메뉴 건너뛰기




Volumn 12, Issue 2, 2014, Pages 229-244

A review of feature reduction techniques in Neuroimaging

Author keywords

Dimensionality reduction; Feature reduction; Feature selection; Machine learning; Multivariate; Neuroimaging; Predictive Modeling

Indexed keywords

ARTIFICIAL INTELLIGENCE; BRAIN; HUMAN; NEUROIMAGING; PHYSIOLOGY; PROCEDURES; STATISTICS; STATISTICS AND NUMERICAL DATA;

EID: 84899902574     PISSN: 15392791     EISSN: None     Source Type: Journal    
DOI: 10.1007/s12021-013-9204-3     Document Type: Review
Times cited : (425)

References (186)
  • 2
    • 34548832230 scopus 로고    scopus 로고
    • A fast diffeomorphic image registration algorithm
    • 17761438
    • Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38, 95-113.
    • (2007) NeuroImage , vol.38 , pp. 95-113
    • Ashburner, J.1
  • 3
    • 70049108710 scopus 로고    scopus 로고
    • Computational anatomy with the SPM software
    • 19249168
    • Ashburner, J. (2009). Computational anatomy with the SPM software. Magnetic Resonance Imaging, 27, 1163-1174.
    • (2009) Magnetic Resonance Imaging , vol.27 , pp. 1163-1174
    • Ashburner, J.1
  • 4
    • 0033933649 scopus 로고    scopus 로고
    • Voxel-based morphometry-the methods
    • 1:STN:280:DC%2BD3cvgt1Chug%3D%3D 10860804
    • Ashburner, J.; & Friston, K. (2000). Voxel-based morphometry-the methods. NeuroImage, 11, 805-821.
    • (2000) NeuroImage , vol.11 , pp. 805-821
    • Ashburner, J.1    Friston, K.2
  • 7
    • 44949194744 scopus 로고    scopus 로고
    • The effect of respiration variations on independent component analysis results of resting state functional connectivity
    • 2715870 18438886
    • Birn, R. M.; Murphy, K.; & Bandettini, P. A. (2008). The effect of respiration variations on independent component analysis results of resting state functional connectivity. Human Brain Mapping, 29, 740-750.
    • (2008) Human Brain Mapping , vol.29 , pp. 740-750
    • Birn, R.M.1    Murphy, K.2    Bandettini, P.A.3
  • 11
    • 75749135663 scopus 로고    scopus 로고
    • The role of neuroimaging in diagnosis and personalized medicine-current position and likely future directions
    • 3181933 20135896
    • Brammer, M. (2009). The role of neuroimaging in diagnosis and personalized medicine-current position and likely future directions. Dialogues In Clinical Neuroscience, 11, 389-396.
    • (2009) Dialogues in Clinical Neuroscience , vol.11 , pp. 389-396
    • Brammer, M.1
  • 12
    • 77449098568 scopus 로고    scopus 로고
    • Applications of multivariate pattern classification analyses in developmental neuroimaging of healthy and clinical populations
    • 2773173 19893761
    • Bray, S.; Chang, C.; & Hoeft, F. (2009). Applications of multivariate pattern classification analyses in developmental neuroimaging of healthy and clinical populations. Frontiers In Human Neuroscience, 3, 32.
    • (2009) Frontiers in Human Neuroscience , vol.3 , pp. 32
    • Bray, S.1    Chang, C.2    Hoeft, F.3
  • 14
    • 79952704626 scopus 로고    scopus 로고
    • Penalized least squares regression methods and applications to neuroimaging
    • 21167288
    • Bunea, F.; She, Y.; Ombao, H.; Gongvatana, A.; Devlin, K.; & Cohen, R. (2011). Penalized least squares regression methods and applications to neuroimaging. NeuroImage, 55, 1519-1527.
