메뉴 건너뛰기




Volumn 63, Issue , 2017, Pages 171-181

Multi-modal classification of Alzheimer's disease using nonlinear graph fusion

Author keywords

Biomarkers; Classification of Alzheimer's disease; Machine learning; Multiple modalities; Nonlinear graph fusion

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOMARKERS; DIAGNOSIS; GENES; LEARNING SYSTEMS; MODAL ANALYSIS; NEURODEGENERATIVE DISEASES; NEUROIMAGING;

EID: 84999007060     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2016.10.009     Document Type: Article
Times cited : (213)

References (61)
  • 1
    • 84910005783 scopus 로고    scopus 로고
    • Alzheimer's disease facts and figures. Alzheimer's Dement.: J. Alzheimer's Assoc. 10 (2) (2014) 47–92.
    • [1] A. Association, et al., Alzheimer's disease facts and figures. Alzheimer's Dement.: J. Alzheimer's Assoc. 10 (2) (2014) 47–92.
    • Association, A.1
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • [2] Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 3
    • 84939435519 scopus 로고    scopus 로고
    • Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the cad dementia challenge
    • [3] Bron, E.E., Smits, M., et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the cad dementia challenge. NeuroImage 111 (2015), 562–579.
    • (2015) NeuroImage , vol.111 , pp. 562-579
    • Bron, E.E.1    Smits, M.2
  • 5
    • 84855181990 scopus 로고    scopus 로고
    • Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease
    • [5] Coupé, P., Eskildsen, S.F., Manjón, J.V., Fonov, V.S., Collins, D.L., et al. Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease. NeuroImage 59:4 (2012), 3736–3747.
    • (2012) NeuroImage , vol.59 , Issue.4 , pp. 3736-3747
    • Coupé, P.1    Eskildsen, S.F.2    Manjón, J.V.3    Fonov, V.S.4    Collins, D.L.5
  • 6
    • 84868582487 scopus 로고    scopus 로고
    • Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning
    • [6] Eskildsen, S.F., Coupé, P., García-Lorenzo, D., Fonov, V., Pruessner, J.C., Collins, D.L., Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. NeuroImage 65 (2013), 511–521.
    • (2013) NeuroImage , vol.65 , pp. 511-521
    • Eskildsen, S.F.1    Coupé, P.2    García-Lorenzo, D.3    Fonov, V.4    Pruessner, J.C.5    Collins, D.L.6
  • 8
    • 84868215748 scopus 로고    scopus 로고
    • Random forest-based similarity measures for multi-modal classification of Alzheimer's disease
    • [8] Gray, K.R., Aljabar, P., Heckemann, R.A., Hammers, A., Rueckert, D., Random forest-based similarity measures for multi-modal classification of Alzheimer's disease. NeuroImage 65 (2013), 167–175.
    • (2013) NeuroImage , vol.65 , pp. 167-175
    • Gray, K.R.1    Aljabar, P.2    Heckemann, R.A.3    Hammers, A.4    Rueckert, D.5
  • 11
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • [11] Hand, D.J., Till, R.J., A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 45:2 (2001), 171–186.
    • (2001) Mach. Learn. , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 12
    • 77950536461 scopus 로고    scopus 로고
    • Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation
    • [12] Heckemann, R.A., Keihaninejad, S., Aljabar, P., Rueckert, D., Hajnal, J.V., Hammers, A., et al. Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. NeuroImage 51:1 (2010), 221–227.
    • (2010) NeuroImage , vol.51 , Issue.1 , pp. 221-227
    • Heckemann, R.A.1    Keihaninejad, S.2    Aljabar, P.3    Rueckert, D.4    Hajnal, J.V.5    Hammers, A.6
  • 14
    • 79551576499 scopus 로고    scopus 로고
    • Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
    • [14] Hinrichs, C., Singh, V., Xu, G., Johnson, S.C., Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. NeuroImage 55:2 (2011), 574–589.
    • (2011) NeuroImage , vol.55 , Issue.2 , pp. 574-589
    • Hinrichs, C.1    Singh, V.2    Xu, G.3    Johnson, S.C.4
  • 16
    • 84922322664 scopus 로고    scopus 로고
    • Manifold regularized multitask feature learning for multimodality disease classification
    • [16] Jie, B., Zhang, D., Cheng, B., Shen, D., Manifold regularized multitask feature learning for multimodality disease classification. Hum. Brain Mapp. 36:2 (2015), 489–507.
