메뉴 건너뛰기




Volumn 34, Issue 4, 2018, Pages 301-312

Supervised Machine Learning for Population Genetics: A New Paradigm

Author keywords

[No Author keywords available]

Indexed keywords

DEMOGRAPHY; GENETIC RECOMBINATION; GENOMICS; HUMAN; HUMAN GENOME; MACHINE LEARNING; POPULATION GENETICS; PRIORITY JOURNAL; PURIFYING SELECTION; REVIEW; SELECTIVE SWEEP; SUPERVISED MACHINE LEARNING; DATA MINING; EVOLUTION; GENETIC SELECTION; INFORMATION PROCESSING; PROCEDURES;

EID: 85040377657     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2017.12.005     Document Type: Review
Times cited : (303)

References (90)
  • 1
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: the two cultures (with comments and a rejoinder by the author)
    • Breiman, L., Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat. Sci. 16 (2001), 199–231.
    • (2001) Stat. Sci. , vol.16 , pp. 199-231
    • Breiman, L.1
  • 2
    • 84984920607 scopus 로고    scopus 로고
    • A genomic map of the effects of linked selection in Drosophila
    • Elyashiv, E., et al. A genomic map of the effects of linked selection in Drosophila. PLoS Genet., 12, 2016, e1006130.
    • (2016) PLoS Genet. , vol.12
    • Elyashiv, E.1
  • 3
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton, G., et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 29 (2012), 82–97.
    • (2012) IEEE Signal Process. Mag. , vol.29 , pp. 82-97
    • Hinton, G.1
  • 4
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani, F., Machine learning in automated text categorization. ACM Comput. Surv. 34 (2002), 1–47.
    • (2002) ACM Comput. Surv. , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 5
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • F. Fereira Neural Information Processing Systems Foundation
    • Krizhevsky, A., et al. Imagenet classification with deep convolutional neural networks. Fereira, F., (eds.) Advances in Neural Information Processing Systems 25, 2012, Neural Information Processing Systems Foundation, 1097–1105.
    • (2012) Advances in Neural Information Processing Systems 25 , pp. 1097-1105
    • Krizhevsky, A.1
  • 6
    • 84980022857 scopus 로고    scopus 로고
    • Deep learning for computational biology
    • Angermueller, C., et al. Deep learning for computational biology. Mol. Syst. Biol., 12, 2016, 878.
    • (2016) Mol. Syst. Biol. , vol.12 , pp. 878
    • Angermueller, C.1
  • 7
    • 0345040882 scopus 로고    scopus 로고
    • Support vector machine applications in bioinformatics
    • Byvatov, E., Schneider, G., Support vector machine applications in bioinformatics. Appl. Bioinform., 2, 2003, 67.
    • (2003) Appl. Bioinform. , vol.2 , pp. 67
    • Byvatov, E.1    Schneider, G.2
  • 8
    • 84929510967 scopus 로고    scopus 로고
    • Machine learning applications in genetics and genomics
    • Libbrecht, M.W., Noble, W.S., Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16 (2015), 321–332.
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 321-332
    • Libbrecht, M.W.1    Noble, W.S.2
  • 9
    • 78951472188 scopus 로고    scopus 로고
    • Distinguishing positive selection from neutral evolution: boosting the performance of summary statistics
    • Lin, K., et al. Distinguishing positive selection from neutral evolution: boosting the performance of summary statistics. Genetics 187 (2011), 229–244.
    • (2011) Genetics , vol.187 , pp. 229-244
    • Lin, K.1
  • 10
    • 79953744766 scopus 로고    scopus 로고
    • Estimating divergence time and ancestral effective population size of Bornean and Sumatran orangutan subspecies using a coalescent hidden Markov model
    • Mailund, T., et al. Estimating divergence time and ancestral effective population size of Bornean and Sumatran orangutan subspecies using a coalescent hidden Markov model. PLoS Genet., 7, 2011, e1001319.
    • (2011) PLoS Genet. , vol.7
    • Mailund, T.1
  • 11
    • 77953731121 scopus 로고    scopus 로고
    • A population genetic hidden Markov model for detecting genomic regions under selection
    • Kern, A.D., Haussler, D., A population genetic hidden Markov model for detecting genomic regions under selection. Mol. Biol. Evol. 27 (2010), 1673–1685.
