-
1
-
-
84943317649
-
-
F. Anselmi, L. Rosasco, C. Tan, T. Poggio. Deep Convolutional Networks are Hierarchical Kernel Machines, Center for Brains, Minds and Machines (CBMM) Memo No. 035, The Center for Brains, Minds and Machines, USA, 2015.
-
(2015)
Deep Convolutional Networks are Hierarchical Kernel Machines
-
-
Anselmi, F.1
Rosasco, L.2
Tan, C.3
Poggio, T.4
-
2
-
-
85030457525
-
-
T. Poggio, L. Rosasco, A. Shashua, N. Cohen, F. Anselmi. Notes on Hierarchical Splines, DCLNs and i-theory, Center for Brains, Minds and Machines (CBMM) Memo No. 037, The Center for Brains, Minds and Machines, USA, 2015.
-
(2015)
Notes on Hierarchical Splines, DCLNs and i-theory
-
-
Poggio, T.1
Rosasco, L.2
Shashua, A.3
Cohen, N.4
Anselmi, F.5
-
3
-
-
84998623186
-
-
T. Poggio, F. Anselmi, L. Rosasco. I-theory on Depth vs Width: Hierarchical Function Composition, Center for Brains, Minds and Machines (CBMM) Memo No. 041, The Center for Brains, Minds and Machines, USA, 2015.
-
(2015)
I-theory on Depth vs Width: Hierarchical Function Composition
-
-
Poggio, T.1
Anselmi, F.2
Rosasco, L.3
-
4
-
-
85035149427
-
-
H. Mhaskar, Q. L. Liao, T. Poggio. Learning Real and Boolean Functions: When is Deep Better than Shallow, Center for Brains, Minds and Machines (CBMM) Memo No. 045, The Center for Brains, Minds and Machines, USA, 2016.
-
(2016)
Learning Real and Boolean Functions: When is Deep Better than Shallow
-
-
Mhaskar, H.1
Liao, Q.L.2
Poggio, T.3
-
6
-
-
0346061723
-
High-dimensional data analysis: The curses and blessings of dimensionality
-
D. L. Donoho. High-dimensional data analysis: The curses and blessings of dimensionality. Lecture–Math Challenges of Century, vol. 13, pp. 178–183, 2000.
-
(2000)
Lecture–Math Challenges of Century
, vol.13
, pp. 178-183
-
-
Donoho, D.L.1
-
7
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, vol. 521, no. 7553, pp. 436–444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
8
-
-
0019152630
-
Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.
-
(1980)
Biological Cybernetics
, vol.36
, Issue.4
, pp. 193-202
-
-
Fukushima, K.1
-
9
-
-
0033316361
-
Hierarchical models of object recognition in cortex
-
M. Riesenhuber, T. Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, vol. 2, no. 11, pp. 1019–1025, 1999.
-
(1999)
Nature Neuroscience
, vol.2
, Issue.11
, pp. 1019-1025
-
-
Riesenhuber, M.1
Poggio, T.2
-
10
-
-
0006863682
-
Approximation properties of a multilayered feedforward artificial neural network
-
H. N. Mhaskar. Approximation properties of a multilayered feedforward artificial neural network. Advances in Computational Mathematics, vol. 1, no. 1, pp. 61–80, 1993.
-
(1993)
Advances in Computational Mathematics
, vol.1
, Issue.1
, pp. 61-80
-
-
Mhaskar, H.N.1
-
11
-
-
21844505259
-
Neural networks for localized approximation
-
C. K. Chui, X. Li, H. Mhaskar. Neural networks for localized approximation. Mathematics of Computation, vol. 63, no. 208, pp. 607–623, 1994.
-
(1994)
Mathematics of Computation
, vol.63
, Issue.208
, pp. 607-623
-
-
Chui, C.K.1
Li, X.2
Mhaskar, H.3
-
12
-
-
27844503288
-
Limitations of the approximation capabilities of neural networks with one hidden layer
-
C. K. Chui, X. Li, H. N. Mhaskar. Limitations of the approximation capabilities of neural networks with one hidden layer. Advances in Computational Mathematics, vol.5, no. 1, pp. 233–243, 1996.
