메뉴 건너뛰기




Volumn 28, Issue 2, 2013, Pages 189-208

A comparative review of dimension reduction methods in approximate bayesian computation

Author keywords

Approximate Bayesian computation; Dimension reduction; Likelihood free inference; Regularization; Variable selection

Indexed keywords


EID: 84878991573     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/12-STS406     Document Type: Article
Times cited : (315)

References (67)
  • 1
    • 77957553895 scopus 로고    scopus 로고
    • Partial least square regression, projection on latent structure regression
    • ABDI, H. and WILLIAMS, L. J. (2010). Partial least square regression, projection on latent structure regression. Wiley Interdiscip. Rev. Comput. Stat. 2 433-459.
    • (2010) Wiley Interdiscip. Rev. Comput. Stat. , vol.2 , pp. 433-459
    • Abdi, H.1    Williams, L.J.2
  • 2
    • 84869057921 scopus 로고    scopus 로고
    • A novel approach for choosing summary statistics in approximate Bayesian computation
    • AESCHBACHER, S., BEAUMONT, M. A., and FUTSCHIK, A. (2012). A novel approach for choosing summary statistics in approximate Bayesian computation. Genetics 192 1027-1047.
    • (2012) Genetics , vol.192 , pp. 1027-1047
    • Aeschbacher, S.1    Beaumont, M.A.2    Futschik, A.3
  • 3
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • MR0423716
    • AKAIKE, H. (1974). A new look at the statistical model identification. IEEE Trans. Automat. Control AC-19 716-723. MR0423716
    • (1974) IEEE Trans. Automat. Control AC-19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 59849109653 scopus 로고    scopus 로고
    • Bayesian estimation of quantile distributions
    • MR2486231
    • ALLINGHAM, D., KING, R. A. R., and MENGERSEN, K. L. (2009). Bayesian estimation of quantile distributions. Stat. Comput. 19 189-201. MR2486231
    • (2009) Stat. Comput. , vol.19 , pp. 189-201
    • Allingham, D.1    King, R.A.R.2    Mengersen, K.L.3
  • 6
    • 84867996819 scopus 로고    scopus 로고
    • Considerate approaches to constructing summary statistics for ABC model selection
    • MR2992293
    • BARNES, C., FILIPPI, S., STUMPF, M. P. H., and THORNE, T. (2012). Considerate approaches to constructing summary statistics for ABC model selection. Stat. Comput. 22 1181-1197. MR2992293
    • (2012) Stat. Comput. , vol.22 , pp. 1181-1197
    • Barnes, C.1    Filippi, S.2    Stumpf, M.P.H.3    Thorne, T.4
  • 9
    • 0036964474 scopus 로고    scopus 로고
    • Approximate Bayesian computation in population genetics
    • BEAUMONT, M. A., ZHANG, W., and BALDING, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics 162 2025-2035.
    • (2002) Genetics , vol.162 , pp. 2025-2035
    • Beaumont, M.A.1    Zhang, W.2    Balding, D.J.3
  • 10
    • 71249121103 scopus 로고    scopus 로고
    • Adaptivity for ABC algorithms: The ABC-PMC scheme
    • BEAUMONT, M. A., MARIN, J. M., CORNUET, J. M., and ROBERT, C. P. (2009). Adaptivity for ABC algorithms: The ABC-PMC scheme. Biometrika 96 983-990.
    • (2009) Biometrika , vol.96 , pp. 983-990
    • Beaumont, M.A.1    Marin, J.M.2    Cornuet, J.M.3    Robert, C.P.4
  • 11
    • 77954247262 scopus 로고    scopus 로고
    • ABC as a flexible framework to estimate demography over space, and time: Some cons, many pros
    • BERTORELLE, G., BENAZZO, A., and MONA, S. (2010). ABC as a flexible framework to estimate demography over space, and time: Some cons, many pros. Mol. Ecol. 19 2609-2625.
