메뉴 건너뛰기




Volumn 5, Issue , 2014, Pages

An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models

Author keywords

[No Author keywords available]

Indexed keywords

GENOME; METABOLISM; SOFTWARE;

EID: 84912569105     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms5893     Document Type: Article
Times cited : (36)

References (46)
  • 1
    • 0028108519 scopus 로고
    • Metabolic flux balancing: Basic concepts, scientific and practical use
    • Varma, A. & Palsson, B. Metabolic flux balancing: basic concepts, scientific and practical use. Nat. Biotechnol. 12, 994-998 (1994).
    • (1994) Nat. Biotechnol. , vol.12 , pp. 994-998
    • Varma, A.1    Palsson, B.2
  • 2
    • 0035281870 scopus 로고    scopus 로고
    • Metabolic modeling of microbial strains in silico
    • Covert, M. et al. Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 26, 179-186 (2001).
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 179-186
    • Covert, M.1
  • 3
    • 0037385718 scopus 로고    scopus 로고
    • Genome-scale microbial in silico models: The constraints-based approach
    • Price, N., Papin, J., Schilling, C. & Palsson, B. Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol. 21, 162-169 (2003).
    • (2003) Trends Biotechnol. , vol.21 , pp. 162-169
    • Price, N.1    Papin, J.2    Schilling, C.3    Palsson, B.4
  • 4
    • 9544253891 scopus 로고    scopus 로고
    • Genome-scale models of microbial cells: Evaluating the consequences of constraints
    • Price, N., Reed, J. & Palsson, B. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886-897 (2004).
    • (2004) Nat. Rev. Microbiol. , vol.2 , pp. 886-897
    • Price, N.1    Reed, J.2    Palsson, B.3
  • 5
    • 0028146781 scopus 로고
    • Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110
    • Varma, A. & Palsson, B. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60, 3724-3731 (1994).
    • (1994) Appl. Environ. Microbiol. , vol.60 , pp. 3724-3731
    • Varma, A.1    Palsson, B.2
  • 6
    • 33748448689 scopus 로고    scopus 로고
    • Using the topology of metabolic networks to predict viability of mutant strains
    • Wunderlich, Z. & Mirny, L. Using the topology of metabolic networks to predict viability of mutant strains. Biophys. J. 91, 2304-2311 (2006).
    • (2006) Biophys. J. , vol.91 , pp. 2304-2311
    • Wunderlich, Z.1    Mirny, L.2
  • 8
    • 0014649230 scopus 로고
    • Biochemical systems analysis: I. Some mathematical properties of the rate law for the component enzymatic reactions
    • Savageau, M. Biochemical systems analysis: I. some mathematical properties of the rate law for the component enzymatic reactions. J. Theor. Biol. 25, 365-369 (1969).
    • (1969) J. Theor. Biol. , vol.25 , pp. 365-369
    • Savageau, M.1
  • 9
    • 0001125440 scopus 로고
    • Detecting strictly detailed balanced subnetworks in open chemical reaction networks
    • Schuster, R. & Schuster, S. Detecting strictly detailed balanced subnetworks in open chemical reaction networks. J. Math. Chem. 6, 17-40 (1991).
    • (1991) J. Math. Chem. , vol.6 , pp. 17-40
    • Schuster, R.1    Schuster, S.2
  • 10
    • 13244292328 scopus 로고    scopus 로고
    • Computation of elementary modes: A unifying framework and the new binary approach
    • Gagneur, J. & Klamt, S. Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioinformatics 5 (2004).
    • (2004) BMC Bioinformatics 5
    • Gagneur, J.1    Klamt, S.2
  • 11
    • 61449115916 scopus 로고    scopus 로고
    • A genome-scale metabolic reconstruction of Mycoplasma genitalium, iPS189
    • Suthers, P. et al. A genome-scale metabolic reconstruction of Mycoplasma genitalium, iPS189. PLoS Comput. Biol. 5 (2009).
    • (2009) PLoS Comput. Biol. , vol.5
    • Suthers, P.1
  • 12
