-
1
-
-
0000245743
-
Statistical modeling: the two cultures (with comments and a rejoinder by the author)
-
Breiman, L., Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat. Sci. 16 (2001), 199–231.
-
(2001)
Stat. Sci.
, vol.16
, pp. 199-231
-
-
Breiman, L.1
-
2
-
-
84984920607
-
A genomic map of the effects of linked selection in Drosophila
-
Elyashiv, E., et al. A genomic map of the effects of linked selection in Drosophila. PLoS Genet., 12, 2016, e1006130.
-
(2016)
PLoS Genet.
, vol.12
-
-
Elyashiv, E.1
-
3
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Hinton, G., et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 29 (2012), 82–97.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, pp. 82-97
-
-
Hinton, G.1
-
4
-
-
0002442796
-
Machine learning in automated text categorization
-
Sebastiani, F., Machine learning in automated text categorization. ACM Comput. Surv. 34 (2002), 1–47.
-
(2002)
ACM Comput. Surv.
, vol.34
, pp. 1-47
-
-
Sebastiani, F.1
-
5
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
F. Fereira Neural Information Processing Systems Foundation
-
Krizhevsky, A., et al. Imagenet classification with deep convolutional neural networks. Fereira, F., (eds.) Advances in Neural Information Processing Systems 25, 2012, Neural Information Processing Systems Foundation, 1097–1105.
-
(2012)
Advances in Neural Information Processing Systems 25
, pp. 1097-1105
-
-
Krizhevsky, A.1
-
6
-
-
84980022857
-
Deep learning for computational biology
-
Angermueller, C., et al. Deep learning for computational biology. Mol. Syst. Biol., 12, 2016, 878.
-
(2016)
Mol. Syst. Biol.
, vol.12
, pp. 878
-
-
Angermueller, C.1
-
7
-
-
0345040882
-
Support vector machine applications in bioinformatics
-
Byvatov, E., Schneider, G., Support vector machine applications in bioinformatics. Appl. Bioinform., 2, 2003, 67.
-
(2003)
Appl. Bioinform.
, vol.2
, pp. 67
-
-
Byvatov, E.1
Schneider, G.2
-
8
-
-
84929510967
-
Machine learning applications in genetics and genomics
-
Libbrecht, M.W., Noble, W.S., Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16 (2015), 321–332.
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 321-332
-
-
Libbrecht, M.W.1
Noble, W.S.2
-
9
-
-
78951472188
-
Distinguishing positive selection from neutral evolution: boosting the performance of summary statistics
-
Lin, K., et al. Distinguishing positive selection from neutral evolution: boosting the performance of summary statistics. Genetics 187 (2011), 229–244.
-
(2011)
Genetics
, vol.187
, pp. 229-244
-
-
Lin, K.1
-
10
-
-
79953744766
-
Estimating divergence time and ancestral effective population size of Bornean and Sumatran orangutan subspecies using a coalescent hidden Markov model
-
Mailund, T., et al. Estimating divergence time and ancestral effective population size of Bornean and Sumatran orangutan subspecies using a coalescent hidden Markov model. PLoS Genet., 7, 2011, e1001319.
-
(2011)
PLoS Genet.
, vol.7
-
-
Mailund, T.1
-
11
-
-
77953731121
-
A population genetic hidden Markov model for detecting genomic regions under selection
-
Kern, A.D., Haussler, D., A population genetic hidden Markov model for detecting genomic regions under selection. Mol. Biol. Evol. 27 (2010), 1673–1685.
-
(2010)
Mol. Biol. Evol.
, vol.27
, pp. 1673-1685
-
-
Kern, A.D.1
Haussler, D.2
-
12
-
-
67650324310
-
Detecting selective sweeps: a new approach based on hidden Markov models
-
Boitard, S., et al. Detecting selective sweeps: a new approach based on hidden Markov models. Genetics 181 (2009), 1567–1578.