    • (2010) Mol. Ecol. , vol.19 , pp. 2609-2625
    • Bertorelle, G.1    Benazzo, A.2    Mona, S.3
  • 12
    • 77956219298 scopus 로고    scopus 로고
    • Approximate Bayesian computation: A nonparametric perspective
    • MR2752613
    • BLUM, M. G. B. (2010a). Approximate Bayesian computation: A nonparametric perspective. J. Amer. Statist. Assoc. 105 1178- 1187. MR2752613
    • (2010) J. Amer. Statist. Assoc. , vol.105
    • Blum, M.G.B.1
  • 13
    • 80053531841 scopus 로고    scopus 로고
    • Choosing the summary statistics, and the acceptance rate in approximate Bayesian computation
    • Springer, New York (G. Saporta, and Y. Lechevallier, eds.)
    • BLUM, M. G. B. (2010b). Choosing the summary statistics, and the acceptance rate in approximate Bayesian computation. In COMPSTAT 2010: Proceedings in Computational Statistics (G. Saporta, and Y. Lechevallier, eds.) 47-56. Springer, New York.
    • (2010) COMPSTAT 2010: Proceedings in Computational Statistics , pp. 47-56
    • Blum, M.G.B.1
  • 14
    • 73549122582 scopus 로고    scopus 로고
    • Non-linear regression models for approximate Bayesian computation
    • MR2578077
    • BLUM,M. G. B., and FRANçOIS, O. (2010). Non-linear regression models for approximate Bayesian computation. Stat. Comput. 20 63-73. MR2578077
    • (2010) Stat. Comput. , vol.20 , pp. 63-73
    • Blum, M.G.B.1    François, O.2
  • 16
    • 80455168757 scopus 로고    scopus 로고
    • Bayesian learning from marginal data in bionetwork models
    • MR2851291
    • BONASSI, F. V., YOU, L. and WEST, M. (2011). Bayesian learning from marginal data in bionetwork models. Stat. Appl. Genet. Mol. Biol. 10 Art. 49, 29. MR2851291
    • (2011) Stat. Appl. Genet. Mol. Biol. 10 Art. , vol.49 , pp. 29
    • Bonassi, F.V.1    You, L.2    West, M.3
  • 18
    • 33846515112 scopus 로고    scopus 로고
    • Partial least squares: A versatile tool for the analysis of high-dimensional genomic data
    • BOULESTEIX, A.-L., and STRIMMER, K. (2007). Partial least squares: A versatile tool for the analysis of high-dimensional genomic data. Brief. Bioinformatics 8 32-44.
    • (2007) Brief. Bioinformatics , vol.8 , pp. 32-44
    • Boulesteix, A.-L.1    Strimmer, K.2
  • 22
    • 84857190557 scopus 로고    scopus 로고
    • An adaptive sequential Monte Carlo method for approximate Bayesian computation
    • DEL MORAL, P., DOUCET, A., and JASRA, A. (2012). An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. 22 1009-1020.
    • (2012) Stat. Comput. , vol.22 , pp. 1009-1020
    • Del Moral, P.1    Doucet, A.2    Jasra, A.3
  • 23
    • 79952603857 scopus 로고    scopus 로고
    • Estimation of parameters for macroparasite population evolution using approximate Bayesian computation
    • MR2898834
    • DROVANDI, C. C., and PETTITT, A. N. (2011). Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics 67 225-233. MR2898834
    • (2011) Biometrics , vol.67 , pp. 225-233
    • Drovandi, C.C.1    Pettitt, A.N.2
  • 25
    • 84865301018 scopus 로고    scopus 로고
    • Estimation of demo-genetic model probabilities with approximate Bayesian computation using linear discriminant analysis on summary statistics
    • ESTOUP, A., LOMBAERT, E., MARIN, J. M., GUILLEMAUD, T., PUDLO, P., ROBERT, C., and CORNUET, J. M. (2012). Estimation of demo-genetic model probabilities with approximate Bayesian computation using linear discriminant analysis on summary statistics. Molecular Ecology Resources 12 846-855.