    • (2010) Mol. Biol. Evol. , vol.27 , pp. 1673-1685
    • Kern, A.D.1    Haussler, D.2
  • 12
    • 67650324310 scopus 로고    scopus 로고
    • Detecting selective sweeps: a new approach based on hidden Markov models
    • Boitard, S., et al. Detecting selective sweeps: a new approach based on hidden Markov models. Genetics 181 (2009), 1567–1578.
    • (2009) Genetics , vol.181 , pp. 1567-1578
    • Boitard, S.1
  • 13
    • 77955759338 scopus 로고    scopus 로고
    • Searching for footprints of positive selection in whole-genome SNP data from nonequilibrium populations
    • Pavlidis, P., et al. Searching for footprints of positive selection in whole-genome SNP data from nonequilibrium populations. Genetics 185 (2010), 907–922.
    • (2010) Genetics , vol.185 , pp. 907-922
    • Pavlidis, P.1
  • 14
    • 84950272772 scopus 로고    scopus 로고
    • Hierarchical boosting: a machine-learning framework to detect and classify hard selective sweeps in human populations
    • Pybus, M., et al. Hierarchical boosting: a machine-learning framework to detect and classify hard selective sweeps in human populations. Bioinformatics 31 (2015), 3946–3952.
    • (2015) Bioinformatics , vol.31 , pp. 3946-3952
    • Pybus, M.1
  • 15
    • 84883794892 scopus 로고    scopus 로고
    • Learning natural selection from the site frequency spectrum
    • Ronen, R., et al. Learning natural selection from the site frequency spectrum. Genetics 195 (2013), 181–193.
    • (2013) Genetics , vol.195 , pp. 181-193
    • Ronen, R.1
  • 16
    • 84982180013 scopus 로고    scopus 로고
    • Inferring selective constraint from population genomic data suggests recent regulatory turnover in the human brain
    • Schrider, D.R., Kern, A.D., Inferring selective constraint from population genomic data suggests recent regulatory turnover in the human brain. Genome Biol. Evol. 7 (2015), 3511–3528.
    • (2015) Genome Biol. Evol. , vol.7 , pp. 3511-3528
    • Schrider, D.R.1    Kern, A.D.2
  • 17
    • 84962425372 scopus 로고    scopus 로고
    • S/HIC: robust Identification of soft and hard sweeps using machine learning
    • Schrider, D.R., Kern, A.D., S/HIC: robust Identification of soft and hard sweeps using machine learning. PLoS Genet., 12, 2016, e1005928.
    • (2016) PLoS Genet. , vol.12
    • Schrider, D.R.1    Kern, A.D.2
  • 18
    • 84962045150 scopus 로고    scopus 로고
    • Deep learning for population genetic inference
    • Sheehan, S., Song, Y.S., Deep learning for population genetic inference. PLoS Comput. Biol., 12, 2016, e1004845.
    • (2016) PLoS Comput. Biol. , vol.12
    • Sheehan, S.1    Song, Y.S.2
  • 19
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Amit, Y., Geman, D., Shape quantization and recognition with randomized trees. Neural Comput. 9 (1997), 1545–1588.
    • (1997) Neural Comput. , vol.9 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 20
  • 21
    • 38349031393 scopus 로고    scopus 로고
    • Supervised machine learning: a review of classification techniques
    • Kotsiantis, S.B., et al. Supervised machine learning: a review of classification techniques. Artif. Intell. Rev. 26 (2006), 159–190.
    • (2006) Artif. Intell. Rev. , vol.26 , pp. 159-190
    • Kotsiantis, S.B.1
  • 22
  • 23
    • 55549115654 scopus 로고    scopus 로고
    • Genes mirror geography within Europe
    • Novembre, J., et al. Genes mirror geography within Europe. Nature, 456, 2008, 98.
    • (2008) Nature , vol.456 , pp. 98
    • Novembre, J.1
  • 24
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L.R., A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 (1989), 257–286.