    • (2011) NeuroImage , vol.55 , pp. 1519-1527
    • Bunea, F.1    She, Y.2    Ombao, H.3    Gongvatana, A.4    Devlin, K.5    Cohen, R.6
  • 15
    • 83055181241 scopus 로고    scopus 로고
    • Female children with autism spectrum disorder: An insight from mass-univariate and pattern classification analyses
    • 21896334
    • Calderoni, S.; Retico, A.; Biagi, L.; Tancredi, R.; Muratori, F.; & Tosetti, M. (2012). Female children with autism spectrum disorder: An insight from mass-univariate and pattern classification analyses. NeuroImage, 59, 1013-1022.
    • (2012) NeuroImage , vol.59 , pp. 1013-1022
    • Calderoni, S.1    Retico, A.2    Biagi, L.3    Tancredi, R.4    Muratori, F.5    Tosetti, M.6
  • 18
    • 0034753663 scopus 로고    scopus 로고
    • A method for making group inferences from functional MRI data using independent component analysis
    • 1:STN:280:DC%2BD3MrhtFyrsQ%3D%3D 11559959
    • Calhoun, V. D.; Adali, T.; Pearlson, G. D.; & Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14, 140-151.
    • (2001) Human Brain Mapping , vol.14 , pp. 140-151
    • Calhoun, V.D.1    Adali, T.2    Pearlson, G.D.3    Pekar, J.J.4
  • 19
    • 65549097795 scopus 로고    scopus 로고
    • A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
    • 2651152 19059344
    • Calhoun, V. D.; Liu, J.; & Adali, T. L. (2009). A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage, 45, S163-S172.
    • (2009) NeuroImage , vol.45
    • Calhoun, V.D.1    Liu, J.2    Adali, T.L.3
  • 20
    • 84864253071 scopus 로고    scopus 로고
    • Exploring the psychosis functional connectome: Aberrant intrinsic networks in schizophrenia and bipolar disorder
    • 3254121 22291663
    • Calhoun, V. D.; Sui, J.; Kiehl, K.; Turner, J.; Allen, E.; & Pearlson, G. (2011). Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder. Frontiers in Psychiatry, 2, 75.
    • (2011) Frontiers in Psychiatry , vol.2 , pp. 75
    • Calhoun, V.D.1    Sui, J.2    Kiehl, K.3    Turner, J.4    Allen, E.5    Pearlson, G.6
  • 21
    • 47949115223 scopus 로고    scopus 로고
    • Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements
    • 1:STN:280:DC%2BD1cvpt1Cquw%3D%3D 2566788 18571937
    • Caprihan, A.; Pearlson, G. D.; & Calhoun, V. D. (2008). Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements. NeuroImage, 42, 675-682.
    • (2008) NeuroImage , vol.42 , pp. 675-682
    • Caprihan, A.1    Pearlson, G.D.2    Calhoun, V.D.3
  • 22
    • 55149117963 scopus 로고    scopus 로고
    • Prediction and interpretation of distributed neural activity with sparse models
    • 18793733
    • Carroll, M. K.; Cecchi, G. A.; Rish, I.; Garg, R.; & Rao, A. R. (2009). Prediction and interpretation of distributed neural activity with sparse models. NeuroImage, 44, 112-122.
    • (2009) NeuroImage , vol.44 , pp. 112-122
    • Carroll, M.K.1    Cecchi, G.A.2    Rish, I.3    Garg, R.4    Rao, A.R.5
  • 24
    • 85056043469 scopus 로고    scopus 로고
    • Combining graph and machine learning methods to analyze differences in functional connectivity across sex
    • 1:STN:280:DC%2BC383htVKjtg%3D%3D 3271304 22312418
    • Casanova, R.; Whitlow, C.; Wagner, B.; Espeland, M.; & Maldjian, J. (2012). Combining graph and machine learning methods to analyze differences in functional connectivity across sex. The Open Neuroimaging Journal, 6, 1.
