메뉴 건너뛰기




Volumn 63, Issue , 2017, Pages 487-498

Erratum to “Nonlinear feature transformation and deep fusion for Alzheimer's disease staging analysis” [Pattern Recognition 63 (2017) 487–498] (S0031320316302916)(10.1016/j.patcog.2016.09.032);Nonlinear feature transformation and deep fusion for Alzheimer's Disease staging analysis

Author keywords

Alzheimer's Disease (AD); Deep neural networks; Feature fusion; Metric learning; Mild Cognitive Impairment (MCI); SVM classifier

Indexed keywords

BRAIN MAPPING; CONSTRAINED OPTIMIZATION; LEARNING SYSTEMS; LINEAR TRANSFORMATIONS; METADATA; NEURODEGENERATIVE DISEASES;

EID: 84998977762     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2017.01.004     Document Type: Erratum
Times cited : (84)

References (51)
  • 1
    • 84999030430 scopus 로고    scopus 로고
    • 2015 Alzheimer's disease facts and figures, Alzheimer's Dement.: J. Alzheimer's Assoc. 11(3) (2015) 332.
    • [1] A. Alzheimers, 2015 Alzheimer's disease facts and figures, Alzheimer's Dement.: J. Alzheimer's Assoc. 11(3) (2015) 332.
    • Alzheimers, A.1
  • 2
    • 61849113222 scopus 로고    scopus 로고
    • Rate of progression of mild cognitive impairment to dementia-meta-analysis of 41 robust inception cohort studies
    • [2] Mitchell, A.J., Shiri-Feshki, M., Rate of progression of mild cognitive impairment to dementia-meta-analysis of 41 robust inception cohort studies. Acta Psychiatr. Scand. 119:4 (2009), 252–265.
    • (2009) Acta Psychiatr. Scand. , vol.119 , Issue.4 , pp. 252-265
    • Mitchell, A.J.1    Shiri-Feshki, M.2
  • 4
    • 41949137974 scopus 로고    scopus 로고
    • The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods
    • [4] Jack, C.R., et al. The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27:4 (2008), 685–691.
    • (2008) J. Magn. Reson. Imaging , vol.27 , Issue.4 , pp. 685-691
    • Jack, C.R.1
  • 5
    • 84901587806 scopus 로고    scopus 로고
    • A Survey on Metric Learning for Feature Vectors and Structured Data
    • arXiv:1306.6709
    • [5] A. Bellet, A. Habrard, M. Sebban, A Survey on Metric Learning for Feature Vectors and Structured Data, arXiv:1306.6709.
    • Bellet, A.1    Habrard, A.2    Sebban, M.3
  • 6
    • 84998554212 scopus 로고    scopus 로고
    • Distance Metric Learning: A Comprehensive Survey, vol. 2, Michigan State University, 2006, p. 78. East Lansing, MI, USA
    • [6] L. Yang, R. Jin, Distance Metric Learning: A Comprehensive Survey, vol. 2, Michigan State University, 2006, p. 78. East Lansing, MI, USA,.
    • Yang, L.1    Jin, R.2
  • 9
    • 84898997673 scopus 로고    scopus 로고
    • Learning a distance metric from relative comparisons
    • Advances in Neural Information Processing Systems, 2004, p. 41.
    • [9] M. Schultz, T. Joachims, Learning a distance metric from relative comparisons, in: Advances in Neural Information Processing Systems, 2004, p. 41.
    • Schultz, M.1    Joachims, T.2
  • 13
    • 84864062501 scopus 로고    scopus 로고
    • K.-c. Lee, Large margin component analysis, in: Advances in Neural Information Processing Systems, vol. 19, 2007, p. 1385.
    • [13] L. Torresani, K.-c. Lee, Large margin component analysis, in: Advances in Neural Information Processing Systems, vol. 19, 2007, p. 1385.
    • Torresani, L.1
  • 15
  • 16
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • [16] Weinberger, K.Q., Saul, L.K., Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10 (2009), 207–244.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 18
    • 79951945041 scopus 로고    scopus 로고
    • Local distance functions: a taxonomy, new algorithms, and an evaluation
    • [18] Ramanan, D., Baker, S., Local distance functions: a taxonomy, new algorithms, and an evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 33:4 (2011), 794–806.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.4 , pp. 794-806
    • Ramanan, D.1    Baker, S.2
  • 21
    • 39749191312 scopus 로고    scopus 로고
    • Automatic classification of MR scans in Alzheimer's disease
    • [21] Klöppel, S., et al. Automatic classification of MR scans in Alzheimer's disease. Brain 131:3 (2008), 681–689.
    • (2008) Brain , vol.131 , Issue.3 , pp. 681-689
    • Klöppel, S.1
  • 22
    • 64949122392 scopus 로고    scopus 로고
    • Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: method and validation
