메뉴 건너뛰기




Volumn 10, Issue , 2015, Pages 1-6

Genomic, proteomic, and metabolomic data integration strategies

Author keywords

Bioinformatics; Data analysis; Data integration; Genomics; Metabolomics; Networks; Omics; Proteomics

Indexed keywords

ARTICLE; CORRELATIONAL STUDY; DATA ANALYSIS; DATA INTEGRATION; GENOMICS; INFORMATION PROCESSING; METABOLOMICS; ONTOLOGY; PROTEOMICS; SIGNAL TRANSDUCTION;

EID: 84941365835     PISSN: None     EISSN: 11772719     Source Type: Journal    
DOI: 10.4137/BMI.S29511     Document Type: Article
Times cited : (119)

References (33)
  • 1
    • 80053905126 scopus 로고    scopus 로고
    • PREBIC “-Omics” Research Group. An integrated systems biology approach to the study of preterm birth using “-omic” technology-a guideline for research
    • Gracie S, Pennell C, Ekman-Ordeberg G, et al; PREBIC “-Omics” Research Group. An integrated systems biology approach to the study of preterm birth using “-omic” technology-a guideline for research. BMC Pregnancy Childbirth. 2011;11:71.
    • (2011) BMC Pregnancy Childbirth , vol.11 , pp. 71
    • Gracie, S.1    Pennell, C.2    Ekman-Ordeberg, G.3
  • 2
    • 0037372003 scopus 로고    scopus 로고
    • Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals
    • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(suppl):245-54.
    • (2003) Nat Genet , vol.33 , pp. 245-254
    • Jaenisch, R.1    Bird, A.2
  • 3
    • 77953629046 scopus 로고    scopus 로고
    • Regulation of mRNA translation and stability by microRNAs
    • Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351-79.
    • (2010) Annu Rev Biochem , vol.79 , pp. 351-379
    • Fabian, M.R.1    Sonenberg, N.2    Filipowicz, W.3
  • 4
    • 84893781709 scopus 로고    scopus 로고
    • Protein post-translational modifications and regulation of pluripotency in human stem cells
    • Wang YC, Peterson SE, Loring JF. Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res. 2014;24(2):143-60.
    • (2014) Cell Res , vol.24 , Issue.2 , pp. 143-160
    • Wang, Y.C.1    Peterson, S.E.2    Loring, J.F.3
  • 5
    • 84869031541 scopus 로고    scopus 로고
    • Metabolomics in diabetes research
    • Friedrich N. Metabolomics in diabetes research. J Endocrinol. 2012;215(1):29-42.
    • (2012) J Endocrinol , vol.215 , Issue.1 , pp. 29-42
    • Friedrich, N.1
  • 6
    • 59449097019 scopus 로고    scopus 로고
    • Clinical applications of metabolomics in oncology: A review
    • Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology: a review. Clin Cancer Res. 2009;15(2):431-40.
    • (2009) Clin Cancer Res , vol.15 , Issue.2 , pp. 431-440
    • Spratlin, J.L.1    Serkova, N.J.2    Eckhardt, S.G.3
  • 7
    • 84930855003 scopus 로고    scopus 로고
    • Systemic alterations in the metabolome of diabetic nod mice delineate increased oxidative stress accompanied by reduced inflammation and hypertriglyceridemia
    • Fahrmann J, Grapov D, Yang J, et al. Systemic alterations in the metabolome of diabetic nod mice delineate increased oxidative stress accompanied by reduced inflammation and hypertriglyceridemia. Am J Physiol Endocrinol Metab. 2015;308(11):E978-89.
    • (2015) Am J Physiol Endocrinol Metab , vol.308 , Issue.11 , pp. E978-E989
    • Fahrmann, J.1    Grapov, D.2    Yang, J.3
  • 8
    • 84939526643 scopus 로고    scopus 로고
    • Metabolomic markers of altered nucleotide metabolism in early stage adenocarcinoma
    • Wikoff WR, Grapov D, Fahrmann JF, et al. Metabolomic markers of altered nucleotide metabolism in early stage adenocarcinoma. Cancer Prev Res (Phila). 2015;8(5):410-8.
    • (2015) Cancer Prev Res (Phila) , vol.8 , Issue.5 , pp. 410-418
    • Wikoff, W.R.1    Grapov, D.2    Fahrmann, J.F.3
  • 9
    • 84939516051 scopus 로고    scopus 로고
    • MetaMapR: Pathway independent metabolomic network analysis incorporating unknowns
    • Grapov D, Wanichthanarak K, Fiehn O. MetaMapR: pathway independent metabolomic network analysis incorporating unknowns. Bioinformatics. 2015; 31(16):2757-60.
    • (2015) Bioinformatics , vol.31 , Issue.16 , pp. 2757-2760
    • Grapov, D.1    Wanichthanarak, K.2    Fiehn, O.3
  • 10
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-50.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , Issue.43 , pp. 15545-15550
    • Subramanian, A.1    Tamayo, P.2    Mootha, V.K.3
  • 11
    • 80053976986 scopus 로고    scopus 로고
    • Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA
    • Kamburov A, Cavill R, Ebbels TM, Herwig R, Keun HC. Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics. 2011;27(20):2917-8.
    • (2011) Bioinformatics , vol.27 , Issue.20 , pp. 2917-2918
    • Kamburov, A.1    Cavill, R.2    Ebbels, T.M.3    Herwig, R.4    Keun, H.C.5
  • 12
    • 84897674937 scopus 로고    scopus 로고
    • IPEAP: Integrating multiple omics and genetic data for pathway enrichment analysis
    • Sun H, Wang H, Zhu R, et al. iPEAP: integrating multiple omics and genetic data for pathway enrichment analysis. Bioinformatics. 2014;30(5):737-9.
    • (2014) Bioinformatics , vol.30 , Issue.5 , pp. 737-739
    • Sun, H.1    Wang, H.2    Zhu, R.3
  • 13
    • 84979865433 scopus 로고    scopus 로고