    • (1989) Proc. IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 25
    • 0030034795 scopus 로고    scopus 로고
    • A hidden Markov model approach to variation among sites in rate of evolution
    • Felsenstein, J., Churchill, G.A., A hidden Markov model approach to variation among sites in rate of evolution. Mol. Biol. Evol. 13 (1996), 93–104.
    • (1996) Mol. Biol. Evol. , vol.13 , pp. 93-104
    • Felsenstein, J.1    Churchill, G.A.2
  • 26
    • 23744458086 scopus 로고    scopus 로고
    • Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes
    • Siepel, A., et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15 (2005), 1034–1050.
    • (2005) Genome Res. , vol.15 , pp. 1034-1050
    • Siepel, A.1
  • 27
    • 70350139887 scopus 로고    scopus 로고
    • Ancestral population genomics: the coalescent hidden Markov model approach
    • Dutheil, J.Y., et al. Ancestral population genomics: the coalescent hidden Markov model approach. Genetics 183 (2009), 259–274.
    • (2009) Genetics , vol.183 , pp. 259-274
    • Dutheil, J.Y.1
  • 28
    • 85044554998 scopus 로고    scopus 로고
    • Genomic relationships and speciation times of human, chimpanzee, and gorilla inferred from a coalescent hidden Markov model
    • Hobolth, A., et al. Genomic relationships and speciation times of human, chimpanzee, and gorilla inferred from a coalescent hidden Markov model. PLoS Genet., 3, 2007, e7.
    • (2007) PLoS Genet. , vol.3 , pp. e7
    • Hobolth, A.1
  • 29
    • 84864841125 scopus 로고    scopus 로고
    • Detecting selective sweeps from pooled next-generation sequencing samples
    • Boitard, S., et al. Detecting selective sweeps from pooled next-generation sequencing samples. Mol. Biol. Evol. 29 (2012), 2177–2186.
    • (2012) Mol. Biol. Evol. , vol.29 , pp. 2177-2186
    • Boitard, S.1
  • 31
    • 84936853791 scopus 로고    scopus 로고
    • The more, the merrier: the blessing of dimensionality for learning large Gaussian mixtures
    • Anderson, J., et al. The more, the merrier: the blessing of dimensionality for learning large Gaussian mixtures. Proc. Mach. Learn. Res. 35 (2014), 1135–1164.
    • (2014) Proc. Mach. Learn. Res. , vol.35 , pp. 1135-1164
    • Anderson, J.1
  • 32
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • Bengio, Y., LeCun, Y., Scaling learning algorithms towards AI. Large Scale Kernel Mach. 34 (2007), 1–41.
    • (2007) Large Scale Kernel Mach. , vol.34 , pp. 1-41
    • Bengio, Y.1    LeCun, Y.2
  • 33
    • 85015184566 scopus 로고    scopus 로고
    • Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review
    • Poggio, T., et al. Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review. Int. J. Autom. Comput. 14 (2017), 503–519.
    • (2017) Int. J. Autom. Comput. , vol.14 , pp. 503-519
    • Poggio, T.1
  • 34
    • 0033911640 scopus 로고    scopus 로고
    • Hitchhiking under positive Darwinian selection
    • Fay, J.C., Wu, C.-I., Hitchhiking under positive Darwinian selection. Genetics 155 (2000), 1405–1413.
    • (2000) Genetics , vol.155 , pp. 1405-1413
    • Fay, J.C.1    Wu, C.-I.2
  • 35
    • 0027453041 scopus 로고
    • Statistical tests of neutrality of mutations
    • Fu, Y.-X., Li, W.-H., Statistical tests of neutrality of mutations. Genetics 133 (1993), 693–709.
    • (1993) Genetics , vol.133 , pp. 693-709
    • Fu, Y.-X.1    Li, W.-H.2
  • 36
    • 0030821992 scopus 로고    scopus 로고
    • Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection
    • Fu, Y.-X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147 (1997), 915–925.
    • (1997) Genetics , vol.147 , pp. 915-925
    • Fu, Y.-X.1
  • 37
    • 0030873114 scopus 로고    scopus 로고
    • A test of neutrality based on interlocus associations
    • Kelly, J.K., A test of neutrality based on interlocus associations. Genetics 146 (1997), 1197–1206.