    • [22] Chupin, M., Hammers, A., Liu, R.S., Colliot, O., Burdett, J., Bardinet, E., Duncan, J.S., Garnero, L., Lemieux, L., Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: method and validation. NeuroImage 46:3 (2009), 749–761.
    • (2009) NeuroImage , vol.46 , Issue.3 , pp. 749-761
    • Chupin, M.1    Hammers, A.2    Liu, R.S.3    Colliot, O.4    Burdett, J.5    Bardinet, E.6    Duncan, J.S.7    Garnero, L.8    Lemieux, L.9
  • 23
    • 84923814844 scopus 로고    scopus 로고
    • Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
    • [23] Suk, H.-I., Lee, S.-W., Shen, D., A.D.N. Initiative, et al. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220:2 (2015), 841–859.
    • (2015) Brain Struct. Funct. , vol.220 , Issue.2 , pp. 841-859
    • Suk, H.-I.1    Lee, S.-W.2    Shen, D.3
  • 24
    • 33846264886 scopus 로고    scopus 로고
    • Compare: classification of morphological patterns using adaptive regional elements
    • [24] Fan, Y., Shen, D., Gur, R.C., Gur, R.E., Davatzikos, C., Compare: classification of morphological patterns using adaptive regional elements. IEEE Trans. Med. Imaging 26:1 (2007), 93–105.
    • (2007) IEEE Trans. Med. Imaging , vol.26 , Issue.1 , pp. 93-105
    • Fan, Y.1    Shen, D.2    Gur, R.C.3    Gur, R.E.4    Davatzikos, C.5
  • 25
    • 84896396327 scopus 로고    scopus 로고
    • Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis
    • [25] Liu, M., Zhang, D., Shen, D., Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis. Hum. Brain Mapp. 35:4 (2014), 1305–1319.
    • (2014) Hum. Brain Mapp. , vol.35 , Issue.4 , pp. 1305-1319
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 26
    • 84912106417 scopus 로고    scopus 로고
    • Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition
    • [26] Wu, G., Kim, M., Sanroma, G., Wang, Q., Munsell, B.C., Shen, D., A.D.N. Initiative, et al. Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition. NeuroImage 106 (2015), 34–46.
    • (2015) NeuroImage , vol.106 , pp. 34-46
    • Wu, G.1    Kim, M.2    Sanroma, G.3    Wang, Q.4    Munsell, B.C.5    Shen, D.6
  • 27
    • 84907019192 scopus 로고    scopus 로고
    • Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
    • [27] Suk, H.-I., Lee, S.-W., Shen, D., A.D.N. Initiative, et al. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 101 (2014), 569–582.
    • (2014) NeuroImage , vol.101 , pp. 569-582
    • Suk, H.-I.1    Lee, S.-W.2    Shen, D.3
  • 28
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
    • [28] Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.-O., Chupin, M., Benali, H., Colliot, O., A.D.N. Initiative, et al. Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage 56:2 (2011), 766–781.
    • (2011) NeuroImage , vol.56 , Issue.2 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3    Auzias, G.4    Lehéricy, S.5    Habert, M.-O.6    Chupin, M.7    Benali, H.8    Colliot, O.9
  • 29
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • [29] Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., A.D.N. Initiative, et al. Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage 55:3 (2011), 856–867.
    • (2011) NeuroImage , vol.55 , Issue.3 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 30
    • 84925851214 scopus 로고    scopus 로고
    • Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease
    • [30] Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Feng, D., Fulham, M.J., et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease. IEEE Trans. Biomed. Eng. 62:4 (2015), 1132–1140.
    • (2015) IEEE Trans. Biomed. Eng. , vol.62 , Issue.4 , pp. 1132-1140
    • Liu, S.1    Liu, S.2    Cai, W.3    Che, H.4    Pujol, S.5    Kikinis, R.6    Feng, D.7    Fulham, M.J.8
  • 31
    • 84927690405 scopus 로고    scopus 로고
    • View-centralized multi-atlas classification for Alzheimer's disease diagnosis
    • [31] Liu, M., Zhang, D., Shen, D., View-centralized multi-atlas classification for Alzheimer's disease diagnosis. Hum. Brain Mapp. 36:5 (2015), 1847–1865.
    • (2015) Hum. Brain Mapp. , vol.36 , Issue.5 , pp. 1847-1865
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 32
    • 84974687816 scopus 로고    scopus 로고
    • Relationship induced multi-template learning for diagnosis of Alzheimers disease and mild cognitive impairment
