-
1
-
-
77957553895
-
Partial least square regression, projection on latent structure regression
-
ABDI, H. and WILLIAMS, L. J. (2010). Partial least square regression, projection on latent structure regression. Wiley Interdiscip. Rev. Comput. Stat. 2 433-459.
-
(2010)
Wiley Interdiscip. Rev. Comput. Stat.
, vol.2
, pp. 433-459
-
-
Abdi, H.1
Williams, L.J.2
-
2
-
-
84869057921
-
A novel approach for choosing summary statistics in approximate Bayesian computation
-
AESCHBACHER, S., BEAUMONT, M. A., and FUTSCHIK, A. (2012). A novel approach for choosing summary statistics in approximate Bayesian computation. Genetics 192 1027-1047.
-
(2012)
Genetics
, vol.192
, pp. 1027-1047
-
-
Aeschbacher, S.1
Beaumont, M.A.2
Futschik, A.3
-
3
-
-
0016355478
-
A new look at the statistical model identification
-
MR0423716
-
AKAIKE, H. (1974). A new look at the statistical model identification. IEEE Trans. Automat. Control AC-19 716-723. MR0423716
-
(1974)
IEEE Trans. Automat. Control AC-19
, pp. 716-723
-
-
Akaike, H.1
-
4
-
-
59849109653
-
Bayesian estimation of quantile distributions
-
MR2486231
-
ALLINGHAM, D., KING, R. A. R., and MENGERSEN, K. L. (2009). Bayesian estimation of quantile distributions. Stat. Comput. 19 189-201. MR2486231
-
(2009)
Stat. Comput.
, vol.19
, pp. 189-201
-
-
Allingham, D.1
King, R.A.R.2
Mengersen, K.L.3
-
6
-
-
84867996819
-
Considerate approaches to constructing summary statistics for ABC model selection
-
MR2992293
-
BARNES, C., FILIPPI, S., STUMPF, M. P. H., and THORNE, T. (2012). Considerate approaches to constructing summary statistics for ABC model selection. Stat. Comput. 22 1181-1197. MR2992293
-
(2012)
Stat. Comput.
, vol.22
, pp. 1181-1197
-
-
Barnes, C.1
Filippi, S.2
Stumpf, M.P.H.3
Thorne, T.4
-
8
-
-
78149388939
-
Approximate Bayesian computation in evolution, and ecology
-
BEAUMONT, M. A. (2010). Approximate Bayesian computation in evolution, and ecology. Annual Review of Ecology, Evolution,, and Systematics 41 379-406.
-
(2010)
Annual Review of Ecology, Evolution, and Systematics
, vol.41
, pp. 379-406
-
-
Beaumont, M.A.1
-
9
-
-
0036964474
-
Approximate Bayesian computation in population genetics
-
BEAUMONT, M. A., ZHANG, W., and BALDING, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics 162 2025-2035.
-
(2002)
Genetics
, vol.162
, pp. 2025-2035
-
-
Beaumont, M.A.1
Zhang, W.2
Balding, D.J.3
-
10
-
-
71249121103
-
Adaptivity for ABC algorithms: The ABC-PMC scheme
-
BEAUMONT, M. A., MARIN, J. M., CORNUET, J. M., and ROBERT, C. P. (2009). Adaptivity for ABC algorithms: The ABC-PMC scheme. Biometrika 96 983-990.
-
(2009)
Biometrika
, vol.96
, pp. 983-990
-
-
Beaumont, M.A.1
Marin, J.M.2
Cornuet, J.M.3
Robert, C.P.4
-
11
-
-
77954247262
-
ABC as a flexible framework to estimate demography over space, and time: Some cons, many pros
-
BERTORELLE, G., BENAZZO, A., and MONA, S. (2010). ABC as a flexible framework to estimate demography over space, and time: Some cons, many pros. Mol. Ecol. 19 2609-2625.
-
(2010)
Mol. Ecol.