    • (2012) The Open Neuroimaging Journal , vol.6 , pp. 1
    • Casanova, R.1    Whitlow, C.2    Wagner, B.3    Espeland, M.4    Maldjian, J.5
  • 25
    • 80051781186 scopus 로고    scopus 로고
    • Characterization of groups using composite kernels and multi-source fMRI analysis data: Application to schizophrenia
    • 3242731 21723948
    • Castro, E.; Martanez-Ramon, M.; Pearlson, G.; Sui, J.; & Calhoun, V. D. (2011a). Characterization of groups using composite kernels and multi-source fMRI analysis data: Application to schizophrenia. NeuroImage, 58, 526-536.
    • (2011) NeuroImage , vol.58 , pp. 526-536
    • Castro, E.1    Martanez-Ramon, M.2    Pearlson, G.3    Sui, J.4    Calhoun, V.D.5
  • 26
    • 80051781186 scopus 로고    scopus 로고
    • Characterization of groups using composite kernels and multi-source fMRI analysis data: Application to schizophrenia
    • 3242731 21723948
    • Castro, E.; Martinez-Raman, M.; Pearlson, G.; Sui, J.; & Calhoun, V. D. (2011b). Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia. NeuroImage, 58, 526-536.
    • (2011) NeuroImage , vol.58 , pp. 526-536
    • Castro, E.1    Martinez-Raman, M.2    Pearlson, G.3    Sui, J.4    Calhoun, V.D.5
  • 27
    • 77949480559 scopus 로고    scopus 로고
    • Decoding individual episodic memory traces in the human hippocampus
    • 1:CAS:528:DC%2BC3cXjslSjs78%3D 2849012 20226665
    • Chadwick, M. J.; Hassabis, D.; Weiskopf, N.; & Maguire, E. A. (2010). Decoding individual episodic memory traces in the human hippocampus. Current Biology, 20, 544-547.
    • (2010) Current Biology , vol.20 , pp. 544-547
    • Chadwick, M.J.1    Hassabis, D.2    Weiskopf, N.3    Maguire, E.A.4
  • 29
    • 67649982863 scopus 로고    scopus 로고
    • SVM-based computer-aided diagnosis of the Alzheimer's disease using t-test NMSE feature selection with feature correlation weighting
    • 1:CAS:528:DC%2BD1MXosVegsrc%3D 19549559
    • Chaves, R.; Ramarez, J.; Garriz, J. M.; Lopez, M.; Salas-Gonzalez, D.; Alvarez, I.; & Segovia, F. (2009). SVM-based computer-aided diagnosis of the Alzheimer's disease using t-test NMSE feature selection with feature correlation weighting. Neuroscience Letters, 461, 293-297.
    • (2009) Neuroscience Letters , vol.461 , pp. 293-297
    • Chaves, R.1    Ramarez, J.2    Garriz, J.M.3    Lopez, M.4    Salas-Gonzalez, D.5    Alvarez, I.6    Segovia, F.7
  • 30
    • 67349174191 scopus 로고    scopus 로고
    • Linking functional and structural brain images with multivariate network analyses: A novel application of the partial least square method
    • 2700206 19393744
    • Chen, K.; Reiman, E. M.; Huan, Z.; Caselli, R. J.; Bandy, D.; Ayutyanont, N.; & Alexander, G. E. (2009). Linking functional and structural brain images with multivariate network analyses: A novel application of the partial least square method. NeuroImage, 47, 602-610.
    • (2009) NeuroImage , vol.47 , pp. 602-610
    • Chen, K.1    Reiman, E.M.2    Huan, Z.3    Caselli, R.J.4    Bandy, D.5    Ayutyanont, N.6    Alexander, G.E.7
  • 31
    • 84865007497 scopus 로고    scopus 로고
    • Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques
    • Cheng, W.; Ji, X.; Zhang, J.; & Feng, J. (2012). Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques. Frontiers In Systems Neuroscience, 6.
    • (2012) Frontiers in Systems Neuroscience , vol.6
    • Cheng, W.1    Ji, X.2    Zhang, J.3    Feng, J.4
  • 32
    • 84862776712 scopus 로고    scopus 로고
    • Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
    • 22166797
    • Chu, C.; Hsu, A.-L.; Chou, K.-H.; Bandettini, P.; & Lin, C. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60, 59-70.