-
(2009)
Genetics
, vol.181
, pp. 1567-1578
-
-
Boitard, S.1
-
13
-
-
77955759338
-
Searching for footprints of positive selection in whole-genome SNP data from nonequilibrium populations
-
Pavlidis, P., et al. Searching for footprints of positive selection in whole-genome SNP data from nonequilibrium populations. Genetics 185 (2010), 907–922.
-
(2010)
Genetics
, vol.185
, pp. 907-922
-
-
Pavlidis, P.1
-
14
-
-
84950272772
-
Hierarchical boosting: a machine-learning framework to detect and classify hard selective sweeps in human populations
-
Pybus, M., et al. Hierarchical boosting: a machine-learning framework to detect and classify hard selective sweeps in human populations. Bioinformatics 31 (2015), 3946–3952.
-
(2015)
Bioinformatics
, vol.31
, pp. 3946-3952
-
-
Pybus, M.1
-
15
-
-
84883794892
-
Learning natural selection from the site frequency spectrum
-
Ronen, R., et al. Learning natural selection from the site frequency spectrum. Genetics 195 (2013), 181–193.
-
(2013)
Genetics
, vol.195
, pp. 181-193
-
-
Ronen, R.1
-
16
-
-
84982180013
-
Inferring selective constraint from population genomic data suggests recent regulatory turnover in the human brain
-
Schrider, D.R., Kern, A.D., Inferring selective constraint from population genomic data suggests recent regulatory turnover in the human brain. Genome Biol. Evol. 7 (2015), 3511–3528.
-
(2015)
Genome Biol. Evol.
, vol.7
, pp. 3511-3528
-
-
Schrider, D.R.1
Kern, A.D.2
-
17
-
-
84962425372
-
S/HIC: robust Identification of soft and hard sweeps using machine learning
-
Schrider, D.R., Kern, A.D., S/HIC: robust Identification of soft and hard sweeps using machine learning. PLoS Genet., 12, 2016, e1005928.
-
(2016)
PLoS Genet.
, vol.12
-
-
Schrider, D.R.1
Kern, A.D.2
-
18
-
-
84962045150
-
Deep learning for population genetic inference
-
Sheehan, S., Song, Y.S., Deep learning for population genetic inference. PLoS Comput. Biol., 12, 2016, e1004845.
-
(2016)
PLoS Comput. Biol.
, vol.12
-
-
Sheehan, S.1
Song, Y.S.2
-
19
-
-
0001492549
-
Shape quantization and recognition with randomized trees
-
Amit, Y., Geman, D., Shape quantization and recognition with randomized trees. Neural Comput. 9 (1997), 1545–1588.
-
(1997)
Neural Comput.
, vol.9
, pp. 1545-1588
-
-
Amit, Y.1
Geman, D.2
-
21
-
-
38349031393
-
Supervised machine learning: a review of classification techniques
-
Kotsiantis, S.B., et al. Supervised machine learning: a review of classification techniques. Artif. Intell. Rev. 26 (2006), 159–190.
-
(2006)
Artif. Intell. Rev.
, vol.26
, pp. 159-190
-
-
Kotsiantis, S.B.1
-
23
-
-
55549115654
-
Genes mirror geography within Europe
-
Novembre, J., et al. Genes mirror geography within Europe. Nature, 456, 2008, 98.
-
(2008)
Nature
, vol.456
, pp. 98
-
-
Novembre, J.1
-
24
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
Rabiner, L.R., A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 (1989), 257–286.
-
(1989)
Proc. IEEE
, vol.77
, pp. 257-286
-
-
Rabiner, L.R.1
-
25
-
-
0030034795
-
A hidden Markov model approach to variation among sites in rate of evolution
-
Felsenstein, J., Churchill, G.A., A hidden Markov model approach to variation among sites in rate of evolution. Mol. Biol. Evol. 13 (1996), 93–104.
-
(1996)
Mol. Biol. Evol.
, vol.13
, pp. 93-104
-
-
Felsenstein, J.1
Churchill, G.A.2
-
26
-
-
23744458086
-
Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes
-
Siepel, A., et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15 (2005), 1034–1050.
-
(2005)
Genome Res.