    • 57049122976 scopus 로고    scopus 로고
    • Modes and cuts in metabolic networks: Complexity and algorithms
    • Acuña, V. et al. Modes and cuts in metabolic networks: complexity and algorithms. BioSystems 95, 51-60 (2009).
    • (2009) BioSystems , vol.95 , pp. 51-60
    • Acuña, V.1
  • 13
    • 1042269472 scopus 로고    scopus 로고
    • Minimal cut sets in biochemical reaction networks
    • Klamt, S. & Gilles, E. Minimal cut sets in biochemical reaction networks. Bioinformatics 20, 226-234 (2004).
    • (2004) Bioinformatics , vol.20 , pp. 226-234
    • Klamt, S.1    Gilles, E.2
  • 14
    • 34347258175 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: The COBRA toolbox
    • Becker, S. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox. Nat. Protoc. 2, 727-738 (2007).
    • (2007) Nat. Protoc. , vol.2 , pp. 727-738
    • Becker, S.1
  • 15
    • 84862159261 scopus 로고    scopus 로고
    • Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions
    • Orth, J. & Palsson, B. Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions. BMC Syst. Biol. 6, 30 (2012).
    • (2012) BMC Syst. Biol. , vol.6 , pp. 30
    • Orth, J.1    Palsson, B.2
  • 16
    • 65649126379 scopus 로고    scopus 로고
    • Connecting extracellular metabolomic measurements to intracellular flux states in yeast
    • Mo, M., Palsson, B. & Herrgard, M. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 3, 37 (2009).
    • (2009) BMC Syst. Biol. , vol.3 , pp. 37
    • Mo, M.1    Palsson, B.2    Herrgard, M.3
  • 17
    • 84923276846 scopus 로고    scopus 로고
    • In Silico Organisms http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms (2013).
    • (2013) Silico Organisms
  • 19
    • 33747856186 scopus 로고    scopus 로고
    • Metatool 5.0: Fast and flexible elementary modes analysis
    • von Kamp, A. & Schuster, S. Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22, 1930-1931 (2006).
    • (2006) Bioinformatics , vol.22 , pp. 1930-1931
    • Von Kamp, A.1    Schuster, S.2
  • 20
    • 34447551397 scopus 로고    scopus 로고
    • Structural and functional analysis of cellular networks with CellNetAnalyzer
    • Klamt, S., Saez-Rodriguez, J. & Gilles, E. Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst. Biol. 1 (2007).
    • (2007) BMC Syst. Biol. , vol.1
    • Klamt, S.1    Saez-Rodriguez, J.2    Gilles, E.3
  • 21
    • 2942641986 scopus 로고    scopus 로고
    • Safe bounds in linear and mixed-integer programming
    • Neumaier, A. & Shcherbina, O. Safe bounds in linear and mixed-integer programming. Math. Program. A 99, 283-296 (2004).
    • (2004) Math. Program. A , vol.99 , pp. 283-296
    • Neumaier, A.1    Shcherbina, O.2
  • 25
    • 84923271372 scopus 로고    scopus 로고
    • CPLEX Optimizer
    • CPLEX Optimizer http://www-01.ibm.com/software/integration/optimization/cplex-optimizer (2014).
    • (2014)
  • 26
    • 0035125986 scopus 로고    scopus 로고
    • In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data
    • Edwards, J., Ibarra, R. & Palsson, B. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19, 125-130 (2001).
    • (2001) Nat. Biotechnol. , vol.19 , pp. 125-130
    • Edwards, J.1    Ibarra, R.2    Palsson, B.3
  • 27
    • 33645757123 scopus 로고    scopus 로고
    • Low degree metabolites explain essential reactions and enhance modularity in biological networks
    • Samal, A. et al. Low degree metabolites explain essential reactions and enhance modularity in biological networks. BMC Bioinformatics 7, 118 (2006).
    • (2006) BMC Bioinformatics , vol.7 , pp. 118
    • Samal, A.1
  • 28
  • 29
    • 24044514673 scopus 로고    scopus 로고
    • Ab initio prediction of thermodynamically feasible reaction directions from biochemical network stoichiometry
