메뉴 건너뛰기




Volumn 14, Issue 5, 2017, Pages 503-519

Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review

Author keywords

convolutional neural networks; deep and shallow networks; deep learning; function approximation; Machine learning; neural networks

Indexed keywords

CONVOLUTION; DEEP LEARNING; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 85015184566     PISSN: 14768186     EISSN: 17518520     Source Type: Journal    
DOI: 10.1007/s11633-017-1054-2     Document Type: Review
Times cited : (596)

References (51)
  • 6
    • 0346061723 scopus 로고    scopus 로고
    • High-dimensional data analysis: The curses and blessings of dimensionality
    • D. L. Donoho. High-dimensional data analysis: The curses and blessings of dimensionality. Lecture–Math Challenges of Century, vol. 13, pp. 178–183, 2000.
    • (2000) Lecture–Math Challenges of Century , vol.13 , pp. 178-183
    • Donoho, D.L.1
  • 7
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, vol. 521, no. 7553, pp. 436–444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 8
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 9
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • M. Riesenhuber, T. Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, vol. 2, no. 11, pp. 1019–1025, 1999.
    • (1999) Nature Neuroscience , vol.2 , Issue.11 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 10
    • 0006863682 scopus 로고
    • Approximation properties of a multilayered feedforward artificial neural network
    • H. N. Mhaskar. Approximation properties of a multilayered feedforward artificial neural network. Advances in Computational Mathematics, vol. 1, no. 1, pp. 61–80, 1993.
    • (1993) Advances in Computational Mathematics , vol.1 , Issue.1 , pp. 61-80
    • Mhaskar, H.N.1
  • 11
    • 21844505259 scopus 로고
    • Neural networks for localized approximation
    • C. K. Chui, X. Li, H. Mhaskar. Neural networks for localized approximation. Mathematics of Computation, vol. 63, no. 208, pp. 607–623, 1994.
    • (1994) Mathematics of Computation , vol.63 , Issue.208 , pp. 607-623
    • Chui, C.K.1    Li, X.2    Mhaskar, H.3
  • 12
    • 27844503288 scopus 로고    scopus 로고
    • Limitations of the approximation capabilities of neural networks with one hidden layer
    • C. K. Chui, X. Li, H. N. Mhaskar. Limitations of the approximation capabilities of neural networks with one hidden layer. Advances in Computational Mathematics, vol.5, no. 1, pp. 233–243, 1996.
    • (1996) Advances in Computational Mathematics , vol.5 , Issue.1 , pp. 233-243
    • Chui, C.K.1    Li, X.2    Mhaskar, H.N.3
  • 13
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • A. Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica, vol. 8, pp. 143–195, 1999.
    • (1999) Acta Numerica , vol.8 , pp. 143-195
    • Pinkus, A.1
  • 15
    • 0024175199 scopus 로고    scopus 로고
    • Representation properties of multilayer feedforward networks
    • B. Moore, T. Poggio. Representation properties of multilayer feedforward networks. Neural Networks, vol.1, no.S1, pp. 203, 1998.
    • (1998) Neural Networks , vol.1 , Issue.S1 , pp. 203
    • Moore, B.1    Poggio, T.2
  • 27
    • 0000041417 scopus 로고    scopus 로고
    • Neural networks for optimal approximation of smooth and analytic functions
    • H. N. Mhaskar. Neural networks for optimal approximation of smooth and analytic functions. Neural Computation, vol. 8, no. 1, pp. 164–177, 1996.
    • (1996) Neural Computation , vol.8 , Issue.1 , pp. 164-177
    • Mhaskar, H.N.1
  • 28
    • 84875247004 scopus 로고
    • Conditions for an infinitely differentiable function to be a polynomial