, vol.15
, pp. 1034-1050
-
-
Siepel, A.1
-
27
-
-
70350139887
-
Ancestral population genomics: the coalescent hidden Markov model approach
-
Dutheil, J.Y., et al. Ancestral population genomics: the coalescent hidden Markov model approach. Genetics 183 (2009), 259–274.
-
(2009)
Genetics
, vol.183
, pp. 259-274
-
-
Dutheil, J.Y.1
-
28
-
-
85044554998
-
Genomic relationships and speciation times of human, chimpanzee, and gorilla inferred from a coalescent hidden Markov model
-
Hobolth, A., et al. Genomic relationships and speciation times of human, chimpanzee, and gorilla inferred from a coalescent hidden Markov model. PLoS Genet., 3, 2007, e7.
-
(2007)
PLoS Genet.
, vol.3
, pp. e7
-
-
Hobolth, A.1
-
29
-
-
84864841125
-
Detecting selective sweeps from pooled next-generation sequencing samples
-
Boitard, S., et al. Detecting selective sweeps from pooled next-generation sequencing samples. Mol. Biol. Evol. 29 (2012), 2177–2186.
-
(2012)
Mol. Biol. Evol.
, vol.29
, pp. 2177-2186
-
-
Boitard, S.1
-
30
-
-
56449098139
-
An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators
-
Liang, P., Jordan, M.I., An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators. Proceedings of the 25th International Conference on Machine Learning, ACM, 2008, 584–591.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning, ACM
, pp. 584-591
-
-
Liang, P.1
Jordan, M.I.2
-
31
-
-
84936853791
-
The more, the merrier: the blessing of dimensionality for learning large Gaussian mixtures
-
Anderson, J., et al. The more, the merrier: the blessing of dimensionality for learning large Gaussian mixtures. Proc. Mach. Learn. Res. 35 (2014), 1135–1164.
-
(2014)
Proc. Mach. Learn. Res.
, vol.35
, pp. 1135-1164
-
-
Anderson, J.1
-
32
-
-
34547975052
-
Scaling learning algorithms towards AI
-
Bengio, Y., LeCun, Y., Scaling learning algorithms towards AI. Large Scale Kernel Mach. 34 (2007), 1–41.
-
(2007)
Large Scale Kernel Mach.
, vol.34
, pp. 1-41
-
-
Bengio, Y.1
LeCun, Y.2
-
33
-
-
85015184566
-
Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review
-
Poggio, T., et al. Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review. Int. J. Autom. Comput. 14 (2017), 503–519.
-
(2017)
Int. J. Autom. Comput.
, vol.14
, pp. 503-519
-
-
Poggio, T.1
-
34
-
-
0033911640
-
Hitchhiking under positive Darwinian selection
-
Fay, J.C., Wu, C.-I., Hitchhiking under positive Darwinian selection. Genetics 155 (2000), 1405–1413.
-
(2000)
Genetics
, vol.155
, pp. 1405-1413
-
-
Fay, J.C.1
Wu, C.-I.2
-
35
-
-
0027453041
-
Statistical tests of neutrality of mutations
-
Fu, Y.-X., Li, W.-H., Statistical tests of neutrality of mutations. Genetics 133 (1993), 693–709.
-
(1993)
Genetics
, vol.133
, pp. 693-709
-
-
Fu, Y.-X.1
Li, W.-H.2
-
36
-
-
0030821992
-
Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection
-
Fu, Y.-X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147 (1997), 915–925.
-
(1997)
Genetics
, vol.147
, pp. 915-925
-
-
Fu, Y.-X.1
-
37
-
-
0030873114
-
A test of neutrality based on interlocus associations
-
Kelly, J.K., A test of neutrality based on interlocus associations. Genetics 146 (1997), 1197–1206.
-
(1997)
Genetics
, vol.146
, pp. 1197-1206
-
-
Kelly, J.K.1
-
38
-
-
3843073210
-
Linkage disequilibrium as a signature of selective sweeps
-
Kim, Y., Nielsen, R., Linkage disequilibrium as a signature of selective sweeps. Genetics 167 (2004), 1513–1524.