-
(1996)
Advances in Computational Mathematics
, vol.5
, Issue.1
, pp. 233-243
-
-
Chui, C.K.1
Li, X.2
Mhaskar, H.N.3
-
13
-
-
85011438572
-
Approximation theory of the MLP model in neural networks
-
A. Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica, vol. 8, pp. 143–195, 1999.
-
(1999)
Acta Numerica
, vol.8
, pp. 143-195
-
-
Pinkus, A.1
-
14
-
-
0242705996
-
The mathematics of learning: Dealing with data
-
T. Poggio, S. Smale. The mathematics of learning: Dealing with data. Notices of the American Mathematical Society, vol. 50, no. 5, pp. 537–544, 2003.
-
(2003)
Notices of the American Mathematical Society
, vol.50
, Issue.5
, pp. 537-544
-
-
Poggio, T.1
Smale, S.2
-
15
-
-
0024175199
-
Representation properties of multilayer feedforward networks
-
B. Moore, T. Poggio. Representation properties of multilayer feedforward networks. Neural Networks, vol.1, no.S1, pp. 203, 1998.
-
(1998)
Neural Networks
, vol.1
, Issue.S1
, pp. 203
-
-
Moore, B.1
Poggio, T.2
-
18
-
-
84930634427
-
On the number of linear regions of deep neural networks
-
G. F. Montufar, R. Pascanu, K. Cho, Y. Bengio. On the number of linear regions of deep neural networks. In Proceedings of Advances in Neural Information Processing Systems 27, NIPS, Denver, USA, pp. 2924–2932, 2014.
-
(2014)
Proceedings of Advances in Neural Information Processing Systems 27
, pp. 2924-2932
-
-
Montufar, G.F.1
Pascanu, R.2
Cho, K.3
Bengio, Y.4
-
21
-
-
84904482232
-
-
F. Anselmi, J. Z. Leibo, L. Rosasco, J. Mutch, A. Tacchetti, T. Poggio. Unsupervised Learning of Invariant Representations With Low Sample Complexity: The Magic of Sensory Cortex or A New Framework for Machine Learning? Center for Brains, Minds and Machines (CBMM) Memo No. 001, The Center for Brains, Minds and Machines, USA, 2014.
-
(2014)
Unsupervised Learning of Invariant Representations With Low Sample Complexity: The Magic of Sensory Cortex or A New Framework for Machine Learning
-
-
Anselmi, F.1
Leibo, J.Z.2
Rosasco, L.3
Mutch, J.4
Tacchetti, A.5
Poggio, T.6
-
22
-
-
84939500710
-
Unsupervised learning of invariant representations
-
F. Anselmi, J. Z. Leibo, L. Rosasco, J. Mutch, A. Tacchetti, T. Poggio. Unsupervised learning of invariant representations. Theoretical Computer Science, vol. 633, pp. 112–121, 2016.
-
(2016)
Theoretical Computer Science
, vol.633
, pp. 112-121
-
-
Anselmi, F.1
Leibo, J.Z.2
Rosasco, L.3
Mutch, J.4
Tacchetti, A.5
Poggio, T.6
-
23
-
-
85030457525
-
-
T. Poggio, L. Rosaco, A. Shashua, N. Cohen, F. Anselmi. Notes on Hierarchical Splines, DCLNs and i-theory, Center for Brains, Minds and Machines (CBMM) Memo No. 037. The Center for Brains, Minds and Machines, 2015.
-
(2015)
Notes on Hierarchical Splines, DCLNs and i-theory
-
-
Poggio, T.1
Rosaco, L.2
Shashua, A.3
Cohen, N.4
Anselmi, F.5
-
24
-
-
84989340411
-
-
Q. L. Liao, T. Poggio. Bridging the Gaps between Residual Learning, Recurrent Neural Networks and Visual Cortex, Center for Brains, Minds and Machines (CBMM) Memo No. 047, The Center for Brains, Minds and Machines, 2016.