, vol.19
, pp. 2609-2625
-
-
Bertorelle, G.1
Benazzo, A.2
Mona, S.3
-
12
-
-
77956219298
-
Approximate Bayesian computation: A nonparametric perspective
-
MR2752613
-
BLUM, M. G. B. (2010a). Approximate Bayesian computation: A nonparametric perspective. J. Amer. Statist. Assoc. 105 1178- 1187. MR2752613
-
(2010)
J. Amer. Statist. Assoc.
, vol.105
-
-
Blum, M.G.B.1
-
13
-
-
80053531841
-
Choosing the summary statistics, and the acceptance rate in approximate Bayesian computation
-
Springer, New York (G. Saporta, and Y. Lechevallier, eds.)
-
BLUM, M. G. B. (2010b). Choosing the summary statistics, and the acceptance rate in approximate Bayesian computation. In COMPSTAT 2010: Proceedings in Computational Statistics (G. Saporta, and Y. Lechevallier, eds.) 47-56. Springer, New York.
-
(2010)
COMPSTAT 2010: Proceedings in Computational Statistics
, pp. 47-56
-
-
Blum, M.G.B.1
-
14
-
-
73549122582
-
Non-linear regression models for approximate Bayesian computation
-
MR2578077
-
BLUM,M. G. B., and FRANçOIS, O. (2010). Non-linear regression models for approximate Bayesian computation. Stat. Comput. 20 63-73. MR2578077
-
(2010)
Stat. Comput.
, vol.20
, pp. 63-73
-
-
Blum, M.G.B.1
François, O.2
-
15
-
-
84878991573
-
-
DOI:10.1214/12-STS406SUPP
-
BLUM, M. G. B., NUNES, M. A., PRANGLE, D., and SISSON, S. A. (2013). Supplement to "A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation." DOI:10.1214/12-STS406SUPP.
-
(2013)
Supplement to "A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation
-
-
Blum, M.G.B.1
Nunes, M.A.2
Prangle, D.3
Sisson, S.A.4
-
16
-
-
80455168757
-
Bayesian learning from marginal data in bionetwork models
-
MR2851291
-
BONASSI, F. V., YOU, L. and WEST, M. (2011). Bayesian learning from marginal data in bionetwork models. Stat. Appl. Genet. Mol. Biol. 10 Art. 49, 29. MR2851291
-
(2011)
Stat. Appl. Genet. Mol. Biol. 10 Art.
, vol.49
, pp. 29
-
-
Bonassi, F.V.1
You, L.2
West, M.3
-
17
-
-
33947261211
-
Inference for stereological extremes
-
MR2345549
-
BORTOT, P., COLES, S. G., and SISSON, S. A. (2007). Inference for stereological extremes. J. Amer. Statist. Assoc. 102 84-92. MR2345549
-
(2007)
J. Amer. Statist. Assoc.
, vol.102
, pp. 84-92
-
-
Bortot, P.1
Coles, S.G.2
Sisson, S.A.3
-
18
-
-
33846515112
-
Partial least squares: A versatile tool for the analysis of high-dimensional genomic data
-
BOULESTEIX, A.-L., and STRIMMER, K. (2007). Partial least squares: A versatile tool for the analysis of high-dimensional genomic data. Brief. Bioinformatics 8 32-44.
-
(2007)
Brief. Bioinformatics
, vol.8
, pp. 32-44
-
-
Boulesteix, A.-L.1
Strimmer, K.2
-
20
-
-
84861153207
-
abc: An R package for approximate Bayesian computation
-
CSILLÉRY, K., FRANçOIS, O., and BLUM, M. G. B. (2012). abc: An R package for approximate Bayesian computation. Methods in Ecology, and Evolution 3 475-479.
-
(2012)
Methods in Ecology, and Evolution
, vol.3
, pp. 475-479
-
-
Csilléry, K.1
François, O.2
Blum, M.G.B.3
-
21
-
-
77954816556
-
Approximate Bayesian computation in practice
-
CSILLÉRY, K., BLUM, M. G. B., GAGGIOTTI, O., and FRANçOIS, O. (2010). Approximate Bayesian computation in practice. Trends in Ecology, and Evolution 25 410-418.