    • E. Corominas, F. S. Balaguer. Conditions for an infinitely differentiable function to be a polynomial. Revista Matemática Hispanoamericana vol. 14, no. 1–2, pp. 26–43, 1954. (in Spanish)
    • (1954) Revista Matemática Hispanoamericana , vol.14 , Issue.1-2 , pp. 26-43
    • Corominas, E.1    Balaguer, F.S.2
  • 31
    • 3242701678 scopus 로고    scopus 로고
    • On the tractability of multivariate integration and approximation by neural networks
    • H. N. Mhaskar. On the tractability of multivariate integration and approximation by neural networks. Journal of Complexity, vol. 20, no. 4, pp. 561–590, 2004.
    • (2004) Journal of Complexity , vol.20 , Issue.4 , pp. 561-590
    • Mhaskar, H.N.1
  • 34
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • J. Bergstra, Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine Learning Research, vol. 13, no. 1, pp. 281–305, 2012.
    • (2012) Journal of Machine Learning Research , vol.13 , Issue.1 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 39
    • 0027627287 scopus 로고
    • Constant depth circuits, Fourier transform, and learnability
    • N. Linial, Y. Mansour, N. Nisan. Constant depth circuits, Fourier transform, and learnability. Journal of the ACM, vol. 40, no. 3, pp. 607–620, 1993.
    • (1993) Journal of the ACM , vol.40 , Issue.3 , pp. 607-620
    • Linial, N.1    Mansour, Y.2    Nisan, N.3
  • 40
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • Bottou L., Chapelle O., DeCoste D., Weston J. eds), MIT Press, Cambridge, MA, USA
    • Y. Bengio, Y. LeCun. Scaling learning algorithms towards AI. Large-Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, J. Weston, Eds., Cambridge, MA, USA: MIT Press, 2007.
    • (2007) Large-Scale Kernel Machines
    • Bengio, Y.1    LeCun, Y.2
  • 41
    • 0001663135 scopus 로고
    • Learning Boolean functions via the Fourier transform
    • Roychowdhury V., Siu K. Y., Orlitsky A. eds), Springer, US
    • Y. Mansour. Learning Boolean functions via the Fourier transform. Theoretical Advances in Neural Computation and Learning, V. Roychowdhury, K. Y. Siu, A. Orlitsky, Eds., pp. 391–424, US: Springer, 1994.
    • (1994) Theoretical Advances in Neural Computation and Learning , pp. 391-424
    • Mansour, Y.1
  • 44
    • 84949683101 scopus 로고    scopus 로고
    • Humanlevel concept learning through probabilistic program induction
    • B. M. Lake, R. Salakhutdinov, J. B. Tenenabum. Humanlevel concept learning through probabilistic program induction. Science, vol. 350, no. 6266, pp. 1332–1338, 2015.
    • (2015) Science , vol.350 , Issue.6266 , pp. 1332-1338
    • Lake, B.M.1    Salakhutdinov, R.2    Tenenabum, J.B.3
  • 45
    • 30744438843 scopus 로고    scopus 로고
    • Bounds for linear multi-task learning
    • A. Maurer. Bounds for linear multi-task learning. Journal of Machine Learning Research, vol. 7, no. 1, pp. 117–139, 2016.
    • (2016) Journal of Machine Learning Research , vol.7 , Issue.1 , pp. 117-139
    • Maurer, A.1
  • 48
    • 77956032667 scopus 로고    scopus 로고
    • Hierarchical singular value decomposition of tensors
    • L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM Journal on Matrix Analysis and Applications, no. 31, no. 4, pp. 2029–2054, 2010.
    • (2010) SIAM Journal on Matrix Analysis and Applications , vol.31 , Issue.4 , pp. 2029-2054
    • Grasedyck, L.1
  • 50
    • 0019230683 scopus 로고
    • On the representation of multiinput systems: Computational properties of polynomial algorithms
    • T. Poggio, W. Reichardt. On the representation of multiinput systems: Computational properties of polynomial algorithms. Biological Cybernetics, vol. 37, no. 3, 167–186, 1980.
    • (1980) Biological Cybernetics , vol.37 , Issue.3 , pp. 167-186
    • Poggio, T.1    Reichardt, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.