    • (1997) Genetics , vol.146 , pp. 1197-1206
    • Kelly, J.K.1
  • 38
    • 3843073210 scopus 로고    scopus 로고
    • Linkage disequilibrium as a signature of selective sweeps
    • Kim, Y., Nielsen, R., Linkage disequilibrium as a signature of selective sweeps. Genetics 167 (2004), 1513–1524.
    • (2004) Genetics , vol.167 , pp. 1513-1524
    • Kim, Y.1    Nielsen, R.2
  • 39
    • 0024313579 scopus 로고
    • Statistical method for testing the neutral mutation hypothesis by DNA polymorphism
    • Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123 (1989), 585–595.
    • (1989) Genetics , vol.123 , pp. 585-595
    • Tajima, F.1
  • 40
    • 33644981509 scopus 로고    scopus 로고
    • A map of recent positive selection in the human genome
    • Voight, B.F., et al. A map of recent positive selection in the human genome. PLoS Biol., 4, 2006, e72.
    • (2006) PLoS Biol. , vol.4 , pp. e72
    • Voight, B.F.1
  • 41
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio, Y., Learning deep architectures for AI. Found. Trends Mach. Learn. 2 (2009), 1–127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 42
    • 0036964474 scopus 로고    scopus 로고
    • Approximate Bayesian computation in population genetics
    • Beaumont, M.A., et al. Approximate Bayesian computation in population genetics. Genetics 162 (2002), 2025–2035.
    • (2002) Genetics , vol.162 , pp. 2025-2035
    • Beaumont, M.A.1
  • 43
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • Dunham, I., et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489 (2012), 57–74.
    • (2012) Nature , vol.489 , pp. 57-74
    • Dunham, I.1
  • 44
    • 84975795680 scopus 로고    scopus 로고
    • An integrated map of genetic variation from 1,092 human genomes
    • Altshuler, D.M., et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491 (2012), 56–65.
    • (2012) Nature , vol.491 , pp. 56-65
    • Altshuler, D.M.1
  • 45
    • 0029099781 scopus 로고
    • Properties of statistical tests of neutrality for DNA polymorphism data
    • Simonsen, K.L., et al. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141 (1995), 413–429.
    • (1995) Genetics , vol.141 , pp. 413-429
    • Simonsen, K.L.1
  • 46
    • 85019126732 scopus 로고    scopus 로고
    • Differential gene expression in the human brain is associated with conserved, but not accelerated, noncoding sequences
    • Meyer, K.A., et al. Differential gene expression in the human brain is associated with conserved, but not accelerated, noncoding sequences. Mol. Biol. Evol. 34 (2017), 1217–1229.
    • (2017) Mol. Biol. Evol. , vol.34 , pp. 1217-1229
    • Meyer, K.A.1
  • 47
    • 85044548128 scopus 로고    scopus 로고
    • Forces shaping the fastest evolving regions in the human genome
    • Pollard, K.S., et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet., 2, 2006, e168.
    • (2006) PLoS Genet. , vol.2 , pp. e168
    • Pollard, K.S.1
  • 48
    • 0016220238 scopus 로고
    • The hitch-hiking effect of a favourable gene
    • Maynard Smith, J., Haigh, J., The hitch-hiking effect of a favourable gene. Genet. Res. 23 (1974), 23–35.
    • (1974) Genet. Res. , vol.23 , pp. 23-35
    • Maynard Smith, J.1    Haigh, J.2
  • 49
    • 20444430245 scopus 로고    scopus 로고
    • A scan for positively selected genes in the genomes of humans and chimpanzees
    • Nielsen, R., et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol., 3, 2005, e170.
    • (2005) PLoS Biol. , vol.3 , pp. e170
    • Nielsen, R.1
  • 50
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 51
    • 33646430006 scopus 로고    scopus 로고
    • Extremely randomized trees
    • Geurts, P., et al. Extremely randomized trees. Mach. Learn. 63 (2006), 3–42.