-
(2010)
Trends in Ecology, and Evolution
, vol.25
, pp. 410-418
-
-
Csilléry, K.1
Blum, M.G.B.2
Gaggiotti, O.3
François, O.4
-
22
-
-
84857190557
-
An adaptive sequential Monte Carlo method for approximate Bayesian computation
-
DEL MORAL, P., DOUCET, A., and JASRA, A. (2012). An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. 22 1009-1020.
-
(2012)
Stat. Comput.
, vol.22
, pp. 1009-1020
-
-
Del Moral, P.1
Doucet, A.2
Jasra, A.3
-
23
-
-
79952603857
-
Estimation of parameters for macroparasite population evolution using approximate Bayesian computation
-
MR2898834
-
DROVANDI, C. C., and PETTITT, A. N. (2011). Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics 67 225-233. MR2898834
-
(2011)
Biometrics
, vol.67
, pp. 225-233
-
-
Drovandi, C.C.1
Pettitt, A.N.2
-
24
-
-
79954527657
-
Approximate Bayesian computation using indirect inference
-
MR2767849
-
DROVANDI, C. C., PETTITT, A. N., and FADDY, M. J. (2011). Approximate Bayesian computation using indirect inference. J. R. Stat. Soc. Ser. C. Appl. Stat. 60 317-337. MR2767849
-
(2011)
J. R. Stat. Soc. Ser. C. Appl. Stat.
, vol.60
, pp. 317-337
-
-
Drovandi, C.C.1
Pettitt, A.N.2
Faddy, M.J.3
-
25
-
-
84865301018
-
Estimation of demo-genetic model probabilities with approximate Bayesian computation using linear discriminant analysis on summary statistics
-
ESTOUP, A., LOMBAERT, E., MARIN, J. M., GUILLEMAUD, T., PUDLO, P., ROBERT, C., and CORNUET, J. M. (2012). Estimation of demo-genetic model probabilities with approximate Bayesian computation using linear discriminant analysis on summary statistics. Molecular Ecology Resources 12 846-855.
-
(2012)
Molecular Ecology Resources
, vol.12
, pp. 846-855
-
-
Estoup, A.1
Lombaert, E.2
Marin, J.M.3
Guillemaud, T.4
Pudlo, P.5
Robert, C.6
Cornuet, J.M.7
-
27
-
-
84861111043
-
Constructing summary statistics for approximate Bayesian computation: Semiautomatic approximate Bayesian computation (with discussion)
-
MR2925370
-
FEARNHEAD, P., and PRANGLE, D. (2012). Constructing summary statistics for approximate Bayesian computation: Semiautomatic approximate Bayesian computation (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 74 419-474. MR2925370
-
(2012)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.74
, pp. 419-474
-
-
Fearnhead, P.1
Prangle, D.2
-
28
-
-
84878997786
-
Contribution to the discussion of Fearnhead, and Prangle (2012) Constructing summary statistics for approximate Bayesian computation: Semi-automatic approximate Bayesian computation
-
FILIPPI, S., BARNES, C. P., and STUMPF, M. P. H. (2012). Contribution to the discussion of Fearnhead, and Prangle (2012). Constructing summary statistics for approximate Bayesian computation: Semi-automatic approximate Bayesian computation. J. R. Stat. Soc. Ser. B Stat. Methodol. 74 459-460.
-
(2012)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.74
, pp. 459-460
-
-
Filippi, S.1
Barnes, C.P.2
Stumpf, M.P.H.3
-
29
-
-
0001942829
-
Neural networks, and the bias/variance dilemma
-
GEMAN, S., BIENENSTOCK, E., and DOURSAT, R. (1992). Neural networks, and the bias/variance dilemma. Neural Comput. 4 1- 58.
-
(1992)
Neural Comput.