-
(2016)
Bridging the Gaps between Residual Learning, Recurrent Neural Networks and Visual Cortex, Center for Brains
-
-
Liao, Q.L.1
Poggio, T.2
-
27
-
-
0000041417
-
Neural networks for optimal approximation of smooth and analytic functions
-
H. N. Mhaskar. Neural networks for optimal approximation of smooth and analytic functions. Neural Computation, vol. 8, no. 1, pp. 164–177, 1996.
-
(1996)
Neural Computation
, vol.8
, Issue.1
, pp. 164-177
-
-
Mhaskar, H.N.1
-
28
-
-
84875247004
-
Conditions for an infinitely differentiable function to be a polynomial
-
E. Corominas, F. S. Balaguer. Conditions for an infinitely differentiable function to be a polynomial. Revista Matemática Hispanoamericana vol. 14, no. 1–2, pp. 26–43, 1954. (in Spanish)
-
(1954)
Revista Matemática Hispanoamericana
, vol.14
, Issue.1-2
, pp. 26-43
-
-
Corominas, E.1
Balaguer, F.S.2
-
29
-
-
85020057945
-
-
T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, Q. L. Liao. Why and when can deep–but not shallow–networks avoid the curse of dimensionality: A review. arXiv:1611.00740v3, 2016.
-
(2016)
Why and when can deep–but not shallow–networks avoid the curse of dimensionality: A review
-
-
Poggio, T.1
Mhaskar, H.2
Rosasco, L.3
Miranda, B.4
Liao, Q.L.5
-
30
-
-
0000910028
-
Optimal nonlinear approximation
-
R. A. DeVore, R. Howard C. A. Micchelli. Optimal nonlinear approximation. Manuscripta Mathematica, vol. 63, no. 4, pp. 469–478, 1989.
-
(1989)
Manuscripta Mathematica
, vol.63
, Issue.4
, pp. 469-478
-
-
DeVore, R.A.1
Howard, R.2
Micchelli, C.A.3
-
31
-
-
3242701678
-
On the tractability of multivariate integration and approximation by neural networks
-
H. N. Mhaskar. On the tractability of multivariate integration and approximation by neural networks. Journal of Complexity, vol. 20, no. 4, pp. 561–590, 2004.
-
(2004)
Journal of Complexity
, vol.20
, Issue.4
, pp. 561-590
-
-
Mhaskar, H.N.1
-
34
-
-
84857855190
-
Random search for hyper-parameter optimization
-
J. Bergstra, Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine Learning Research, vol. 13, no. 1, pp. 281–305, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, Issue.1
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
35
-
-
84971577321
-
-
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. F. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Q. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Q. Zheng. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467, 2016.
-
(2016)
TensorFlow: Large-scale machine learning on heterogeneous distributed systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.F.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
Ghemawat, S.11
Goodfellow, I.12
Harp, A.13
Irving, G.14
Isard, M.15
Jia, Y.Q.16
Jozefowicz, R.17
Kaiser, L.18
Kudlur, M.19
Levenberg, J.20
Mané, D.21
Monga, R.22
Moore, S.23
Murray, D.24
Olah, C.25
Schuster, M.26
Shlens, J.27
Steiner, B.28
Sutskever, I.29
Talwar, K.30
Tucker, P.31
Vanhoucke, V.32
Vasudevan, V.33
Viégas, F.34
Vinyals, O.35
Warden, P.36
Wattenberg, M.37
Wicke, M.38
Yu, Y.39
Zheng, X.Q.40
more..
-
39
-
-
0027627287
-
Constant depth circuits, Fourier transform, and learnability
-
N. Linial, Y. Mansour, N. Nisan. Constant depth circuits, Fourier transform, and learnability. Journal of the ACM, vol. 40, no. 3, pp. 607–620, 1993.