    • (2012) Molecular Ecology Resources , vol.12 , pp. 846-855
    • Estoup, A.1    Lombaert, E.2    Marin, J.M.3    Guillemaud, T.4    Pudlo, P.5    Robert, C.6    Cornuet, J.M.7
  • 27
    • 84861111043 scopus 로고    scopus 로고
    • Constructing summary statistics for approximate Bayesian computation: Semiautomatic approximate Bayesian computation (with discussion)
    • MR2925370
    • FEARNHEAD, P., and PRANGLE, D. (2012). Constructing summary statistics for approximate Bayesian computation: Semiautomatic approximate Bayesian computation (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 74 419-474. MR2925370
    • (2012) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.74 , pp. 419-474
    • Fearnhead, P.1    Prangle, D.2
  • 28
    • 84878997786 scopus 로고    scopus 로고
    • Contribution to the discussion of Fearnhead, and Prangle (2012) Constructing summary statistics for approximate Bayesian computation: Semi-automatic approximate Bayesian computation
    • FILIPPI, S., BARNES, C. P., and STUMPF, M. P. H. (2012). Contribution to the discussion of Fearnhead, and Prangle (2012). Constructing summary statistics for approximate Bayesian computation: Semi-automatic approximate Bayesian computation. J. R. Stat. Soc. Ser. B Stat. Methodol. 74 459-460.
    • (2012) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.74 , pp. 459-460
    • Filippi, S.1    Barnes, C.P.2    Stumpf, M.P.H.3
  • 29
  • 30
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • MR0533250
    • GOLUB, G. H., HEATH, M. and WAHBA, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21 215-223. MR0533250
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 32
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • HOERL, A. E., and KENNARD, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 33
    • 0036184745 scopus 로고    scopus 로고
    • Generating samples under a Wright- Fisher neutral model of genetic variation
    • HUDSON, R. R. (2002). Generating samples under a Wright- Fisher neutral model of genetic variation. Bioinformatics 18 337-338.
    • (2002) Bioinformatics , vol.18 , pp. 337-338
    • Hudson, R.R.1
  • 34
    • 0001354983 scopus 로고    scopus 로고
    • Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion
    • MR1616041
    • HURVICH, C. M., SIMONOFF, J. S., and TSAI, C.-L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 271-293. MR1616041
    • (1998) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.60 , pp. 271-293
    • Hurvich, C.M.1    Simonoff, J.S.2    Tsai, C.-L.3
  • 35
    • 70349119250 scopus 로고
    • Regression, and time series model selection in small samples
    • MR1016020
    • HURVICH, C. M., and TSAI, C.-L. (1989). Regression, and time series model selection in small samples. Biometrika 76 297- 307. MR1016020
    • (1989) Biometrika , vol.76
    • Hurvich, C.M.1    Tsai, C.-L.2
  • 36
    • 1842765676 scopus 로고    scopus 로고
    • Information, and posterior probability criteria for model selection in local likelihood estimation
    • MR1952740
    • IRIZARRY, R. A. (2001). Information, and posterior probability criteria for model selection in local likelihood estimation. J. Amer. Statist. Assoc. 96 303-315. MR1952740
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 303-315
    • Irizarry, R.A.1
  • 37
    • 84861153209 scopus 로고    scopus 로고
    • Filtering via approximate Bayesian computation
    • JASRA, A., SINGH, S. S.,MARTIN, J. S. and MCCOY, E. (2012). Filtering via approximate Bayesian computation. Statist. Comput. 22 1223-1237.
    • (2012) Statist. Comput. , vol.22 , pp. 1223-1237
    • Jasra, A.1    Singh, S.S.2    Martin, J.S.3    Mccoy, E.4
  • 38
    • 79961229131 scopus 로고    scopus 로고
    • Bayesian calibration, and uncertainty analysis for hydrological models: A comparison of adaptive- Metropolis, and sequential Monte Carlo samplers
    • JEREMIAH, E., SISSON, S. A.,MARSHALL, L., MEHROTRA, R., and SHARMA, A. (2011). Bayesian calibration, and uncertainty analysis for hydrological models: A comparison of adaptive- Metropolis, and sequential Monte Carlo samplers. Water Resources Research 47 W07547, 13pp.