, vol.4
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
30
-
-
32044449925
-
Generalized cross-validation as a method for choosing a good ridge parameter
-
MR0533250
-
GOLUB, G. H., HEATH, M. and WAHBA, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21 215-223. MR0533250
-
(1979)
Technometrics
, vol.21
, pp. 215-223
-
-
Golub, G.H.1
Heath, M.2
Wahba, G.3
-
32
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
HOERL, A. E., and KENNARD, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12 55-67.
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
33
-
-
0036184745
-
Generating samples under a Wright- Fisher neutral model of genetic variation
-
HUDSON, R. R. (2002). Generating samples under a Wright- Fisher neutral model of genetic variation. Bioinformatics 18 337-338.
-
(2002)
Bioinformatics
, vol.18
, pp. 337-338
-
-
Hudson, R.R.1
-
34
-
-
0001354983
-
Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion
-
MR1616041
-
HURVICH, C. M., SIMONOFF, J. S., and TSAI, C.-L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 271-293. MR1616041
-
(1998)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.60
, pp. 271-293
-
-
Hurvich, C.M.1
Simonoff, J.S.2
Tsai, C.-L.3
-
35
-
-
70349119250
-
Regression, and time series model selection in small samples
-
MR1016020
-
HURVICH, C. M., and TSAI, C.-L. (1989). Regression, and time series model selection in small samples. Biometrika 76 297- 307. MR1016020
-
(1989)
Biometrika
, vol.76
-
-
Hurvich, C.M.1
Tsai, C.-L.2
-
36
-
-
1842765676
-
Information, and posterior probability criteria for model selection in local likelihood estimation
-
MR1952740
-
IRIZARRY, R. A. (2001). Information, and posterior probability criteria for model selection in local likelihood estimation. J. Amer. Statist. Assoc. 96 303-315. MR1952740
-
(2001)
J. Amer. Statist. Assoc.
, vol.96
, pp. 303-315
-
-
Irizarry, R.A.1
-
37
-
-
84861153209
-
Filtering via approximate Bayesian computation
-
JASRA, A., SINGH, S. S.,MARTIN, J. S. and MCCOY, E. (2012). Filtering via approximate Bayesian computation. Statist. Comput. 22 1223-1237.
-
(2012)
Statist. Comput.
, vol.22
, pp. 1223-1237
-
-
Jasra, A.1
Singh, S.S.2
Martin, J.S.3
Mccoy, E.4
-
38
-
-
79961229131
-
Bayesian calibration, and uncertainty analysis for hydrological models: A comparison of adaptive- Metropolis, and sequential Monte Carlo samplers
-
JEREMIAH, E., SISSON, S. A.,MARSHALL, L., MEHROTRA, R., and SHARMA, A. (2011). Bayesian calibration, and uncertainty analysis for hydrological models: A comparison of adaptive- Metropolis, and sequential Monte Carlo samplers. Water Resources Research 47 W07547, 13pp.
-
(2011)
Water Resources Research 47 W07547
, pp. 13
-
-
Jeremiah, E.1
Sisson, S.A.2
Marshall, L.3
Mehrotra, R.4
Sharma, A.5
-
39
-
-
51449104123
-
Approximately sufficient statistics, and Bayesian computation
-
MR2438407
-
JOYCE, P., and MARJORAM, P. (2008). Approximately sufficient statistics, and Bayesian computation. Stat. Appl. Genet. Mol. Biol. 7 Art. 26, 18. MR2438407
-
(2008)
Stat. Appl. Genet. Mol. Biol. 7 Art.
, vol.26
, pp. 18
-
-
Joyce, P.1
Marjoram, P.2
-
40
-
-
80053490318
-
Choice of summary statistic weights in approximate Bayesian computation
-
MR2851287
-
JUNG, H., and MARJORAM, P. (2011). Choice of summary statistic weights in approximate Bayesian computation. Stat. Appl. Genet. Mol. Biol. 10 Art. 45, 25. MR2851287
-
(2011)
Stat. Appl. Genet. Mol. Biol. 10 Art.