-
(1993)
Journal of the ACM
, vol.40
, Issue.3
, pp. 607-620
-
-
Linial, N.1
Mansour, Y.2
Nisan, N.3
-
40
-
-
34547975052
-
Scaling learning algorithms towards AI
-
Bottou L., Chapelle O., DeCoste D., Weston J. eds), MIT Press, Cambridge, MA, USA
-
Y. Bengio, Y. LeCun. Scaling learning algorithms towards AI. Large-Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, J. Weston, Eds., Cambridge, MA, USA: MIT Press, 2007.
-
(2007)
Large-Scale Kernel Machines
-
-
Bengio, Y.1
LeCun, Y.2
-
41
-
-
0001663135
-
Learning Boolean functions via the Fourier transform
-
Roychowdhury V., Siu K. Y., Orlitsky A. eds), Springer, US
-
Y. Mansour. Learning Boolean functions via the Fourier transform. Theoretical Advances in Neural Computation and Learning, V. Roychowdhury, K. Y. Siu, A. Orlitsky, Eds., pp. 391–424, US: Springer, 1994.
-
(1994)
Theoretical Advances in Neural Computation and Learning
, pp. 391-424
-
-
Mansour, Y.1
-
43
-
-
85030617878
-
-
F. Anselmi, L. Rosasco, C. Tan, T. Poggio. Deep Convolutional Networks are Hierarchical Kernel Machines, Center for Brains, Minds and Machines (CBMM) Memo No. 035, The Center for Brains, Minds and Machines, USA, 2015.
-
(2015)
Deep Convolutional Networks are Hierarchical Kernel Machines, Center for Brains, Minds and Machines (CBMM) Memo No. 035
-
-
Anselmi, F.1
Rosasco, L.2
Tan, C.3
Poggio, T.4
-
44
-
-
84949683101
-
Humanlevel concept learning through probabilistic program induction
-
B. M. Lake, R. Salakhutdinov, J. B. Tenenabum. Humanlevel concept learning through probabilistic program induction. Science, vol. 350, no. 6266, pp. 1332–1338, 2015.
-
(2015)
Science
, vol.350
, Issue.6266
, pp. 1332-1338
-
-
Lake, B.M.1
Salakhutdinov, R.2
Tenenabum, J.B.3
-
45
-
-
30744438843
-
Bounds for linear multi-task learning
-
A. Maurer. Bounds for linear multi-task learning. Journal of Machine Learning Research, vol. 7, no. 1, pp. 117–139, 2016.
-
(2016)
Journal of Machine Learning Research
, vol.7
, Issue.1
, pp. 117-139
-
-
Maurer, A.1
-
47
-
-
85028728115
-
-
MIT Press, Cambridge, MA, UK
-
T. A. Poggio, F. Anselmi. Visual Cortex and Deep Networks: Learning Invariant Representations, Cambridge, MA, UK: MIT Press, 2016.
-
(2016)
Visual Cortex and Deep Networks: Learning Invariant Representations
-
-
Poggio, T.A.1
Anselmi, F.2
-
48
-
-
77956032667
-
Hierarchical singular value decomposition of tensors
-
L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM Journal on Matrix Analysis and Applications, no. 31, no. 4, pp. 2029–2054, 2010.
-
(2010)
SIAM Journal on Matrix Analysis and Applications
, vol.31
, Issue.4
, pp. 2029-2054
-
-
Grasedyck, L.1
-
50
-
-
0019230683
-
On the representation of multiinput systems: Computational properties of polynomial algorithms
-
T. Poggio, W. Reichardt. On the representation of multiinput systems: Computational properties of polynomial algorithms. Biological Cybernetics, vol. 37, no. 3, 167–186, 1980.
-
(1980)
Biological Cybernetics
, vol.37
, Issue.3
, pp. 167-186
-
-
Poggio, T.1
Reichardt, W.2
|