    • (2015) Hum. Brain Mapp. , vol.36 , Issue.2 , pp. 489-507
    • Jie, B.1    Zhang, D.2    Cheng, B.3    Shen, D.4
  • 17
    • 84893330870 scopus 로고    scopus 로고
    • Integration of network topological and connectivity properties for neuroimaging classification
    • [17] Jie, B., Zhang, D., Gao, W., Wang, Q., Wee, C.-Y., Shen, D., Integration of network topological and connectivity properties for neuroimaging classification. IEEE Trans. Biomed. Eng. 61:2 (2014), 576–589.
    • (2014) IEEE Trans. Biomed. Eng. , vol.61 , Issue.2 , pp. 576-589
    • Jie, B.1    Zhang, D.2    Gao, W.3    Wang, Q.4    Wee, C.-Y.5    Shen, D.6
  • 18
    • 62749137112 scopus 로고    scopus 로고
    • Reducing between scanner differences in multi-center PET studies
    • [18] Joshi, A., Koeppe, R.A., Fessler, J.A., Reducing between scanner differences in multi-center PET studies. NeuroImage 46:1 (2009), 154–159.
    • (2009) NeuroImage , vol.46 , Issue.1 , pp. 154-159
    • Joshi, A.1    Koeppe, R.A.2    Fessler, J.A.3
  • 22
    • 62349097513 scopus 로고    scopus 로고
    • Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
    • [22] Langbaum, J., Chen, K., Lee, W., Reschke, C., Bandy, D., Fleisher, A.S., Alexander, G.E., Foster, N.L., Weiner, M.W., Koeppe, R.A., et al. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer's Disease Neuroimaging Initiative (ADNI). NeuroImage 45:4 (2009), 1107–1116.
    • (2009) NeuroImage , vol.45 , Issue.4 , pp. 1107-1116
    • Langbaum, J.1    Chen, K.2    Lee, W.3    Reschke, C.4    Bandy, D.5    Fleisher, A.S.6    Alexander, G.E.7    Foster, N.L.8    Weiner, M.W.9    Koeppe, R.A.10
  • 24
    • 84940975497 scopus 로고    scopus 로고
    • A robust deep model for improved classification of AD/MCI patients
    • [24] Li, F., Tran, L., Thung, K.-H., Ji, S., et al. A robust deep model for improved classification of AD/MCI patients. IEEE J. Biomed. Health Inf. 19:5 (2015), 1610–1616.
    • (2015) IEEE J. Biomed. Health Inf. , vol.19 , Issue.5 , pp. 1610-1616
    • Li, F.1    Tran, L.2    Thung, K.-H.3    Ji, S.4
  • 25
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • [25] Liaw, A., Wiener, M., Classification and regression by random forest. R News 2:3 (2002), 18–22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 26
    • 0036725818 scopus 로고    scopus 로고
    • Risk factors for Alzheimer's disease: a prospective analysis from the canadian study of health and aging
    • [26] Lindsay, J., Laurin, D., Verreault, R., Hébert, R., Helliwell, B., Hill, G.B., McDowell, I., Risk factors for Alzheimer's disease: a prospective analysis from the canadian study of health and aging. Am. J. Epidemiol. 156:5 (2002), 445–453.
    • (2002) Am. J. Epidemiol. , vol.156 , Issue.5 , pp. 445-453
    • Lindsay, J.1    Laurin, D.2    Verreault, R.3    Hébert, R.4    Helliwell, B.5    Hill, G.B.6    McDowell, I.7
  • 27
    • 84885160193 scopus 로고    scopus 로고
    • Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's disease and mild cognitive impairment identification
    • [27] Liu, F., Wee, C.-Y., Chen, H., Shen, D., Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's disease and mild cognitive impairment identification. NeuroImage 84 (2014), 466–475.
    • (2014) NeuroImage , vol.84 , pp. 466-475
    • Liu, F.1    Wee, C.-Y.2    Chen, H.3    Shen, D.4
  • 28
    • 84896396327 scopus 로고    scopus 로고
    • Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis
    • [28] Liu, M., Zhang, D., Shen, D., Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis. Hum. Brain Mapp. 35:4 (2014), 1305–1319.
    • (2014) Hum. Brain Mapp. , vol.35 , Issue.4 , pp. 1305-1319
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 30
    • 79956142378 scopus 로고    scopus 로고
    • The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association Workgroups on diagnostic guidelines for Alzheimer's disease
    • [30] McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Kawas, C.H., Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association Workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement. 7:3 (2011), 263–269.
    • (2011) Alzheimer's Dement. , vol.7 , Issue.3 , pp. 263-269