    • Yang, F., Qian, H. & Beard, D. Ab initio prediction of thermodynamically feasible reaction directions from biochemical network stoichiometry. Metab. Eng. 7, 251-259 (2005).
    • (2005) Metab. Eng. , vol.7 , pp. 251-259
    • Yang, F.1    Qian, H.2    Beard, D.3
  • 30
    • 2342627280 scopus 로고    scopus 로고
    • Thermodynamic constraints for biochemical networks
    • Beard, D., Babson, E., Curtis, E. & Qian, H. Thermodynamic constraints for biochemical networks. J. Theor. Biol. 228, 327-333 (2004).
    • (2004) J. Theor. Biol. , vol.228 , pp. 327-333
    • Beard, D.1    Babson, E.2    Curtis, E.3    Qian, H.4
  • 31
    • 79551676901 scopus 로고    scopus 로고
    • Elimination of thermodynamically infeasible loops in steady-state metabolic models
    • Schellenberger, J., Lewis, N. & Palsson, B. Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys. J. 100, 544-553 (2011).
    • (2011) Biophys. J. , vol.100 , pp. 544-553
    • Schellenberger, J.1    Lewis, N.2    Palsson, B.3
  • 32
    • 84856566482 scopus 로고    scopus 로고
    • Minimal cut sets in a metabolic network are elementary modes in a dual network
    • Ballerstein, K., von Kamp, A., Klamt, S. & Haus, U. Minimal cut sets in a metabolic network are elementary modes in a dual network. Bioinformatics 28, 381-387 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 381-387
    • Ballerstein, K.1    Von Kamp, A.2    Klamt, S.3    Haus, U.4
  • 33
    • 33845238737 scopus 로고    scopus 로고
    • Systematic assignment of thermodynamic constraints in metabolic network models
    • Kümmel, A., Panke, S. & Heinemann, M. Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinformatics 7, 512 (2006).
    • (2006) BMC Bioinformatics , vol.7 , pp. 512
    • Kümmel, A.1    Panke, S.2    Heinemann, M.3
  • 34
    • 84864048927 scopus 로고    scopus 로고
    • A scalable algorithm to explore the Gibbs energy landscape of genome-scale metabolic networks
    • De Martino, D., Figliuzzi, M., De Martino, A. & Marinari, E. A scalable algorithm to explore the Gibbs energy landscape of genome-scale metabolic networks. PLoS Comput. Biol. 8, e1002562 (2012).
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002562
    • De Martino, D.1    Figliuzzi, M.2    De Martino, A.3    Marinari, E.4
  • 39
    • 84916165498 scopus 로고
    • The largest subdeterminant in a matrix
    • Papadimitriou, S. The largest subdeterminant in a matrix. Bull. Math. Soc. Greece 15, 96-105 (1984).
    • (1984) Bull. Math. Soc. Greece , vol.15 , pp. 96-105
    • Papadimitriou, S.1
  • 40
    • 0001740155 scopus 로고
    • On the complexity of approximating extremal determinants in matrices
    • Khachiyan, L. On the complexity of approximating extremal determinants in matrices. J. Complexity 11, 138-153 (1994).
    • (1994) J. Complexity , vol.11 , pp. 138-153
    • Khachiyan, L.1
  • 44
    • 84972521846 scopus 로고
    • The generalized simplex method for minimizing a linear form under linear inequality constraints
    • Dantzig, G., Orden, A. & Wolfe, P. The generalized simplex method for minimizing a linear form under linear inequality constraints. Pacific J. Math. 5, 183-195 (1955).
    • (1955) Pacific J. Math. , vol.5 , pp. 183-195
    • Dantzig, G.1    Orden, A.2    Wolfe, P.3
  • 45
    • 0000068994 scopus 로고
    • Determining all extreme semi-positive conservation relations in chemical reaction systems: A test criterion for conservativity
    • Schuster, S. & Höfer, T. Determining all extreme semi-positive conservation relations in chemical reaction systems: a test criterion for conservativity. J. Chem. Soc. 87, 2561-2566 (1991).
    • (1991) J. Chem. Soc. , vol.87 , pp. 2561-2566
    • Schuster, S.1    Höfer, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.