-
(2004)
Genetics
, vol.167
, pp. 1513-1524
-
-
Kim, Y.1
Nielsen, R.2
-
39
-
-
0024313579
-
Statistical method for testing the neutral mutation hypothesis by DNA polymorphism
-
Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123 (1989), 585–595.
-
(1989)
Genetics
, vol.123
, pp. 585-595
-
-
Tajima, F.1
-
40
-
-
33644981509
-
A map of recent positive selection in the human genome
-
Voight, B.F., et al. A map of recent positive selection in the human genome. PLoS Biol., 4, 2006, e72.
-
(2006)
PLoS Biol.
, vol.4
, pp. e72
-
-
Voight, B.F.1
-
41
-
-
69349090197
-
Learning deep architectures for AI
-
Bengio, Y., Learning deep architectures for AI. Found. Trends Mach. Learn. 2 (2009), 1–127.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
42
-
-
0036964474
-
Approximate Bayesian computation in population genetics
-
Beaumont, M.A., et al. Approximate Bayesian computation in population genetics. Genetics 162 (2002), 2025–2035.
-
(2002)
Genetics
, vol.162
, pp. 2025-2035
-
-
Beaumont, M.A.1
-
43
-
-
84865790047
-
An integrated encyclopedia of DNA elements in the human genome
-
Dunham, I., et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489 (2012), 57–74.
-
(2012)
Nature
, vol.489
, pp. 57-74
-
-
Dunham, I.1
-
44
-
-
84975795680
-
An integrated map of genetic variation from 1,092 human genomes
-
Altshuler, D.M., et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491 (2012), 56–65.
-
(2012)
Nature
, vol.491
, pp. 56-65
-
-
Altshuler, D.M.1
-
45
-
-
0029099781
-
Properties of statistical tests of neutrality for DNA polymorphism data
-
Simonsen, K.L., et al. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141 (1995), 413–429.
-
(1995)
Genetics
, vol.141
, pp. 413-429
-
-
Simonsen, K.L.1
-
46
-
-
85019126732
-
Differential gene expression in the human brain is associated with conserved, but not accelerated, noncoding sequences
-
Meyer, K.A., et al. Differential gene expression in the human brain is associated with conserved, but not accelerated, noncoding sequences. Mol. Biol. Evol. 34 (2017), 1217–1229.
-
(2017)
Mol. Biol. Evol.
, vol.34
, pp. 1217-1229
-
-
Meyer, K.A.1
-
47
-
-
85044548128
-
Forces shaping the fastest evolving regions in the human genome
-
Pollard, K.S., et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet., 2, 2006, e168.
-
(2006)
PLoS Genet.
, vol.2
, pp. e168
-
-
Pollard, K.S.1
-
48
-
-
0016220238
-
The hitch-hiking effect of a favourable gene
-
Maynard Smith, J., Haigh, J., The hitch-hiking effect of a favourable gene. Genet. Res. 23 (1974), 23–35.
-
(1974)
Genet. Res.
, vol.23
, pp. 23-35
-
-
Maynard Smith, J.1
Haigh, J.2
-
49
-
-
20444430245
-
A scan for positively selected genes in the genomes of humans and chimpanzees
-
Nielsen, R., et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol., 3, 2005, e170.
-
(2005)
PLoS Biol.
, vol.3
, pp. e170
-
-
Nielsen, R.1
-
50
-
-
0035478854
-
Random forests
-
Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
51
-
-
33646430006
-
Extremely randomized trees
-
Geurts, P., et al. Extremely randomized trees. Mach. Learn. 63 (2006), 3–42.
-
(2006)
Mach. Learn.
, vol.63
, pp. 3-42
-
-
Geurts, P.1
-
52
-
-
18844439645
-
Soft sweeps molecular population genetics of adaptation from standing genetic variation
-
Hermisson, J., Pennings, P.S., Soft sweeps molecular population genetics of adaptation from standing genetic variation. Genetics 169 (2005), 2335–2352.