    • (2011) Water Resources Research 47 W07547 , pp. 13
    • Jeremiah, E.1    Sisson, S.A.2    Marshall, L.3    Mehrotra, R.4    Sharma, A.5
  • 39
    • 51449104123 scopus 로고    scopus 로고
    • Approximately sufficient statistics, and Bayesian computation
    • MR2438407
    • JOYCE, P., and MARJORAM, P. (2008). Approximately sufficient statistics, and Bayesian computation. Stat. Appl. Genet. Mol. Biol. 7 Art. 26, 18. MR2438407
    • (2008) Stat. Appl. Genet. Mol. Biol. 7 Art. , vol.26 , pp. 18
    • Joyce, P.1    Marjoram, P.2
  • 40
    • 80053490318 scopus 로고    scopus 로고
    • Choice of summary statistic weights in approximate Bayesian computation
    • MR2851287
    • JUNG, H., and MARJORAM, P. (2011). Choice of summary statistic weights in approximate Bayesian computation. Stat. Appl. Genet. Mol. Biol. 10 Art. 45, 25. MR2851287
    • (2011) Stat. Appl. Genet. Mol. Biol. 10 Art. , vol.45 , pp. 25
    • Jung, H.1    Marjoram, P.2
  • 41
    • 3242882795 scopus 로고    scopus 로고
    • Bayesian information criteria, and smoothing parameter selection in radial basis function networks
    • MR2050458
    • KONISHI, S.,ANDO, T., and IMOTO, S. (2004). Bayesian information criteria, and smoothing parameter selection in radial basis function networks. Biometrika 91 27-43. MR2050458
    • (2004) Biometrika , vol.91 , pp. 27-43
    • Konishi, S.1    Ando, T.2    Imoto, S.3
  • 42
    • 74249110200 scopus 로고    scopus 로고
    • Bayesian computation, and model selection without likelihoods
    • LEUENBERGER, C., and WEGMANN, D. (2010). Bayesian computation, and model selection without likelihoods. Genetics 184 243-252.
    • (2010) Genetics , vol.184 , pp. 243-252
    • Leuenberger, C.1    Wegmann, D.2
  • 43
    • 77954035029 scopus 로고    scopus 로고
    • ABC: A useful Bayesian tool for the analysis of population data
    • LOPES, J. S., and BEAUMONT, M. A. (2010). ABC: A useful Bayesian tool for the analysis of population data. Infect. Genet. Evol. 10 826-833.
    • (2010) Infect. Genet. Evol. , vol.10 , pp. 826-833
    • Lopes, J.S.1    Beaumont, M.A.2
  • 44
    • 70149090840 scopus 로고    scopus 로고
    • The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis
    • LUCIANI, F., SISSON, S. A., JIANG, H., FRANCIS, A. R., and TANAKA, M. M. (2009). The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 106 14711-14715.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 14711-14715
    • Luciani, F.1    Sisson, S.A.2    Jiang, H.3    Francis, A.R.4    Tanaka, M.M.5
  • 46
    • 16244390208 scopus 로고    scopus 로고
    • Mean squared error of prediction (MSEP) estimates for principal component regression (PCR), and partial least squares regression (PLSR)
    • MEVIK, B.-H., and CEDERKVIST, H. R. (2004). Mean squared error of prediction (MSEP) estimates for principal component regression (PCR), and partial least squares regression (PLSR). Journal of Chemometrics 18 422-429.
    • (2004) Journal of Chemometrics , vol.18 , pp. 422-429
    • Mevik, B.-H.1    Cederkvist, H.R.2
  • 47
    • 33846829987 scopus 로고    scopus 로고
    • The pls package: Principal component, and partial least squares regression in R
    • MEVIK, B.-H. and WEHRENS, R. (2007). The pls package: Principal component, and partial least squares regression in R. Journal of Statistical Software 18 1-24.
