메뉴 건너뛰기




Volumn 8674 LNCS, Issue PART 2, 2014, Pages 470-478

Randomized denoising autoencoders for smaller and efficient imaging based AD clinical trials

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; EXPERIMENTS; MEDICAL APPLICATIONS; MEDICAL IMAGING; LEARNING SYSTEMS; MEDICAL COMPUTING;

EID: 84906991004     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-10470-6_59     Document Type: Conference Paper
Times cited : (3)

References (16)
  • 2
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research
    • Dietterich, T.G.: Machine-learning research. AI Magazine 18(4), 97-136 (1997)
    • (1997) AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 4
    • 84868150725 scopus 로고    scopus 로고
    • Estimating sample sizes for predementia Alzheimer's trials based on the Alzheimer's Disease Neuroimaging Initiative
    • Grill, J.D., Di, L., Lu, P.H., Lee, C., Ringman, J., Apostolova, L.G., et al.: Estimating sample sizes for predementia Alzheimer's trials based on the Alzheimer's Disease Neuroimaging Initiative. Neurobiology of Aging 34, 62-72 (2013)
    • (2013) Neurobiology of Aging , vol.34 , pp. 62-72
    • Grill, J.D.1    Di, L.2    Lu, P.H.3    Lee, C.4    Ringman, J.5    Apostolova, L.G.6
  • 5
    • 84906978672 scopus 로고    scopus 로고
    • Natural image bases to represent neuroimaging data
    • Gupta, A., Ayhan, M., Maida, A.: Natural image bases to represent neuroimaging data. In: Proceedings of the 30th ICML, pp. 987-994 (2013)
    • (2013) Proceedings of the 30th ICML , pp. 987-994
    • Gupta, A.1    Ayhan, M.2    Maida, A.3
  • 6
    • 84870013120 scopus 로고    scopus 로고
    • MKL-based sample enrichment and customized outcomes enable smaller AD clinical trials
    • Langs, G. (ed.) MLINI 2011. Springer, Heidelberg
    • Hinrichs, C., Dowling, N.M., Johnson, S.C., Singh, V.: MKL-based sample enrichment and customized outcomes enable smaller AD clinical trials. In: Langs, G. (ed.) MLINI 2011. LNCS (LNAI), vol. 7263, pp. 124-131. Springer, Heidelberg (2012)
    • (2012) LNCS (LNAI) , vol.7263 , pp. 124-131
    • Hinrichs, C.1    Dowling, N.M.2    Johnson, S.C.3    Singh, V.4
  • 7
    • 79551576499 scopus 로고    scopus 로고
    • Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population
    • Hinrichs, C., Singh, V., Xu, G., Johnson, S.C.: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 55, 574-589 (2011)
    • (2011) Neuroimage , vol.55 , pp. 574-589
    • Hinrichs, C.1    Singh, V.2    Xu, G.3    Johnson, S.C.4
  • 8
    • 84863915683 scopus 로고    scopus 로고
    • Unbiased comparison of sample size estimates from longitudinal structural measures in ADNI
    • Holland, D., McEvoy, L.K., Dale, A.M.: Unbiased comparison of sample size estimates from longitudinal structural measures in ADNI. Human Brain Mapping 33(11), 2586-2602 (2012)
    • (2012) Human Brain Mapping , vol.33 , Issue.11 , pp. 2586-2602
    • Holland, D.1    McEvoy, L.K.2    Dale, A.M.3
  • 11
    • 84879394681 scopus 로고    scopus 로고
    • Sample size estimation in clinical trial
    • Sakpal, T.V.: Sample size estimation in clinical trial. Perspectives in Clinical Research 1(2), 67-69 (2010)
    • (2010) Perspectives in Clinical Research , vol.1 , Issue.2 , pp. 67-69
    • Sakpal, T.V.1
  • 12
    • 84885898432 scopus 로고    scopus 로고
    • Deep learning-based feature representation for AD/MCI classification
    • Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Springer, Heidelberg
    • Suk, H.-I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 583-590. Springer, Heidelberg (2013)
    • (2013) LNCS , vol.8150 , Issue.PART II , pp. 583-590
    • Suk, H.-I.1    Shen, D.2
  • 13
    • 84876127603 scopus 로고    scopus 로고
    • Modeling the heterogeneity in risk of progression to Alzheimer's disease across cognitive profiles in mild cognitive impairment
    • Tatsuoka, C., Tseng, H., Jaeger, J., Varadi, F., Smith, M.A., Yamada, T., et al.: Modeling the heterogeneity in risk of progression to Alzheimer's disease across cognitive profiles in mild cognitive impairment. Alzheimers Res. Ther. 5, 14 (2013)
    • (2013) Alzheimers Res. Ther. , vol.5 , pp. 14
    • Tatsuoka, C.1    Tseng, H.2    Jaeger, J.3    Varadi, F.4    Smith, M.A.5    Yamada, T.6
  • 14
    • 34548795886 scopus 로고    scopus 로고
    • Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment
    • Teipel, S.J., Born, C., Ewers, M., Bokde, A.L., Reiser, M.F., M̈oller, H.J., Hampel, H.: Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment. Neuroimage 38, 13-24 (2007)
    • (2007) Neuroimage , vol.38 , pp. 13-24
    • Teipel, S.J.1    Born, C.2    Ewers, M.3    Bokde, A.L.4    Reiser, M.F.5    M̈oller, H.J.6    Hampel, H.7
  • 15
    • 68249111164 scopus 로고    scopus 로고
    • MRI and CSF biomarkers in normal, MCI, and AD subjects predicting future clinical change
    • Vemuri, P., Wiste, H., et al.: MRI and CSF biomarkers in normal, MCI, and AD subjects predicting future clinical change. Neurology 73(4), 294-301 (2009)
    • (2009) Neurology , vol.73 , Issue.4 , pp. 294-301
    • Vemuri, P.1    Wiste, H.2
  • 16
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • Zhang, D., Wang, Y., Zhou, L., et al.: Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage 55(3), 856-867 (2011)
    • (2011) Neuroimage , vol.55 , Issue.3 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.