-
(2005)
Genetics
, vol.169
, pp. 2335-2352
-
-
Hermisson, J.1
Pennings, P.S.2
-
53
-
-
0035109378
-
Haldane's sieve and adaptation from the standing genetic variation
-
Orr, H.A., Betancourt, A.J., Haldane's sieve and adaptation from the standing genetic variation. Genetics 157 (2001), 875–884.
-
(2001)
Genetics
, vol.157
, pp. 875-884
-
-
Orr, H.A.1
Betancourt, A.J.2
-
54
-
-
73449149044
-
Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data
-
Gutenkunst, R.N., et al. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet., 5, 2009, e1000695.
-
(2009)
PLoS Genet.
, vol.5
-
-
Gutenkunst, R.N.1
-
55
-
-
33847253975
-
Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics
-
Hey, J., Nielsen, R., Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc. Natl. Acad. Sci. 104 (2007), 2785–2790.
-
(2007)
Proc. Natl. Acad. Sci.
, vol.104
, pp. 2785-2790
-
-
Hey, J.1
Nielsen, R.2
-
56
-
-
79960914105
-
Inference of human population history from individual whole-genome sequences
-
Li, H., Durbin, R., Inference of human population history from individual whole-genome sequences. Nature 475 (2011), 493–496.
-
(2011)
Nature
, vol.475
, pp. 493-496
-
-
Li, H.1
Durbin, R.2
-
57
-
-
84929130112
-
Exploring population size changes using SNP frequency spectra
-
Liu, X., Fu, Y.-X., Exploring population size changes using SNP frequency spectra. Nat. Genet. 47 (2015), 555–559.
-
(2015)
Nat. Genet.
, vol.47
, pp. 555-559
-
-
Liu, X.1
Fu, Y.-X.2
-
58
-
-
84879621036
-
Estimating variable effective population sizes from multiple genomes: a sequentially Markov conditional sampling distribution approach
-
Sheehan, S., et al. Estimating variable effective population sizes from multiple genomes: a sequentially Markov conditional sampling distribution approach. Genetics 194 (2013), 647–662.
-
(2013)
Genetics
, vol.194
, pp. 647-662
-
-
Sheehan, S.1
-
59
-
-
78149388939
-
Approximate Bayesian computation in evolution and ecology
-
Beaumont, M.A., Approximate Bayesian computation in evolution and ecology. Annu. Rev. Ecol. Evol. Syst. 41 (2010), 379–406.
-
(2010)
Annu. Rev. Ecol. Evol. Syst.
, vol.41
, pp. 379-406
-
-
Beaumont, M.A.1
-
60
-
-
84869057921
-
A novel approach for choosing summary statistics in approximate Bayesian computation
-
Aeschbacher, S., et al. A novel approach for choosing summary statistics in approximate Bayesian computation. Genetics 192 (2012), 1027–1047.
-
(2012)
Genetics
, vol.192
, pp. 1027-1047
-
-
Aeschbacher, S.1
-
61
-
-
85047018046
-
Learning summary statistic for approximate Bayesian computation via deep neural network
-
Published online October 8 2015
-
Jiang, B., et al. Learning summary statistic for approximate Bayesian computation via deep neural network. arXiv, 2015 Published online October 8 2015 https://arxiv.org/abs/1510.02175.
-
(2015)
arXiv
-
-
Jiang, B.1
-
62
-
-
73549122582
-
Non-linear regression models for approximate Bayesian computation
-
Blum, M.G., François, O., Non-linear regression models for approximate Bayesian computation. Stat. Comput. 20 (2010), 63–73.
-
(2010)
Stat. Comput.
, vol.20
, pp. 63-73
-
-
Blum, M.G.1
François, O.2
-
63
-
-
84962195640
-
Reliable ABC model choice via random forests
-
Pudlo, P., et al. Reliable ABC model choice via random forests. Bioinformatics 32 (2016), 859–866.
-
(2016)
Bioinformatics
, vol.32
, pp. 859-866
-
-
Pudlo, P.1
-
64
-
-
85044559048
-
Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia
-
Published online July 31, 2017
-
Schrider, D., et al. Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia. bioRxiv, 2017 Published online July 31, 2017 https://www.biorxiv.org/content/early/2017/07/31/170670.