    • (2012) NeuroImage , vol.60 , pp. 59-70
    • Chu, C.1    Hsu, A.-L.2    Chou, K.-H.3    Bandettini, P.4    Lin, C.5
  • 34
    • 34249321979 scopus 로고    scopus 로고
    • Performance of blind source separation algorithms for fMRI analysis using a group ICA method
    • 2358930 17540281
    • Correa, N.; AdalÄ, T.; & Calhoun, V. D. (2007). Performance of blind source separation algorithms for fMRI analysis using a group ICA method. Magnetic Resonance Imaging, 25, 684-694.
    • (2007) Magnetic Resonance Imaging , vol.25 , pp. 684-694
    • Correa, N.1    Adalä, T.2    Calhoun, V.D.3
  • 35
    • 68149169975 scopus 로고    scopus 로고
    • Prognostic and diagnostic potential of the structural neuroanatomy of depression
    • 2712086 19633718
    • Costafreda, S. G.; Chu, C.; Ashburner, J.; & Fu, C. H. Y. (2009). Prognostic and diagnostic potential of the structural neuroanatomy of depression. Plos One, 4, e6353.
    • (2009) Plos One , vol.4 , pp. 6353
    • Costafreda, S.G.1    Chu, C.2    Ashburner, J.3    Fu, C.H.Y.4
  • 37
    • 79956201846 scopus 로고    scopus 로고
    • Multi-voxel pattern analysis of fMRI data predicts clinical symptom severity
    • 3105443 21513803
    • Coutanche, M. N.; Thompson-Schill, S. L.; & Schultz, R. T. (2011). Multi-voxel pattern analysis of fMRI data predicts clinical symptom severity. NeuroImage, 57, 113-123.
    • (2011) NeuroImage , vol.57 , pp. 113-123
    • Coutanche, M.N.1    Thompson-Schill, S.L.2    Schultz, R.T.3
  • 38
    • 0041737619 scopus 로고    scopus 로고
    • Functional magnetic resonance imaging (fMRI) "brain reading"•: Detecting and classifying distributed patterns of fMRI activity in human visual cortex
    • 12814577
    • Cox, D. D.; & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) "brain reading"•: detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19, 261-270.
    • (2003) NeuroImage , vol.19 , pp. 261-270
    • Cox, D.D.1    Savoy, R.L.2
  • 40
    • 84855434935 scopus 로고    scopus 로고
    • Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3)
    • 22008370
    • Dai, Z.; Yan, C.; Wang, Z.; Wang, J.; Xia, M.; Li, K.; & He, Y. (2012). Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). NeuroImage, 59, 2187-2195.
    • (2012) NeuroImage , vol.59 , pp. 2187-2195
    • Dai, Z.1    Yan, C.2    Wang, Z.3    Wang, J.4    Xia, M.5    Li, K.6    He, Y.7
  • 41
    • 39749189507 scopus 로고    scopus 로고
    • Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging
    • 2323584 17174012
    • Davatzikos, C.; Fan, Y.; Wu, X.; Shen, D.; & Resnick, S. M. (2008). Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging. Neurobiology of Aging, 29, 514-523.
    • (2008) Neurobiology of Aging , vol.29 , pp. 514-523
    • Davatzikos, C.1    Fan, Y.2    Wu, X.3    Shen, D.4    Resnick, S.M.5
  • 42
    • 33751108300 scopus 로고    scopus 로고
    • Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers
    • 17070708
    • De Martino, F.; Gentile, F.; Esposito, F.; Balsi, M.; Di Salle, F.; Goebel, R.; & Formisano, E. (2007). Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers. NeuroImage, 34, 177-194.