, vol.45
, pp. 25
-
-
Jung, H.1
Marjoram, P.2
-
41
-
-
3242882795
-
Bayesian information criteria, and smoothing parameter selection in radial basis function networks
-
MR2050458
-
KONISHI, S.,ANDO, T., and IMOTO, S. (2004). Bayesian information criteria, and smoothing parameter selection in radial basis function networks. Biometrika 91 27-43. MR2050458
-
(2004)
Biometrika
, vol.91
, pp. 27-43
-
-
Konishi, S.1
Ando, T.2
Imoto, S.3
-
42
-
-
74249110200
-
Bayesian computation, and model selection without likelihoods
-
LEUENBERGER, C., and WEGMANN, D. (2010). Bayesian computation, and model selection without likelihoods. Genetics 184 243-252.
-
(2010)
Genetics
, vol.184
, pp. 243-252
-
-
Leuenberger, C.1
Wegmann, D.2
-
43
-
-
77954035029
-
ABC: A useful Bayesian tool for the analysis of population data
-
LOPES, J. S., and BEAUMONT, M. A. (2010). ABC: A useful Bayesian tool for the analysis of population data. Infect. Genet. Evol. 10 826-833.
-
(2010)
Infect. Genet. Evol.
, vol.10
, pp. 826-833
-
-
Lopes, J.S.1
Beaumont, M.A.2
-
44
-
-
70149090840
-
The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis
-
LUCIANI, F., SISSON, S. A., JIANG, H., FRANCIS, A. R., and TANAKA, M. M. (2009). The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 106 14711-14715.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 14711-14715
-
-
Luciani, F.1
Sisson, S.A.2
Jiang, H.3
Francis, A.R.4
Tanaka, M.M.5
-
45
-
-
0346734143
-
Markov chain Monte Carlo without likelihoods
-
MARJORAM, P., MOLITOR, J., PLAGNOL, V., and TAVARE, S. (2003). Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 100 15324-15328.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 15324-15328
-
-
Marjoram, P.1
Molitor, J.2
Plagnol, V.3
Tavare, S.4
-
46
-
-
16244390208
-
Mean squared error of prediction (MSEP) estimates for principal component regression (PCR), and partial least squares regression (PLSR)
-
MEVIK, B.-H., and CEDERKVIST, H. R. (2004). Mean squared error of prediction (MSEP) estimates for principal component regression (PCR), and partial least squares regression (PLSR). Journal of Chemometrics 18 422-429.
-
(2004)
Journal of Chemometrics
, vol.18
, pp. 422-429
-
-
Mevik, B.-H.1
Cederkvist, H.R.2
-
47
-
-
33846829987
-
The pls package: Principal component, and partial least squares regression in R
-
MEVIK, B.-H. and WEHRENS, R. (2007). The pls package: Principal component, and partial least squares regression in R. Journal of Statistical Software 18 1-24.
-
(2007)
Journal of Statistical Software
, vol.18
, pp. 1-24
-
-
Mevik, B.-H.1
Wehrens, R.2
-
50
-
-
85153950631
-
Learning local error bars for nonlinear regression
-
MIT Press, Cambridge (G. Tesauo, D. Touretzky, and T. Leen, eds.)
-
NIX, D. A., and WEIGEND, A. S. (1995). Learning local error bars for nonlinear regression. In Advances in Neural Information Processing Systems 7 (NIPS'94) (G. Tesauo, D. Touretzky, and T. Leen, eds.) 489-496. MIT Press, Cambridge.
-
(1995)
Advances in Neural Information Processing Systems 7 (NIPS'94)
, pp. 489-496
-
-
Nix, D.A.1
Weigend, A.S.2
-
51
-
-
0000913208
-
Coalescent theory
-
Wiley, Chichester 3rd ed. (D. J. Balding, M. J. Bishop, and C. Cannings, eds.)
