Powers, R. (2013). Multivariate analysis in metabolomics. Curr. Metabolomics 1, 92-107. doi: 10.2174/2213235X11301010092
    • (2013) Curr. Metabolomics , vol.1 , pp. 92-107
    • Worley, B.1    Powers, R.2
  • 42
    • 84916228533 scopus 로고    scopus 로고
    • Statistical analysis and modeling of mass spectrometry-based metabolomics data
    • Xi, B., Gu, H., Baniasadi, H., and Raftery, D. (2014). Statistical analysis and modeling of mass spectrometry-based metabolomics data. Methods Mol. Biol. 1198, 333-353. doi: 10.1007/978-1-4939-1258-2_22
    • (2014) Methods Mol. Biol , vol.1198 , pp. 333-353
    • Xi, B.1    Gu, H.2    Baniasadi, H.3    Raftery, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.