    • [32] Liu, M., Zhang, D., Shen, D., Relationship induced multi-template learning for diagnosis of Alzheimers disease and mild cognitive impairment. IEEE Trans. Med. Imaging 35:6 (2016), 1463–1474.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.6 , pp. 1463-1474
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 33
    • 82755161873 scopus 로고    scopus 로고
    • Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features
    • (427-e15)
    • [33] Li, Y., Wang, Y., Wu, G., Shi, F., Zhou, L., Lin, W., Shen, D., Alzheimer's Disease Neuroimaging Initiative, et al. Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features. Neurobiol. Aging, 33(2), 2012 (427-e15).
    • (2012) Neurobiol. Aging , vol.33 , Issue.2
    • Li, Y.1    Wang, Y.2    Wu, G.3    Shi, F.4    Zhou, L.5    Lin, W.6    Shen, D.7
  • 34
    • 79956306210 scopus 로고    scopus 로고
    • Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis
    • [34] McEvoy, L.K., Holland, D., Hagler, D.J. Jr, Fennema-Notestine, C., Brewer, J.B., Dale, A.M., Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis. Radiology 259:3 (2011), 834–843.
    • (2011) Radiology , vol.259 , Issue.3 , pp. 834-843
    • McEvoy, L.K.1    Holland, D.2    Hagler, D.J.3    Fennema-Notestine, C.4    Brewer, J.B.5    Dale, A.M.6
  • 35
    • 85008600022 scopus 로고    scopus 로고
    • Temporally-constrained group sparse learning for longitudinal data analysis in Alzheimer's disease
    • [35] Jie, B., Liu, M., Liu, J., Zhang, D., Shen, D., Temporally-constrained group sparse learning for longitudinal data analysis in Alzheimer's disease. IEEE Trans. Biomed. Eng., 99, 2016, 1, 10.1109/TBME.2016.2553663.
    • (2016) IEEE Trans. Biomed. Eng. , vol.99 , pp. 1
    • Jie, B.1    Liu, M.2    Liu, J.3    Zhang, D.4    Shen, D.5
  • 37
    • 84901590013 scopus 로고    scopus 로고
    • Distance Metric Learning for Kernel Machines
    • arXiv:1208.3422
    • [37] Z. Xu, K.Q. Weinberger, O. Chapelle, Distance Metric Learning for Kernel Machines, arXiv:1208.3422.
    • Xu, Z.1    Weinberger, K.Q.2    Chapelle, O.3
  • 39
    • 84998919714 scopus 로고    scopus 로고
    • Spline Models for Observational Data, SIAM, Philadelphia, PA, USA, vol. 59, 1990.
    • [39] G. Wahba, Spline Models for Observational Data, SIAM, Philadelphia, PA, USA, vol. 59, 1990.
    • Wahba, G.1
  • 41
    • 0042904903 scopus 로고    scopus 로고
    • A new point matching algorithm for non-rigid registration
    • [41] Chui, H., Rangarajan, A., A new point matching algorithm for non-rigid registration. Comput. Vis. Image Understand. 89:2 (2003), 114–141.
    • (2003) Comput. Vis. Image Understand. , vol.89 , Issue.2 , pp. 114-141
    • Chui, H.1    Rangarajan, A.2
  • 42
    • 43049150241 scopus 로고
    • Clustering by Means of Medoids
    • North-Holland
    • [42] Kaufman, L., Rousseeuw, P., Clustering by Means of Medoids. 1987, North-Holland.
    • (1987)
    • Kaufman, L.1    Rousseeuw, P.2
  • 43
    • 56349158295 scopus 로고    scopus 로고
    • A simple and fast algorithm for k-medoids clustering
    • [43] Park, H.-S., Jun, C.-H., A simple and fast algorithm for k-medoids clustering. Exp. Syst. Appl. 36:2 (2009), 3336–3341.
    • (2009) Exp. Syst. Appl. , vol.36 , Issue.2 , pp. 3336-3341
    • Park, H.-S.1    Jun, C.-H.2
  • 45
    • 24744440027 scopus 로고    scopus 로고
    • Voxel-based morphometry of the human brain: methods and applications
    • [45] Mechelli, A., Price, C.J., Friston, K.J., Ashburner, J., Voxel-based morphometry of the human brain: methods and applications. Curr. Med. Imaging Rev. 1:2 (2005), 105–113.
    • (2005) Curr. Med. Imaging Rev. , vol.1 , Issue.2 , pp. 105-113
    • Mechelli, A.1    Price, C.J.2    Friston, K.J.3    Ashburner, J.4
  • 46
    • 84879726562 scopus 로고    scopus 로고
    • Advanced normalization tools (ANTS)
    • [46] Avants, B.B., Tustison, N., Song, G., Advanced normalization tools (ANTS). Insight J., 2009, 1–35.
    • (2009) Insight J. , pp. 1-35
    • Avants, B.B.1    Tustison, N.2    Song, G.3
  • 47
    • 84862997809 scopus 로고    scopus 로고
    • Freesurfer
    • [47] Fischl, B., Freesurfer. NeuroImage 62:2 (2012), 774–781.
    • (2012) NeuroImage , vol.62 , Issue.2 , pp. 774-781
    • Fischl, B.1
  • 51
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • [51] Bengio, Y., Learning deep architectures for AI. Found. Trends Mach. Learn. 2:1 (2009), 1–127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.