    • (2007) NeuroImage , vol.34 , pp. 177-194
    • De Martino, F.1    Gentile, F.2    Esposito, F.3    Balsi, M.4    Di Salle, F.5    Goebel, R.6    Formisano, E.7
  • 43
    • 52049116700 scopus 로고    scopus 로고
    • Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns
    • 18672070
    • De Martino, F.; Valente, G.; Staeren, N. L.; Ashburner, J.; Goebel, R.; & Formisano, E. (2008). Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage, 43, 44-58.
    • (2008) NeuroImage , vol.43 , pp. 44-58
    • De Martino, F.1    Valente, G.2    Staeren, N.L.3    Ashburner, J.4    Goebel, R.5    Formisano, E.6
  • 44
    • 78650156311 scopus 로고    scopus 로고
    • Recursive cluster elimination based support vector machine for disease state prediction using resting state functional and effective brain connectivity
    • 3000328 21151556
    • Deshpande, G.; Li, Z.; Santhanam, P.; Coles, C. D.; Lynch, M. E.; Hamann, S.; & Hu, X. (2010). Recursive cluster elimination based support vector machine for disease state prediction using resting state functional and effective brain connectivity. Plos One, 5, e14277.
    • (2010) Plos One , vol.5 , pp. 14277
    • Deshpande, G.1    Li, Z.2    Santhanam, P.3    Coles, C.D.4    Lynch, M.E.5    Hamann, S.6    Hu, X.7
  • 46
    • 79955007464 scopus 로고    scopus 로고
    • Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. Disbelief
    • 1:STN:280:DC%2BC3Mvls1eisQ%3D%3D 3099263 21073969
    • Douglas, P. K.; Harris, S.; Yuille, A.; & Cohen, M. S. (2011). Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief. NeuroImage, 56, 544-553.
    • (2011) NeuroImage , vol.56 , pp. 544-553
    • Douglas, P.K.1    Harris, S.2    Yuille, A.3    Cohen, M.S.4
  • 47
  • 50
    • 79959747147 scopus 로고    scopus 로고
    • Feature selection and classification of imbalanced datasets: Application to PET images of children with autistic spectrum disorders
    • 21600290
    • Duchesnay, E.; Cachia, A.; Boddaert, N.; Chabane, N.; Mangin, J.-F.; Martinot, J.-L.; Brunelle, F.; & Zilbovicius, M. (2011). Feature selection and classification of imbalanced datasets: Application to PET images of children with autistic spectrum disorders. NeuroImage, 57, 1003-1014.
    • (2011) NeuroImage , vol.57 , pp. 1003-1014
    • Duchesnay, E.1    Cachia, A.2    Boddaert, N.3    Chabane, N.4    Mangin, J.-F.5    Martinot, J.-L.6    Brunelle, F.7    Zilbovicius, M.8
  • 52
    • 84878119051 scopus 로고    scopus 로고
    • Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI
    • Dukart, J.; Mueller, K.; Barthel, H.; Villringer, A.; Sabri, O.; and Schroeter, M. L. (2012). Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI. Psychiatry Research: Neuroimaging, 212(3), 230-236.
    • (2012) Psychiatry Research: Neuroimaging , vol.212 , Issue.3 , pp. 230-236
    • Dukart, J.1    Mueller, K.2    Barthel, H.3    Villringer, A.4    Sabri, O.5    Schroeter, M.L.6
  • 54
    • 69249093024 scopus 로고    scopus 로고
    • Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty
    • 2872071 19172646
    • Eickhoff, S.; Laird, A.; Grefkes, C.; Wang, L.; Zilles, K.; & Fox, P. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30, 2907-2926.
    • (2009) Human Brain Mapping , vol.30 , pp. 2907-2926
    • Eickhoff, S.1    Laird, A.2    Grefkes, C.3    Wang, L.4    Zilles, K.5    Fox, P.6
  • 56
    • 33846264886 scopus 로고    scopus 로고
    • COMPARE: Classification of Morphological Patterns Using Adaptive Regional Elements
    • Fan, Y.; Shen, D.; Gur, R. C.; Gur, R. E.; & Davatzikos, C. (2006). COMPARE: Classification of Morphological Patterns Using Adaptive Regional Elements. Medical Imaging, IEEE Transactions, 26, 93-105.