    • Metabo Analyst 3.0-making metabolomics more meaningful
    • Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 2015;43(W1):W251-7.
    • (2015) Nucleic Acids Res , vol.43 , Issue.W1 , pp. W251-W257
    • Xia, J.1    Sinelnikov, I.V.2    Han, B.3    Wishart, D.S.4
  • 15
    • 84929144236 scopus 로고    scopus 로고
    • SAMNetWeb: Identifying condition-specific networks linking signaling and transcription
    • Gosline SJ, Oh C, Fraenkel E. SAMNetWeb: identifying condition-specific networks linking signaling and transcription. Bioinformatics. 2015;31(7):1124-6.
    • (2015) Bioinformatics , vol.31 , Issue.7 , pp. 1124-1126
    • Gosline, S.J.1    Oh, C.2    Fraenkel, E.3
  • 16
    • 84941758037 scopus 로고    scopus 로고
    • PwOmics: An R package for pathway-based integration of time-series omics data using public database knowledge
    • Wachter A, Beissbarth T. pwOmics: an R package for pathway-based integration of time-series omics data using public database knowledge. Bioinformatics. 2015. doi:10.1093/bioinformatics/btv323
    • (2015) Bioinformatics
    • Wachter, A.1    Beissbarth, T.2
  • 17
    • 84856562561 scopus 로고    scopus 로고
    • Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data
    • Karnovsky A, Weymouth T, Hull T, et al. Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics. 2012;28(3):373-80.
    • (2012) Bioinformatics , vol.28 , Issue.3 , pp. 373-380
    • Karnovsky, A.1    Weymouth, T.2    Hull, T.3
  • 18
    • 0242490780 scopus 로고    scopus 로고
    • Cytoscape: A software environment for integrated models of biomolecular interaction networks
    • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504.
    • (2003) Genome Res , vol.13 , Issue.11 , pp. 2498-2504
    • Shannon, P.1    Markiel, A.2    Ozier, O.3
  • 19
    • 84858983547 scopus 로고    scopus 로고
    • KEGG for integration and interpretation of large-scale molecular data sets
    • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40(Database issue):D109-114.
    • (2012) Nucleic Acids Res , vol.40 , Issue.Database issue , pp. D109-D114
    • Kanehisa, M.1    Goto, S.2    Sato, Y.3    Furumichi, M.4    Tanabe, M.5
  • 20
    • 80053175990 scopus 로고    scopus 로고
    • PubChem3D: A new resource for scientists
    • Bolton EE, Chen J, Kim S, et al. PubChem3D: a new resource for scientists. J Cheminform. 2011;3(1):32.
    • (2011) J Cheminform , vol.3 , Issue.1 , pp. 32
    • Bolton, E.E.1    Chen, J.2    Kim, S.3
  • 21
    • 84930861884 scopus 로고    scopus 로고
    • Diabetes associated metabolomic perturbations in NOD mice
    • Grapov D, Fahrmann J, Hwang J, et al. Diabetes associated metabolomic perturbations in NOD mice. Metabolomics. 2015;11(2):425-37.
    • (2015) Metabolomics , vol.11 , Issue.2 , pp. 425-437
    • Grapov, D.1    Fahrmann, J.2    Hwang, J.3
  • 24
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA: An R package for weighted correlation network analysis
    • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
    • (2008) BMC Bioinformatics , vol.9 , pp. 559
    • Langfelder, P.1    Horvath, S.2
  • 25
    • 84875380606 scopus 로고    scopus 로고
    • DiffCorr: An R package to analyze and visualize differential correlations in biological networks
    • Fukushima A. DiffCorr: an R package to analyze and visualize differential correlations in biological networks. Gene. 2013;518(1):209-14.
    • (2013) Gene , vol.518 , Issue.1 , pp. 209-214
    • Fukushima, A.1
  • 28
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008;9(3):432-41.
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 29
    • 59649121280 scopus 로고    scopus 로고
    • Reverse engineering molecular regulatory networks from microarray data with qp-graphs
    • Castelo R, Roverato A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. J Comput Biol. 2009;16(2):213-27.
    • (2009) J Comput Biol , vol.16 , Issue.2 , pp. 213-227
    • Castelo, R.1    Roverato, A.2
  • 30
    • 84860650411 scopus 로고    scopus 로고
    • The huge Package for High-dimensional Undirected Graph Estimation in R
    • Zhao T, Liu H, Roeder K, Lafferty J, Wasserman L. The huge Package for High-dimensional Undirected Graph Estimation in R. J Mach Learn Res. 2012;13:1059-62.
    • (2012) J Mach Learn Res , vol.13 , pp. 1059-1062
    • Zhao, T.1    Liu, H.2    Roeder, K.3    Lafferty, J.4    Wasserman, L.5
  • 31
    • 55749093996 scopus 로고    scopus 로고
    • Network inference using informative priors
    • Mukherjee S, Speed TP. Network inference using informative priors. Proc Natl Acad Sci U S A. 2008;105(38):14313-8.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , Issue.38 , pp. 14313-14318
    • Mukherjee, S.1    Speed, T.P.2
  • 32
    • 84920879603 scopus 로고    scopus 로고
    • Pathway and network approaches for identification of cancer signature markers from omics data
    • Wang J, Zuo Y, Man YG, et al. Pathway and network approaches for identification of cancer signature markers from omics data. J Cancer. 2015;6(1):54-65.
    • (2015) J Cancer , vol.6 , Issue.1 , pp. 54-65
    • Wang, J.1    Zuo, Y.2    Man, Y.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.