    • (2006) Mach. Learn. , vol.63 , pp. 3-42
    • Geurts, P.1
  • 52
    • 18844439645 scopus 로고    scopus 로고
    • Soft sweeps molecular population genetics of adaptation from standing genetic variation
    • Hermisson, J., Pennings, P.S., Soft sweeps molecular population genetics of adaptation from standing genetic variation. Genetics 169 (2005), 2335–2352.
    • (2005) Genetics , vol.169 , pp. 2335-2352
    • Hermisson, J.1    Pennings, P.S.2
  • 53
    • 0035109378 scopus 로고    scopus 로고
    • Haldane's sieve and adaptation from the standing genetic variation
    • Orr, H.A., Betancourt, A.J., Haldane's sieve and adaptation from the standing genetic variation. Genetics 157 (2001), 875–884.
    • (2001) Genetics , vol.157 , pp. 875-884
    • Orr, H.A.1    Betancourt, A.J.2
  • 54
    • 73449149044 scopus 로고    scopus 로고
    • Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data
    • Gutenkunst, R.N., et al. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet., 5, 2009, e1000695.
    • (2009) PLoS Genet. , vol.5
    • Gutenkunst, R.N.1
  • 55
    • 33847253975 scopus 로고    scopus 로고
    • Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics
    • Hey, J., Nielsen, R., Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc. Natl. Acad. Sci. 104 (2007), 2785–2790.
    • (2007) Proc. Natl. Acad. Sci. , vol.104 , pp. 2785-2790
    • Hey, J.1    Nielsen, R.2
  • 56
    • 79960914105 scopus 로고    scopus 로고
    • Inference of human population history from individual whole-genome sequences
    • Li, H., Durbin, R., Inference of human population history from individual whole-genome sequences. Nature 475 (2011), 493–496.
    • (2011) Nature , vol.475 , pp. 493-496
    • Li, H.1    Durbin, R.2
  • 57
    • 84929130112 scopus 로고    scopus 로고
    • Exploring population size changes using SNP frequency spectra
    • Liu, X., Fu, Y.-X., Exploring population size changes using SNP frequency spectra. Nat. Genet. 47 (2015), 555–559.
    • (2015) Nat. Genet. , vol.47 , pp. 555-559
    • Liu, X.1    Fu, Y.-X.2
  • 58
    • 84879621036 scopus 로고    scopus 로고
    • Estimating variable effective population sizes from multiple genomes: a sequentially Markov conditional sampling distribution approach
    • Sheehan, S., et al. Estimating variable effective population sizes from multiple genomes: a sequentially Markov conditional sampling distribution approach. Genetics 194 (2013), 647–662.
    • (2013) Genetics , vol.194 , pp. 647-662
    • Sheehan, S.1
  • 59
    • 78149388939 scopus 로고    scopus 로고
    • Approximate Bayesian computation in evolution and ecology
    • Beaumont, M.A., Approximate Bayesian computation in evolution and ecology. Annu. Rev. Ecol. Evol. Syst. 41 (2010), 379–406.
    • (2010) Annu. Rev. Ecol. Evol. Syst. , vol.41 , pp. 379-406
    • Beaumont, M.A.1
  • 60
    • 84869057921 scopus 로고    scopus 로고
    • A novel approach for choosing summary statistics in approximate Bayesian computation
    • Aeschbacher, S., et al. A novel approach for choosing summary statistics in approximate Bayesian computation. Genetics 192 (2012), 1027–1047.
    • (2012) Genetics , vol.192 , pp. 1027-1047
    • Aeschbacher, S.1
  • 61
    • 85047018046 scopus 로고    scopus 로고
    • Learning summary statistic for approximate Bayesian computation via deep neural network
    • Published online October 8 2015
    • Jiang, B., et al. Learning summary statistic for approximate Bayesian computation via deep neural network. arXiv, 2015 Published online October 8 2015 https://arxiv.org/abs/1510.02175.
    • (2015) arXiv
    • Jiang, B.1
  • 62
    • 73549122582 scopus 로고    scopus 로고
    • Non-linear regression models for approximate Bayesian computation
    • Blum, M.G., François, O., Non-linear regression models for approximate Bayesian computation. Stat. Comput. 20 (2010), 63–73.