    • (2006) Medical Imaging, IEEE Transactions , vol.26 , pp. 93-105
    • Fan, Y.1    Shen, D.2    Gur, R.C.3    Gur, R.E.4    Davatzikos, C.5
  • 57
    • 34347251908 scopus 로고    scopus 로고
    • Multivariate examination of brain abnormality using both structural and functional MRI
    • 17512218
    • Fan, Y.; Rao, H.; Hurt, H.; Giannetta, J.; Korczykowski, M.; Shera, D.; Avants, B.; & Gee, J. (2007). Multivariate examination of brain abnormality using both structural and functional MRI. NeuroImage, 36, 1189-1199.
    • (2007) NeuroImage , vol.36 , pp. 1189-1199
    • Fan, Y.1    Rao, H.2    Hurt, H.3    Giannetta, J.4    Korczykowski, M.5    Shera, D.6    Avants, B.7    Gee, J.8
  • 58
    • 77955198893 scopus 로고    scopus 로고
    • Joint estimation of multiple clinical variables of neurological diseases from imaging patterns
    • 2010 I.E. International Symposium on (IEEE)
    • Fan, Y.; Kaufer, D.; and Shen, D. (2010). Joint estimation of multiple clinical variables of neurological diseases from imaging patterns. Paper presented at: Biomedical Imaging: From Nano to Macro, 2010 I.E. International Symposium on (IEEE).
    • (2010) Biomedical Imaging: From Nano to Macro
    • Fan, Y.1    Kaufer, D.2    Shen, D.3
  • 59
    • 48549099375 scopus 로고    scopus 로고
    • Multivariate analysis of fMRI time series: Classification and regression of brain responses using machine learning
    • 18508219
    • Formisano, E.; De Martino, F.; & Valente, G. (2008). Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning. Magnetic Resonance Imaging, 26, 921-934.
    • (2008) Magnetic Resonance Imaging , vol.26 , pp. 921-934
    • Formisano, E.1    De Martino, F.2    Valente, G.3
  • 60
    • 16344365619 scopus 로고    scopus 로고
    • Classification using partial least squares with penalized logistic regression
    • 1:CAS:528:DC%2BD2MXis1Oqu78%3D 15531609
    • Fort, G.; & Lambert-Lacroix, S. (2005). Classification using partial least squares with penalized logistic regression. Bioinformatics, 21, 1104-1111.
    • (2005) Bioinformatics , vol.21 , pp. 1104-1111
    • Fort, G.1    Lambert-Lacroix, S.2
  • 61
    • 77249176542 scopus 로고    scopus 로고
    • Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters
    • 20070949
    • Franke, K.; Ziegler, G.; Kloppel, S.; & Gaser, C. (2010). Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. NeuroImage, 50, 883-892.
    • (2010) NeuroImage , vol.50 , pp. 883-892
    • Franke, K.1    Ziegler, G.2    Kloppel, S.3    Gaser, C.4
  • 62
    • 84866152087 scopus 로고    scopus 로고
    • Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI
    • 22902922
    • Franke, K.; Luders, E.; May, A.; Wilke, M.; & Gaser, C. (2012). Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI. NeuroImage, 63, 1305-1312.
    • (2012) NeuroImage , vol.63 , pp. 1305-1312
    • Franke, K.1    Luders, E.2    May, A.3    Wilke, M.4    Gaser, C.5
  • 63
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • 2929880 20808728
    • Friedman, J.; Hastie, T.; & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33, 1.
    • (2010) Journal of Statistical Software , vol.33 , pp. 1
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 66
    • 79951554896 scopus 로고    scopus 로고
    • Developmental changes in multivariate neuroanatomical patterns that predict risk for psychosis in 22q11.2 deletion syndrome
    • 3000448 20817203
    • Gothelf, D.; Hoeft, F.; Ueno, T.; Sugiura, L.; Lee, A. D.; Thompson, P.; & Reiss, A. L. (2011). Developmental changes in multivariate neuroanatomical patterns that predict risk for psychosis in 22q11.2 deletion syndrome. Journal Of Psychiatric Research, 45, 322-331.