-
(2017)
bioRxiv
-
-
Schrider, D.1
-
65
-
-
85030620251
-
Predictive models of recombination rate variation across the Drosophila melanogaster genome
-
Adrian, A.B., et al. Predictive models of recombination rate variation across the Drosophila melanogaster genome. Genome Biol. Evol. 8 (2016), 2597–2612.
-
(2016)
Genome Biol. Evol.
, vol.8
, pp. 2597-2612
-
-
Adrian, A.B.1
-
66
-
-
84973124298
-
New software for the fast estimation of population recombination rates (FastEPRR) in the genomic era
-
Gao, F., et al. New software for the fast estimation of population recombination rates (FastEPRR) in the genomic era. Genes Genomes Genet. 6 (2016), 1563–1571.
-
(2016)
Genes Genomes Genet.
, vol.6
, pp. 1563-1571
-
-
Gao, F.1
-
67
-
-
84878616246
-
A fast estimate for the population recombination rate based on regression
-
Lin, K., et al. A fast estimate for the population recombination rate based on regression. Genetics 194 (2013), 473–484.
-
(2013)
Genetics
, vol.194
, pp. 473-484
-
-
Lin, K.1
-
68
-
-
2142773942
-
The fine-scale structure of recombination rate variation in the human genome
-
McVean, G.A., et al. The fine-scale structure of recombination rate variation in the human genome. Science 304 (2004), 581–584.
-
(2004)
Science
, vol.304
, pp. 581-584
-
-
McVean, G.A.1
-
69
-
-
84954077710
-
The consequences of not accounting for background selection in demographic inference
-
Ewing, G.B., Jensen, J.D., The consequences of not accounting for background selection in demographic inference. Mol. Ecol. 25 (2016), 135–141.
-
(2016)
Mol. Ecol.
, vol.25
, pp. 135-141
-
-
Ewing, G.B.1
Jensen, J.D.2
-
70
-
-
84994884935
-
Effects of linked selective sweeps on demographic inference and model selection
-
Schrider, D.R., et al. Effects of linked selective sweeps on demographic inference and model selection. Genetics 204 (2016), 1207–1223.
-
(2016)
Genetics
, vol.204
, pp. 1207-1223
-
-
Schrider, D.R.1
-
71
-
-
84906486689
-
Overfeat: Integrated recognition, localization and detection using convolutional networks
-
Published online December 21, 2013
-
Sermanet, P., et al. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv, 2013 Published online December 21, 2013 https://arxiv.org/abs/1312.6229.
-
(2013)
arXiv
-
-
Sermanet, P.1
-
72
-
-
84959913792
-
Fractional max-pooling
-
Published online December 18, 2004
-
Graham, B., Fractional max-pooling. arXiv, 2014 Published online December 18, 2004 https://arxiv.org/abs/1412.6071.
-
(2014)
arXiv
-
-
Graham, B.1
-
73
-
-
71149086466
-
Learning structural SVMs with latent variables
-
Yu, C.-N.J., Joachims, T., Learning structural SVMs with latent variables. Proceedings of the 26th Annual International Conference on Machine Learning, ACM, 2009, 1169–1176.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning, ACM
, pp. 1169-1176
-
-
Yu, C.-N.J.1
Joachims, T.2
-
74
-
-
0016491430
-
On the number of segregating sites in genetical models without recombination
-
Watterson, G., On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7 (1975), 256–276.
-
(1975)
Theor. Popul. Biol.
, vol.7
, pp. 256-276
-
-
Watterson, G.1
-
75
-
-
0036184745
-
Generating samples under a Wright–Fisher neutral model of genetic variation
-
Hudson, R.R., Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics 18 (2002), 337–338.
-
(2002)
Bioinformatics
, vol.18
, pp. 337-338
-
-
Hudson, R.R.1
-
76
-
-
80555140075
-
Scikit-learn: machine learning in Python
-
Pedregosa, F., et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
77
-
-
0005814023
-
Mathematical model for studying genetic variation in terms of restriction endonucleases
-
Nei, M., Li, W.-H., Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. 76 (1979), 5269–5273.
