-
2
-
-
0031361611
-
Machine-learning research
-
Dietterich, T.G.: Machine-learning research. AI Magazine 18(4), 97-136 (1997)
-
(1997)
AI Magazine
, vol.18
, Issue.4
, pp. 97-136
-
-
Dietterich, T.G.1
-
3
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? JMLR 11, 625-660 (2010)
-
(2010)
JMLR
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.A.4
Vincent, P.5
Bengio, S.6
-
4
-
-
84868150725
-
Estimating sample sizes for predementia Alzheimer's trials based on the Alzheimer's Disease Neuroimaging Initiative
-
Grill, J.D., Di, L., Lu, P.H., Lee, C., Ringman, J., Apostolova, L.G., et al.: Estimating sample sizes for predementia Alzheimer's trials based on the Alzheimer's Disease Neuroimaging Initiative. Neurobiology of Aging 34, 62-72 (2013)
-
(2013)
Neurobiology of Aging
, vol.34
, pp. 62-72
-
-
Grill, J.D.1
Di, L.2
Lu, P.H.3
Lee, C.4
Ringman, J.5
Apostolova, L.G.6
-
5
-
-
84906978672
-
Natural image bases to represent neuroimaging data
-
Gupta, A., Ayhan, M., Maida, A.: Natural image bases to represent neuroimaging data. In: Proceedings of the 30th ICML, pp. 987-994 (2013)
-
(2013)
Proceedings of the 30th ICML
, pp. 987-994
-
-
Gupta, A.1
Ayhan, M.2
Maida, A.3
-
6
-
-
84870013120
-
MKL-based sample enrichment and customized outcomes enable smaller AD clinical trials
-
Langs, G. (ed.) MLINI 2011. Springer, Heidelberg
-
Hinrichs, C., Dowling, N.M., Johnson, S.C., Singh, V.: MKL-based sample enrichment and customized outcomes enable smaller AD clinical trials. In: Langs, G. (ed.) MLINI 2011. LNCS (LNAI), vol. 7263, pp. 124-131. Springer, Heidelberg (2012)
-
(2012)
LNCS (LNAI)
, vol.7263
, pp. 124-131
-
-
Hinrichs, C.1
Dowling, N.M.2
Johnson, S.C.3
Singh, V.4
-
7
-
-
79551576499
-
Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population
-
Hinrichs, C., Singh, V., Xu, G., Johnson, S.C.: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 55, 574-589 (2011)
-
(2011)
Neuroimage
, vol.55
, pp. 574-589
-
-
Hinrichs, C.1
Singh, V.2
Xu, G.3
Johnson, S.C.4
-
8
-
-
84863915683
-
Unbiased comparison of sample size estimates from longitudinal structural measures in ADNI
-
Holland, D., McEvoy, L.K., Dale, A.M.: Unbiased comparison of sample size estimates from longitudinal structural measures in ADNI. Human Brain Mapping 33(11), 2586-2602 (2012)
-
(2012)
Human Brain Mapping
, vol.33
, Issue.11
, pp. 2586-2602
-
-
Holland, D.1
McEvoy, L.K.2
Dale, A.M.3
-
9
-
-
77954032616
-
Boosting power for clinical trials using classifiers based on multiple biomarkers
-
Kohannim, O., Hua, X., Hibar, D.P., Lee, S., Chou, Y.Y., Toga, A.W., Jack Jr., C.R., Weiner, M.W., Thompson, P.M.: Boosting power for clinical trials using classifiers based on multiple biomarkers. Neurobiology of Aging 31, 1429-1442 (2010)
-
(2010)
Neurobiology of Aging
, vol.31
, pp. 1429-1442
-
-
Kohannim, O.1
Hua, X.2
Hibar, D.P.3
Lee, S.4
Chou, Y.Y.5
Toga, A.W.6
Jack Jr., C.R.7
Weiner, M.W.8
Thompson, P.M.9
-
10
-
-
84906984527
-
-
arXiv preprint arXiv:1312.5847
-
Plis, S.M., Hjelm, D.R., Salakhutdinov, R., Calhoun, V.D.: Deep learning for neuroimaging: a validation study. arXiv preprint arXiv:1312.5847 (2013)
-
(2013)
Deep Learning for Neuroimaging: A Validation Study
-
-
Plis, S.M.1
Hjelm, D.R.2
Salakhutdinov, R.3
Calhoun, V.D.4
-
11
-
-
84879394681
-
Sample size estimation in clinical trial
-
Sakpal, T.V.: Sample size estimation in clinical trial. Perspectives in Clinical Research 1(2), 67-69 (2010)
-
(2010)
Perspectives in Clinical Research
, vol.1
, Issue.2
, pp. 67-69
-
-
Sakpal, T.V.1
-
12
-
-
84885898432
-
Deep learning-based feature representation for AD/MCI classification
-
Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Springer, Heidelberg
-
Suk, H.-I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 583-590. Springer, Heidelberg (2013)
-
(2013)
LNCS
, vol.8150
, Issue.PART II
, pp. 583-590
-
-
Suk, H.-I.1
Shen, D.2
-
13
-
-
84876127603
-
Modeling the heterogeneity in risk of progression to Alzheimer's disease across cognitive profiles in mild cognitive impairment
-
Tatsuoka, C., Tseng, H., Jaeger, J., Varadi, F., Smith, M.A., Yamada, T., et al.: Modeling the heterogeneity in risk of progression to Alzheimer's disease across cognitive profiles in mild cognitive impairment. Alzheimers Res. Ther. 5, 14 (2013)
-
(2013)
Alzheimers Res. Ther.
, vol.5
, pp. 14
-
-
Tatsuoka, C.1
Tseng, H.2
Jaeger, J.3
Varadi, F.4
Smith, M.A.5
Yamada, T.6
-
14
-
-
34548795886
-
Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment
-
Teipel, S.J., Born, C., Ewers, M., Bokde, A.L., Reiser, M.F., M̈oller, H.J., Hampel, H.: Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment. Neuroimage 38, 13-24 (2007)
-
(2007)
Neuroimage
, vol.38
, pp. 13-24
-
-
Teipel, S.J.1
Born, C.2
Ewers, M.3
Bokde, A.L.4
Reiser, M.F.5
M̈oller, H.J.6
Hampel, H.7
-
15
-
-
68249111164
-
MRI and CSF biomarkers in normal, MCI, and AD subjects predicting future clinical change
-
Vemuri, P., Wiste, H., et al.: MRI and CSF biomarkers in normal, MCI, and AD subjects predicting future clinical change. Neurology 73(4), 294-301 (2009)
-
(2009)
Neurology
, vol.73
, Issue.4
, pp. 294-301
-
-
Vemuri, P.1
Wiste, H.2
-
16
-
-
79952073234
-
Multimodal classification of Alzheimer's disease and mild cognitive impairment
-
Zhang, D., Wang, Y., Zhou, L., et al.: Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage 55(3), 856-867 (2011)
-
(2011)
Neuroimage
, vol.55
, Issue.3
, pp. 856-867
-
-
Zhang, D.1
Wang, Y.2
Zhou, L.3
|