-
NORDBORG, M. (2007). Coalescent theory. In Handbook of Statistical Genetics, 3rd ed. (D. J. Balding, M. J. Bishop, and C. Cannings, eds.) 179-208. Wiley, Chichester.
-
(2007)
Handbook of Statistical Genetics
, pp. 179-208
-
-
Nordborg, M.1
-
52
-
-
84878974713
-
Contribution to the discussion of Fearnhead, and Prangle (2012) Constructing summary statistics for approximate Bayesian computation: Semi-automatic approximate Bayesian computation.
-
NOTT, D. J., FAN, Y., and SISSON, S. A. (2012). Contribution to the discussion of Fearnhead, and Prangle (2012). Constructing summary statistics for approximate Bayesian computation: Semi-automatic approximate Bayesian computation. J. R. Stat. Soc. Ser. B Stat. Methodol. 74 466.
-
(2012)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.74
, pp. 466
-
-
Nott, D.J.1
Fan, Y.2
Sisson, S.A.3
-
53
-
-
84878970847
-
Approximate Bayesian computation, and Bayes linear analysis: Towards high-dimensional approximate Bayesian computation
-
To appear
-
NOTT, D. J., FAN, Y.,MARSHALL, L., and SISSON, S. A. (2013). Approximate Bayesian computation, and Bayes linear analysis: Towards high-dimensional approximate Bayesian computation. J. Comput. Graph. Statist. To appear.
-
(2013)
J. Comput. Graph. Statist.
-
-
Nott, D.J.1
Fan, Y.2
Marshall, L.3
Sisson, S.A.4
-
54
-
-
77957728670
-
On optimal selection of summary statistics for approximate Bayesian computation
-
MR2721714
-
NUNES, M. A., and BALDING, D. J. (2010). On optimal selection of summary statistics for approximate Bayesian computation. Stat. Appl. Genet. Mol. Biol. 9 Art. 34, 16. MR2721714
-
(2010)
Stat. Appl. Genet. Mol. Biol. 9 Art.
, vol.34
, pp. 16
-
-
Nunes, M.A.1
Balding, D.J.2
-
55
-
-
84867997236
-
On sequential Monte Carlo, partial rejection control, and approximate Bayesian computation
-
MR2992295
-
PETERS, G. W., FAN, Y., and SISSON, S. A. (2012). On sequential Monte Carlo, partial rejection control, and approximate Bayesian computation. Stat. Comput. 22 1209-1222. MR2992295
-
(2012)
Stat. Comput.
, vol.22
, pp. 1209-1222
-
-
Peters, G.W.1
Fan, Y.2
Sisson, S.A.3
-
56
-
-
0032735986
-
Population growth of human Y chromosomes: A study of Y chromosome microsatellites
-
PRITCHARD, J. K., SEIELSTAD, M. T., PEREZ-LEZAUN, A., and FELDMAN, M. W. (1999). Population growth of human Y chromosomes: A study of Y chromosome microsatellites. Mol. Biol. Evol. 16 1791-1798.
-
(1999)
Mol. Biol. Evol.
, vol.16
, pp. 1791-1798
-
-
Pritchard, J.K.1
Seielstad, M.T.2
Perez-Lezaun, A.3
Feldman, M.W.4
-
57
-
-
0000696616
-
Neural networks, and related methods for classification
-
MR1278218
-
RIPLEY, B. D. (1994). Neural networks, and related methods for classification. J. R. Stat. Soc. Ser. B Stat. Methodol. 56 409-456. MR1278218
-
(1994)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.56
, pp. 409-456
-
-
Ripley, B.D.1
-
58
-
-
0000120766
-
Estimating the dimension of a model
-
MR0468014
-
SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464. MR0468014
-
(1978)
Ann. Statist.
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
59
-
-
84878974713
-
Contribution to the discussion of Fearnhead, and Prangle (2012).Constructing summary statistics for approximate Bayesian computation: Semiautomatic approximate Bayesian computation
-
SEDKI, M. A., and PUDLO, P. (2012). Contribution to the discussion of Fearnhead, and Prangle (2012). Constructing summary statistics for approximate Bayesian computation: Semiautomatic approximate Bayesian computation. J. R. Stat. Soc. Ser. B Stat. Methodol. 74 466-467.