-
(1979)
Proc. Natl. Acad. Sci.
, vol.76
, pp. 5269-5273
-
-
Nei, M.1
Li, W.-H.2
-
78
-
-
84924411185
-
Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps
-
Garud, N.R., et al. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLoS Genet., 11, 2015, e1005004.
-
(2015)
PLoS Genet.
, vol.11
-
-
Garud, N.R.1
-
79
-
-
84885911072
-
Population genomics of rapid adaptation by soft selective sweeps
-
Messer, P.W., Petrov, D.A., Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. 28 (2013), 659–669.
-
(2013)
Trends Ecol. Evol.
, vol.28
, pp. 659-669
-
-
Messer, P.W.1
Petrov, D.A.2
-
80
-
-
34249753618
-
Support-vector networks
-
Cortes, C., Vapnik, V., Support-vector networks. Mach. Learn. 20 (1995), 273–297.
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
81
-
-
33744584654
-
Induction of decision trees
-
Quinlan, J.R., Induction of decision trees. Mach. Learn. 1 (1986), 81–106.
-
(1986)
Mach. Learn.
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
82
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R.E., The strength of weak learnability. Mach. Learn. 5 (1990), 197–227.
-
(1990)
Mach. Learn.
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
83
-
-
0003487601
-
Neural Networks for Pattern Recognition
-
Oxford University Press
-
Bishop, C.M., Neural Networks for Pattern Recognition. 1995, Oxford University Press.
-
(1995)
-
-
Bishop, C.M.1
-
84
-
-
84930630277
-
Deep learning
-
LeCun, Y., et al. Deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
-
85
-
-
84929000155
-
Soft shoulders ahead: spurious signatures of soft and partial selective sweeps result from linked hard sweeps
-
Schrider, D.R., et al. Soft shoulders ahead: spurious signatures of soft and partial selective sweeps result from linked hard sweeps. Genetics 200 (2015), 267–284.
-
(2015)
Genetics
, vol.200
, pp. 267-284
-
-
Schrider, D.R.1
-
86
-
-
23344438911
-
Distinguishing between selective sweeps and demography using DNA polymorphism data
-
Jensen, J.D., et al. Distinguishing between selective sweeps and demography using DNA polymorphism data. Genetics 170 (2005), 1401–1410.
-
(2005)
Genetics
, vol.170
, pp. 1401-1410
-
-
Jensen, J.D.1
-
87
-
-
27544437635
-
Genomic scans for selective sweeps using SNP data
-
Nielsen, R., et al. Genomic scans for selective sweeps using SNP data. Genome Res. 15 (2005), 1566–1575.
-
(2005)
Genome Res.
, vol.15
, pp. 1566-1575
-
-
Nielsen, R.1
-
88
-
-
85026522718
-
Soft sweeps are the dominant mode of adaptation in the human genome
-
Schrider, D.R., Kern, A.D., Soft sweeps are the dominant mode of adaptation in the human genome. Mol. Biol. Evol. 34 (2017), 1863–1877.
-
(2017)
Mol. Biol. Evol.
, vol.34
, pp. 1863-1877
-
-
Schrider, D.R.1
Kern, A.D.2
-
89
-
-
84878991573
-
A comparative review of dimension reduction methods in approximate Bayesian computation
-
Blum, M.G., et al. A comparative review of dimension reduction methods in approximate Bayesian computation. Stat. Sci. 28 (2013), 189–208.
-
(2013)
Stat. Sci.
, vol.28
, pp. 189-208
-
-
Blum, M.G.1
-
90
-
-
85044552176
-
ABC random forests for Bayesian parameter inference
-
Published online May 18, 2016
-
Marin, J.-M., et al. ABC random forests for Bayesian parameter inference. arXiv, 2016 Published online May 18, 2016 https://arxiv.org/abs/1605.05537.
-
(2016)
arXiv
-
-
Marin, J.-M.1
|