    • (2010) Stat. Comput. , vol.20 , pp. 63-73
    • Blum, M.G.1    François, O.2
  • 63
    • 84962195640 scopus 로고    scopus 로고
    • Reliable ABC model choice via random forests
    • Pudlo, P., et al. Reliable ABC model choice via random forests. Bioinformatics 32 (2016), 859–866.
    • (2016) Bioinformatics , vol.32 , pp. 859-866
    • Pudlo, P.1
  • 64
    • 85044559048 scopus 로고    scopus 로고
    • Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia
    • Published online July 31, 2017
    • Schrider, D., et al. Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia. bioRxiv, 2017 Published online July 31, 2017 https://www.biorxiv.org/content/early/2017/07/31/170670.
    • (2017) bioRxiv
    • Schrider, D.1
  • 65
    • 85030620251 scopus 로고    scopus 로고
    • Predictive models of recombination rate variation across the Drosophila melanogaster genome
    • Adrian, A.B., et al. Predictive models of recombination rate variation across the Drosophila melanogaster genome. Genome Biol. Evol. 8 (2016), 2597–2612.
    • (2016) Genome Biol. Evol. , vol.8 , pp. 2597-2612
    • Adrian, A.B.1
  • 66
    • 84973124298 scopus 로고    scopus 로고
    • New software for the fast estimation of population recombination rates (FastEPRR) in the genomic era
    • Gao, F., et al. New software for the fast estimation of population recombination rates (FastEPRR) in the genomic era. Genes Genomes Genet. 6 (2016), 1563–1571.
    • (2016) Genes Genomes Genet. , vol.6 , pp. 1563-1571
    • Gao, F.1
  • 67
    • 84878616246 scopus 로고    scopus 로고
    • A fast estimate for the population recombination rate based on regression
    • Lin, K., et al. A fast estimate for the population recombination rate based on regression. Genetics 194 (2013), 473–484.
    • (2013) Genetics , vol.194 , pp. 473-484
    • Lin, K.1
  • 68
    • 2142773942 scopus 로고    scopus 로고
    • The fine-scale structure of recombination rate variation in the human genome
    • McVean, G.A., et al. The fine-scale structure of recombination rate variation in the human genome. Science 304 (2004), 581–584.
    • (2004) Science , vol.304 , pp. 581-584
    • McVean, G.A.1
  • 69
    • 84954077710 scopus 로고    scopus 로고
    • The consequences of not accounting for background selection in demographic inference
    • Ewing, G.B., Jensen, J.D., The consequences of not accounting for background selection in demographic inference. Mol. Ecol. 25 (2016), 135–141.
    • (2016) Mol. Ecol. , vol.25 , pp. 135-141
    • Ewing, G.B.1    Jensen, J.D.2
  • 70
    • 84994884935 scopus 로고    scopus 로고
    • Effects of linked selective sweeps on demographic inference and model selection
    • Schrider, D.R., et al. Effects of linked selective sweeps on demographic inference and model selection. Genetics 204 (2016), 1207–1223.
    • (2016) Genetics , vol.204 , pp. 1207-1223
    • Schrider, D.R.1
  • 71
    • 84906486689 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • Published online December 21, 2013
    • Sermanet, P., et al. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv, 2013 Published online December 21, 2013 https://arxiv.org/abs/1312.6229.
    • (2013) arXiv
    • Sermanet, P.1
  • 72
    • 84959913792 scopus 로고    scopus 로고
    • Fractional max-pooling
    • Published online December 18, 2004
    • Graham, B., Fractional max-pooling. arXiv, 2014 Published online December 18, 2004 https://arxiv.org/abs/1412.6071.
    • (2014) arXiv
    • Graham, B.1
  • 74
    • 0016491430 scopus 로고
    • On the number of segregating sites in genetical models without recombination
    • Watterson, G., On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7 (1975), 256–276.
    • (1975) Theor. Popul. Biol. , vol.7 , pp. 256-276
    • Watterson, G.1
  • 75
    • 0036184745 scopus 로고    scopus 로고
    • Generating samples under a Wright–Fisher neutral model of genetic variation
    • Hudson, R.R., Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics 18 (2002), 337–338.