    • (2007) Journal of Statistical Software , vol.18 , pp. 1-24
    • Mevik, B.-H.1    Wehrens, R.2
  • 50
    • 85153950631 scopus 로고
    • Learning local error bars for nonlinear regression
    • MIT Press, Cambridge (G. Tesauo, D. Touretzky, and T. Leen, eds.)
    • NIX, D. A., and WEIGEND, A. S. (1995). Learning local error bars for nonlinear regression. In Advances in Neural Information Processing Systems 7 (NIPS'94) (G. Tesauo, D. Touretzky, and T. Leen, eds.) 489-496. MIT Press, Cambridge.
    • (1995) Advances in Neural Information Processing Systems 7 (NIPS'94) , pp. 489-496
    • Nix, D.A.1    Weigend, A.S.2
  • 51
    • 0000913208 scopus 로고    scopus 로고
    • Coalescent theory
    • Wiley, Chichester 3rd ed. (D. J. Balding, M. J. Bishop, and C. Cannings, eds.)
    • NORDBORG, M. (2007). Coalescent theory. In Handbook of Statistical Genetics, 3rd ed. (D. J. Balding, M. J. Bishop, and C. Cannings, eds.) 179-208. Wiley, Chichester.
    • (2007) Handbook of Statistical Genetics , pp. 179-208
    • Nordborg, M.1
  • 52
    • 84878974713 scopus 로고    scopus 로고
    • Contribution to the discussion of Fearnhead, and Prangle (2012) Constructing summary statistics for approximate Bayesian computation: Semi-automatic approximate Bayesian computation.
    • NOTT, D. J., FAN, Y., and SISSON, S. A. (2012). Contribution to the discussion of Fearnhead, and Prangle (2012). Constructing summary statistics for approximate Bayesian computation: Semi-automatic approximate Bayesian computation. J. R. Stat. Soc. Ser. B Stat. Methodol. 74 466.
    • (2012) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.74 , pp. 466
    • Nott, D.J.1    Fan, Y.2    Sisson, S.A.3
  • 53
    • 84878970847 scopus 로고    scopus 로고
    • Approximate Bayesian computation, and Bayes linear analysis: Towards high-dimensional approximate Bayesian computation
    • To appear
    • NOTT, D. J., FAN, Y.,MARSHALL, L., and SISSON, S. A. (2013). Approximate Bayesian computation, and Bayes linear analysis: Towards high-dimensional approximate Bayesian computation. J. Comput. Graph. Statist. To appear.
    • (2013) J. Comput. Graph. Statist.
    • Nott, D.J.1    Fan, Y.2    Marshall, L.3    Sisson, S.A.4
  • 54
    • 77957728670 scopus 로고    scopus 로고
    • On optimal selection of summary statistics for approximate Bayesian computation
    • MR2721714
    • NUNES, M. A., and BALDING, D. J. (2010). On optimal selection of summary statistics for approximate Bayesian computation. Stat. Appl. Genet. Mol. Biol. 9 Art. 34, 16. MR2721714
    • (2010) Stat. Appl. Genet. Mol. Biol. 9 Art. , vol.34 , pp. 16
    • Nunes, M.A.1    Balding, D.J.2
  • 55
    • 84867997236 scopus 로고    scopus 로고
    • On sequential Monte Carlo, partial rejection control, and approximate Bayesian computation
    • MR2992295
    • PETERS, G. W., FAN, Y., and SISSON, S. A. (2012). On sequential Monte Carlo, partial rejection control, and approximate Bayesian computation. Stat. Comput. 22 1209-1222. MR2992295
    • (2012) Stat. Comput. , vol.22 , pp. 1209-1222
    • Peters, G.W.1    Fan, Y.2    Sisson, S.A.3
  • 56
    • 0032735986 scopus 로고    scopus 로고
    • Population growth of human Y chromosomes: A study of Y chromosome microsatellites
    • PRITCHARD, J. K., SEIELSTAD, M. T., PEREZ-LEZAUN, A., and FELDMAN, M. W. (1999). Population growth of human Y chromosomes: A study of Y chromosome microsatellites. Mol. Biol. Evol. 16 1791-1798.