-
(2012)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.74
, pp. 466-467
-
-
Sedki, M.A.1
Pudlo, P.2
-
60
-
-
84856043672
-
A mathematical theory of communication
-
623-656,MR0026286
-
SHANNON, C. E. (1948). A mathematical theory of communication. Bell System Tech. J. 27 379-423, 623-656. MR0026286
-
(1948)
Bell System Tech. J.
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
61
-
-
2342511079
-
Nearest neighbor estimates of entropy
-
MR2045530
-
SINGH, H., MISRA, N., HNIZDO, V., FEDOROWICZ, A., and DEMCHUK, E. (2003). Nearest neighbor estimates of entropy. Amer. J. Math. Management Sci. 23 301-321. MR2045530
-
(2003)
Amer. J. Math. Management Sci.
, vol.23
, pp. 301-321
-
-
Singh, H.1
Misra, N.2
Hnizdo, V.3
Fedorowicz, A.4
Demchuk, E.5
-
62
-
-
33846939958
-
Sequential Monte Carlo without likelihoods
-
MR2301870, (electronic)
-
SISSON, S. A., FAN, Y., and TANAKA, M. M. (2007). Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 104 1760-1765 (electronic). MR2301870
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 1760-1765
-
-
Sisson, S.A.1
Fan, Y.2
Tanaka, M.M.3
-
63
-
-
79955996340
-
Likelihood-free Markov chain Monte Carlo
-
CRC Press, Boca Raton, FL (S. P. Brooks, A. Gelman, G. Jones, and X. L. Meng, eds.)
-
SISSON, S. A., and FAN, Y. (2011). Likelihood-free Markov chain Monte Carlo. In Handbook of Markov Chain Monte Carlo (S. P. Brooks, A. Gelman, G. Jones, and X. L. Meng, eds.) 319- 341. CRC Press, Boca Raton, FL.
-
(2011)
Handbook of Markov Chain Monte Carlo
-
-
Sisson, S.A.1
Fan, Y.2
-
64
-
-
0000078841
-
Averaging regularized estimators
-
TANIGUCHI, M., and TRESP, V. (1997). Averaging regularized estimators. Neural Comput. 9 1163-1178.
-
(1997)
Neural Comput.
, vol.9
, pp. 1163-1178
-
-
Taniguchi, M.1
Tresp, V.2
-
65
-
-
58149142997
-
Approximate Bayesian computation scheme for parameter inference, and model selection in dynamical systems
-
TONI, T., WELCH, D., STRELKOWA, N., IPSEN, A., and STUMPF, M. P. (2009). Approximate Bayesian computation scheme for parameter inference, and model selection in dynamical systems. Journal of the Royal Society Interface 6 187-202.
-
(2009)
Journal of the Royal Society Interface
, vol.6
, pp. 187-202
-
-
Toni, T.1
Welch, D.2
Strelkowa, N.3
Ipsen, A.4
Stumpf, M.P.5
-
66
-
-
77953909824
-
-
Springer, Heidelberg. MR2742562
-
VINZI, V. E., CHIN, W. W., HENSELER, J., and WANG, H., eds. (2010). Handbook of Partial Least Squares: Concepts, Methods, and Applications. Springer, Heidelberg. MR2742562
-
(2010)
Handbook of Partial Least Squares: Concepts, Methods, and Applications
-
-
Vinzi, V.E.1
Chin, W.W.2
Henseler, J.3
Wang, H.4
-
67
-
-
70350136774
-
Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood
-
WEGMANN, D., LEUENBERGER, C., and EXCOFFIER, L. (2009). Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics 182 1207-1218.
-
(2009)
Genetics
, vol.182
, pp. 1207-1218
-
-
Wegmann, D.1
Leuenberger, C.2
Excoffier, L.3
|