    • (2002) Bioinformatics , vol.18 , pp. 337-338
    • Hudson, R.R.1
  • 76
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: machine learning in Python
    • Pedregosa, F., et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 77
    • 0005814023 scopus 로고
    • Mathematical model for studying genetic variation in terms of restriction endonucleases
    • Nei, M., Li, W.-H., Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. 76 (1979), 5269–5273.
    • (1979) Proc. Natl. Acad. Sci. , vol.76 , pp. 5269-5273
    • Nei, M.1    Li, W.-H.2
  • 78
    • 84924411185 scopus 로고    scopus 로고
    • Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps
    • Garud, N.R., et al. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLoS Genet., 11, 2015, e1005004.
    • (2015) PLoS Genet. , vol.11
    • Garud, N.R.1
  • 79
    • 84885911072 scopus 로고    scopus 로고
    • Population genomics of rapid adaptation by soft selective sweeps
    • Messer, P.W., Petrov, D.A., Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. 28 (2013), 659–669.
    • (2013) Trends Ecol. Evol. , vol.28 , pp. 659-669
    • Messer, P.W.1    Petrov, D.A.2
  • 80
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., Vapnik, V., Support-vector networks. Mach. Learn. 20 (1995), 273–297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 81
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J.R., Induction of decision trees. Mach. Learn. 1 (1986), 81–106.
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 82
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R.E., The strength of weak learnability. Mach. Learn. 5 (1990), 197–227.
    • (1990) Mach. Learn. , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 83
    • 0003487601 scopus 로고
    • Neural Networks for Pattern Recognition
    • Oxford University Press
    • Bishop, C.M., Neural Networks for Pattern Recognition. 1995, Oxford University Press.
    • (1995)
    • Bishop, C.M.1
  • 84
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., et al. Deep learning. Nature 521 (2015), 436–444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1
  • 85
    • 84929000155 scopus 로고    scopus 로고
    • Soft shoulders ahead: spurious signatures of soft and partial selective sweeps result from linked hard sweeps
    • Schrider, D.R., et al. Soft shoulders ahead: spurious signatures of soft and partial selective sweeps result from linked hard sweeps. Genetics 200 (2015), 267–284.
    • (2015) Genetics , vol.200 , pp. 267-284
    • Schrider, D.R.1
  • 86
    • 23344438911 scopus 로고    scopus 로고
    • Distinguishing between selective sweeps and demography using DNA polymorphism data
    • Jensen, J.D., et al. Distinguishing between selective sweeps and demography using DNA polymorphism data. Genetics 170 (2005), 1401–1410.
    • (2005) Genetics , vol.170 , pp. 1401-1410
    • Jensen, J.D.1
  • 87
    • 27544437635 scopus 로고    scopus 로고
    • Genomic scans for selective sweeps using SNP data
    • Nielsen, R., et al. Genomic scans for selective sweeps using SNP data. Genome Res. 15 (2005), 1566–1575.
    • (2005) Genome Res. , vol.15 , pp. 1566-1575
    • Nielsen, R.1
  • 88
    • 85026522718 scopus 로고    scopus 로고
    • Soft sweeps are the dominant mode of adaptation in the human genome
    • Schrider, D.R., Kern, A.D., Soft sweeps are the dominant mode of adaptation in the human genome. Mol. Biol. Evol. 34 (2017), 1863–1877.
    • (2017) Mol. Biol. Evol. , vol.34 , pp. 1863-1877
    • Schrider, D.R.1    Kern, A.D.2
  • 89
    • 84878991573 scopus 로고    scopus 로고
    • A comparative review of dimension reduction methods in approximate Bayesian computation
    • Blum, M.G., et al. A comparative review of dimension reduction methods in approximate Bayesian computation. Stat. Sci. 28 (2013), 189–208.
    • (2013) Stat. Sci. , vol.28 , pp. 189-208
    • Blum, M.G.1
  • 90
    • 85044552176 scopus 로고    scopus 로고
    • ABC random forests for Bayesian parameter inference
    • Published online May 18, 2016
    • Marin, J.-M., et al. ABC random forests for Bayesian parameter inference. arXiv, 2016 Published online May 18, 2016 https://arxiv.org/abs/1605.05537.
    • (2016) arXiv
    • Marin, J.-M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.