    • (2011) Journal of Psychiatric Research , vol.45 , pp. 322-331
    • Gothelf, D.1    Hoeft, F.2    Ueno, T.3    Sugiura, L.4    Lee, A.D.5    Thompson, P.6    Reiss, A.L.7
  • 67
    • 80052364811 scopus 로고    scopus 로고
    • Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by pearson's correlation
    • 1:CAS:528:DC%2BC3MXhtFaktbjN 21839143
    • Grana, M.; Termenon, M.; Savio, A.; Gonzalez-Pinto, A.; Echeveste, J.; Perez, J. M.; & Besga, A. (2011). Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by pearson's correlation. Neuroscience Letters, 502, 225-229.
    • (2011) Neuroscience Letters , vol.502 , pp. 225-229
    • Grana, M.1    Termenon, M.2    Savio, A.3    Gonzalez-Pinto, A.4    Echeveste, J.5    Perez, J.M.6    Besga, A.7
  • 68
    • 78049321639 scopus 로고    scopus 로고
    • Control of spatial and feature-based attention in frontoparietal cortex
    • 1:CAS:528:DC%2BC3cXhsVeitrfP 3307052 20980588
    • Greenberg, A. S.; Esterman, M.; Wilson, D.; Serences, J. T.; & Yantis, S. (2010). Control of spatial and feature-based attention in frontoparietal cortex. The Journal of Neuroscience, 30, 14330-14339.
    • (2010) The Journal of Neuroscience , vol.30 , pp. 14330-14339
    • Greenberg, A.S.1    Esterman, M.2    Wilson, D.3    Serences, J.T.4    Yantis, S.5
  • 69
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I.; & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning, 7(8), 1157-1182.
    • (2003) Journal of Machine Learning , vol.7 , Issue.8 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 70
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I.; Weston, J.; Barnhill, S.; & Vapnik, V. (2001). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389-422.
    • (2001) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 71
    • 78649658554 scopus 로고    scopus 로고
    • Cerebral microhemorrhage and iron deposition in mild cognitive impairment: Susceptibility-weighted MR imaging assessment
    • 20923870
    • Haller, S.; Bartsch, A.; Nguyen, D.; Rodriguez, C.; Emch, J.; Gold, G.; Lovblad, K. O.; & Giannakopoulos, P. (2010a). Cerebral microhemorrhage and iron deposition in mild cognitive impairment: susceptibility-weighted MR imaging assessment. Radiology, 257, 764-773.
    • (2010) Radiology , vol.257 , pp. 764-773
    • Haller, S.1    Bartsch, A.2    Nguyen, D.3    Rodriguez, C.4    Emch, J.5    Gold, G.6    Lovblad, K.O.7    Giannakopoulos, P.8
  • 72
    • 78650630759 scopus 로고    scopus 로고
    • Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data
    • 20847435
    • Haller, S.; Nguyen, D.; Rodriguez, C.; Emch, J.; Gold, G.; Bartsch, A.; Lovblad, K. O.; & Giannakopoulos, P. (2010b). Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data. Journal of Alzheimer's disease, 22, 315-327.
    • (2010) Journal of Alzheimer's Disease , vol.22 , pp. 315-327
    • Haller, S.1    Nguyen, D.2    Rodriguez, C.3    Emch, J.4    Gold, G.5    Bartsch, A.6    Lovblad, K.O.7    Giannakopoulos, P.8
  • 74
    • 38649096007 scopus 로고    scopus 로고
    • Brain reading using full brain support vector machines for object recognition: There is no "face" identification area
    • 18047411
    • Hanson, S. J.; & Halchenko, Y. O. (2008). Brain reading using full brain support vector machines for object recognition: there is no "face" identification area. Neural Computation, 20, 486-503.