    • (1999) Mol. Biol. Evol. , vol.16 , pp. 1791-1798
    • Pritchard, J.K.1    Seielstad, M.T.2    Perez-Lezaun, A.3    Feldman, M.W.4
  • 57
    • 0000696616 scopus 로고
    • Neural networks, and related methods for classification
    • MR1278218
    • RIPLEY, B. D. (1994). Neural networks, and related methods for classification. J. R. Stat. Soc. Ser. B Stat. Methodol. 56 409-456. MR1278218
    • (1994) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.56 , pp. 409-456
    • Ripley, B.D.1
  • 58
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • MR0468014
    • SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464. MR0468014
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 59
    • 84878974713 scopus 로고    scopus 로고
    • Contribution to the discussion of Fearnhead, and Prangle (2012).Constructing summary statistics for approximate Bayesian computation: Semiautomatic approximate Bayesian computation
    • SEDKI, M. A., and PUDLO, P. (2012). Contribution to the discussion of Fearnhead, and Prangle (2012). Constructing summary statistics for approximate Bayesian computation: Semiautomatic approximate Bayesian computation. J. R. Stat. Soc. Ser. B Stat. Methodol. 74 466-467.
    • (2012) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.74 , pp. 466-467
    • Sedki, M.A.1    Pudlo, P.2
  • 60
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • 623-656,MR0026286
    • SHANNON, C. E. (1948). A mathematical theory of communication. Bell System Tech. J. 27 379-423, 623-656. MR0026286
    • (1948) Bell System Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 62
    • 33846939958 scopus 로고    scopus 로고
    • Sequential Monte Carlo without likelihoods
    • MR2301870, (electronic)
    • SISSON, S. A., FAN, Y., and TANAKA, M. M. (2007). Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 104 1760-1765 (electronic). MR2301870
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 1760-1765
    • Sisson, S.A.1    Fan, Y.2    Tanaka, M.M.3
  • 63
    • 79955996340 scopus 로고    scopus 로고
    • Likelihood-free Markov chain Monte Carlo
    • CRC Press, Boca Raton, FL (S. P. Brooks, A. Gelman, G. Jones, and X. L. Meng, eds.)
    • SISSON, S. A., and FAN, Y. (2011). Likelihood-free Markov chain Monte Carlo. In Handbook of Markov Chain Monte Carlo (S. P. Brooks, A. Gelman, G. Jones, and X. L. Meng, eds.) 319- 341. CRC Press, Boca Raton, FL.
    • (2011) Handbook of Markov Chain Monte Carlo
    • Sisson, S.A.1    Fan, Y.2
  • 64
    • 0000078841 scopus 로고    scopus 로고
    • Averaging regularized estimators
    • TANIGUCHI, M., and TRESP, V. (1997). Averaging regularized estimators. Neural Comput. 9 1163-1178.
    • (1997) Neural Comput. , vol.9 , pp. 1163-1178
    • Taniguchi, M.1    Tresp, V.2
  • 65
    • 58149142997 scopus 로고    scopus 로고
    • Approximate Bayesian computation scheme for parameter inference, and model selection in dynamical systems
    • TONI, T., WELCH, D., STRELKOWA, N., IPSEN, A., and STUMPF, M. P. (2009). Approximate Bayesian computation scheme for parameter inference, and model selection in dynamical systems. Journal of the Royal Society Interface 6 187-202.
    • (2009) Journal of the Royal Society Interface , vol.6 , pp. 187-202
    • Toni, T.1    Welch, D.2    Strelkowa, N.3    Ipsen, A.4    Stumpf, M.P.5
  • 67
    • 70350136774 scopus 로고    scopus 로고
    • Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood
    • WEGMANN, D., LEUENBERGER, C., and EXCOFFIER, L. (2009). Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics 182 1207-1218.
    • (2009) Genetics , vol.182 , pp. 1207-1218
    • Wegmann, D.1    Leuenberger, C.2    Excoffier, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.