    • McKhann, G.M.1    Knopman, D.S.2    Chertkow, H.3    Hyman, B.T.4    Jack, C.R.5    Kawas, C.H.6    Klunk, W.E.7    Koroshetz, W.J.8    Manly, J.J.9    Mayeux, R.10
  • 31
    • 84925058025 scopus 로고    scopus 로고
    • Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
    • [31] Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects. NeuroImage 104 (2015), 398–412.
    • (2015) NeuroImage , vol.104 , pp. 398-412
    • Moradi, E.1    Pepe, A.2    Gaser, C.3    Huttunen, H.4    Tohka, J.5
  • 33
    • 0003391330 scopus 로고
    • Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
    • Morgan Kaufmann San Francisco, CA 94104, USA
    • [33] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. 1988, Morgan Kaufmann, San Francisco, CA 94104, USA.
    • (1988)
    • Pearl, J.1
  • 36
    • 48649092771 scopus 로고    scopus 로고
    • Clinical criteria for the diagnosis of Alzheimer disease: still good after all these years
    • [36] Ranginwala, N.A., Hynan, L.S., Weiner, M.F., White, C.L., Clinical criteria for the diagnosis of Alzheimer disease: still good after all these years. Am. J. Geriatr. Psychiatr. 16:5 (2008), 384–388.
    • (2008) Am. J. Geriatr. Psychiatr. , vol.16 , Issue.5 , pp. 384-388
    • Ranginwala, N.A.1    Hynan, L.S.2    Weiner, M.F.3    White, C.L.4
  • 39
    • 33645573203 scopus 로고    scopus 로고
    • Unsupervised learning with random forest predictors
    • [39] Shi, T., Horvath, S., Unsupervised learning with random forest predictors. J. Comput. Graph. Stat. 15:1 (2006), 118–138.
    • (2006) J. Comput. Graph. Stat. , vol.15 , Issue.1 , pp. 118-138
    • Shi, T.1    Horvath, S.2
  • 41
    • 84896353646 scopus 로고    scopus 로고
    • Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion
    • [41] Thung, K.-H., Wee, C.-Y., Yap, P.-T., Shen, D., Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion. NeuroImage 91 (2014), 386–400.
    • (2014) NeuroImage , vol.91 , pp. 386-400
    • Thung, K.-H.1    Wee, C.-Y.2    Yap, P.-T.3    Shen, D.4
  • 42
    • 85008699081 scopus 로고    scopus 로고
    • A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer's disease
    • [42] Tong, T., Gao, Q., Guerrero, R., Ledig, C., Chen, L., Rueckert, D., A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer's disease. IEEE Trans. Biomed. Eng., 2016, 10.1109/TBME.2016.2549363.
    • (2016) IEEE Trans. Biomed. Eng.
    • Tong, T.1    Gao, Q.2    Guerrero, R.3    Ledig, C.4    Chen, L.5    Rueckert, D.6
  • 43
    • 84901016404 scopus 로고    scopus 로고
    • Multiple instance learning for classification of dementia in brain MRI
    • [43] Tong, T., Wolz, R., Gao, Q., Guerrero, R., Hajnal, J.V., Rueckert, D., et al. Multiple instance learning for classification of dementia in brain MRI. Med. Image Anal. 18:5 (2014), 808–818.
    • (2014) Med. Image Anal. , vol.18 , Issue.5 , pp. 808-818
    • Tong, T.1    Wolz, R.2    Gao, Q.3    Guerrero, R.4    Hajnal, J.V.5    Rueckert, D.6
  • 45
    • 84856108049 scopus 로고    scopus 로고
    • Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease
    • [45] Vounou, M., Janousova, E., Wolz, R., Stein, J.L., Thompson, P.M., Rueckert, D., Montana, G., Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease. NeuroImage 60:1 (2012), 700–716.
    • (2012) NeuroImage , vol.60 , Issue.1 , pp. 700-716
    • Vounou, M.1    Janousova, E.2    Wolz, R.3    Stein, J.L.4    Thompson, P.M.5    Rueckert, D.6    Montana, G.7
  • 46
    • 76749120506 scopus 로고    scopus 로고
    • Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease
    • [46] Walhovd, K., Fjell, A., Brewer, J., McEvoy, L., Fennema-Notestine, C., Hagler, D., Jennings, R., Karow, D., Dale, A., et al. Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. Am. J. Neuroradiol. 31:2 (2010), 347–354.
    • (2010) Am. J. Neuroradiol. , vol.31 , Issue.2 , pp. 347-354
    • Walhovd, K.1    Fjell, A.2    Brewer, J.3    McEvoy, L.4    Fennema-Notestine, C.5    Hagler, D.6    Jennings, R.7    Karow, D.8    Dale, A.9
  • 47
    • 84866689522 scopus 로고    scopus 로고
    • Unsupervised metric fusion by cross diffusion. In: IEEE Conference on CVPR, IEEE, Providence, Rhode Island, USA
    • [47] B. Wang, J. Jiang, W. Wang, Z.-H. Zhou, Z. Tu, Unsupervised metric fusion by cross diffusion. In: IEEE Conference on CVPR, IEEE, Providence, Rhode Island, USA, 2012, pp. 2997–3004.
    • (2012) , pp. 2997-3004
    • Wang, B.1    Jiang, J.2    Wang, W.3    Zhou, Z.-H.4    Tu, Z.5
  • 49
    • 84886240845 scopus 로고    scopus 로고
    • Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns
    • [49] Wee, C.-Y., Yap, P.-T., Shen, D., Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns. Hum. Brain Mapp. 34:12 (2013), 3411–3425.
    • (2013) Hum. Brain Mapp. , vol.34 , Issue.12 , pp. 3411-3425
    • Wee, C.-Y.1    Yap, P.-T.2    Shen, D.3
  • 51
    • 84861645859 scopus 로고    scopus 로고
    • Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion
    • [51] Westman, E., Muehlboeck, J.-S., Simmons, A., Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion. NeuroImage 62:1 (2012), 229–238.
    • (2012) NeuroImage , vol.62 , Issue.1 , pp. 229-238
    • Westman, E.1    Muehlboeck, J.-S.2    Simmons, A.3
  • 54
    • 84879076294 scopus 로고    scopus 로고
    • Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment
    • [54] Young, J., Modat, M., Cardoso, M.J., Mendelson, A., Cash, D., Ourselin, S., Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. NeuroImage: Clin. 2 (2013), 735–745.
    • (2013) NeuroImage: Clin. , vol.2 , pp. 735-745
    • Young, J.1    Modat, M.2    Cardoso, M.J.3    Mendelson, A.4    Cash, D.5    Ourselin, S.6
  • 55
    • 84861187815 scopus 로고    scopus 로고
    • Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data
    • [55] Yuan, L., Wang, Y., Thompson, P.M., Narayan, V.A., Ye, J., Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. NeuroImage 61:3 (2012), 622–632.
    • (2012) NeuroImage , vol.61 , Issue.3 , pp. 622-632
    • Yuan, L.1    Wang, Y.2    Thompson, P.M.3    Narayan, V.A.4    Ye, J.5
  • 56
    • 83055184373 scopus 로고    scopus 로고
    • Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
    • [56] Zhang, D., Shen, D., Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage 59:2 (2012), 895–907.
    • (2012) NeuroImage , vol.59 , Issue.2 , pp. 895-907
    • Zhang, D.1    Shen, D.2
  • 57
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • [57] Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage 55:3 (2011), 856–867.
    • (2011) NeuroImage , vol.55 , Issue.3 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 58
    • 84878120205 scopus 로고    scopus 로고
    • Optimally-discriminative voxel-based morphometry significantly increases the ability to detect group differences in schizophrenia, mild cognitive impairment, and Alzheimer's disease
    • [58] Zhang, T., Davatzikos, C., Optimally-discriminative voxel-based morphometry significantly increases the ability to detect group differences in schizophrenia, mild cognitive impairment, and Alzheimer's disease. NeuroImage 79 (2013), 94–110.
    • (2013) NeuroImage , vol.79 , pp. 94-110
    • Zhang, T.1    Davatzikos, C.2
  • 59
    • 79960471063 scopus 로고    scopus 로고
    • Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures
    • [59] Zhou, L., Wang, Y., Li, Y., Yap, P.-T., Shen, D., et al. Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures. PloS One, 6(7), 2011, e21935.
    • (2011) PloS One , vol.6 , Issue.7 , pp. e21935
    • Zhou, L.1    Wang, Y.2    Li, Y.3    Yap, P.-T.4    Shen, D.5
  • 60
    • 84903899707 scopus 로고    scopus 로고
    • A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis
    • [60] Zhu, X., Suk, H.-I., Shen, D., A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. NeuroImage 100 (2014), 91–105.
    • (2014) NeuroImage , vol.100 , pp. 91-105
    • Zhu, X.1    Suk, H.-I.2    Shen, D.3
  • 61
    • 84949058046 scopus 로고    scopus 로고
    • A novel relational regularization feature selection method for joint regression and classification in AD diagnosis
    • [61] Zhu, X., Suk, H.-I., Wang, L., Lee, S.-W., Shen, D., A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med. Image Anal., 2015, 10.1016/j.media.2015.10.008.
    • (2015) Med. Image Anal.
    • Zhu, X.1    Suk, H.-I.2    Wang, L.3    Lee, S.-W.4    Shen, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.