    • (2008) Neural Computation , vol.20 , pp. 486-503
    • Hanson, S.J.1    Halchenko, Y.O.2
  • 75
    • 17844361888 scopus 로고    scopus 로고
    • Predicting the orientation of invisible stimuli from activity in human primary visual cortex
    • 1:CAS:528:DC%2BD2MXjsFyktLs%3D 15852013
    • Haynes, J.-D.; & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neuroscience, 8, 686-691.
    • (2005) Nature Neuroscience , vol.8 , pp. 686-691
    • Haynes, J.-D.1    Rees, G.2
  • 77
    • 67949103436 scopus 로고    scopus 로고
    • Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset
    • 2773131 19481161
    • Hinrichs, C.; Singh, V.; Mukherjee, L.; Xu, G.; Chung, M. K.; & Johnson, S. C. (2009). Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. NeuroImage, 48, 138-149.
    • (2009) NeuroImage , vol.48 , pp. 138-149
    • Hinrichs, C.1    Singh, V.2    Mukherjee, L.3    Xu, G.4    Chung, M.K.5    Johnson, S.C.6
  • 79
    • 54549099006 scopus 로고    scopus 로고
    • Performance of feature-selection methods in the classification of high-dimension data
    • Hua, T. W.; & Dougherty, E. (2009). Performance of feature-selection methods in the classification of high-dimension data. Pattern Recognition, 42, 409-424.
    • (2009) Pattern Recognition , vol.42 , pp. 409-424
    • Hua, T.W.1    Dougherty, E.2
  • 80
    • 61849108248 scopus 로고    scopus 로고
    • Selection of spectro-temporal patterns in multichannel MEG with support vector machines for schizophrenia classification
    • Ince, N. F.; Goksu, F.; Pellizzer, G.; Tewfik, A.; and Stephane, M. (2008). Selection of spectro-temporal patterns in multichannel MEG with support vector machines for schizophrenia classification. Paper presented at: Engineering in Medicine and Biology Society, 2008.
    • (2008) Engineering in Medicine and Biology Society
    • Ince, N.F.1    Goksu, F.2    Pellizzer, G.3    Tewfik, A.4    Stephane, M.5
  • 81
    • 79959758552 scopus 로고    scopus 로고
    • Diffusion based abnormality markers of pathology: Toward learned diagnostic prediction of ASD
    • 3152443 21609768
    • Ingalhalikar, M.; Parker, D.; Bloy, L.; Roberts, T. P. L.; & Verma, R. (2011). Diffusion based abnormality markers of pathology: toward learned diagnostic prediction of ASD. NeuroImage, 57, 918-927.
    • (2011) NeuroImage , vol.57 , pp. 918-927
    • Ingalhalikar, M.1    Parker, D.2    Bloy, L.3    Roberts, T.P.L.4    Verma, R.5
  • 85
    • 0036331125 scopus 로고    scopus 로고
    • The quantitative evaluation of functional neuroimaging experiments: Mutual information learning curves
    • 1:STN:280:DC%2BD387nsFSmug%3D%3D 11906219
    • Kjems, U.; Hansen, L. K.; Anderson, J.; Frutiger, S.; Muley, S.; Sidtis, J.; Rottenberg, D.; & Strother, S. (2002). The quantitative evaluation of functional neuroimaging experiments: Mutual information learning curves. NeuroImage, 15, 772-786.
    • (2002) NeuroImage , vol.15 , pp. 772-786
    • Kjems, U.1    Hansen, L.K.2    Anderson, J.3    Frutiger, S.4    Muley, S.5    Sidtis, J.6    Rottenberg, D.7    Strother, S.8
  • 89
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R.; & John, G. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97, 1-2.
    • (1997) Artificial Intelligence , vol.97 , pp. 1-2
    • Kohavi, R.1    John, G.2
  • 91
    • 0242583983 scopus 로고    scopus 로고
    • Detection of structural differences between the brains of schizophrenic patients and controls
    • 14623069
    • Kovalev, V. A.; Petrou, M.; & Suckling, J. (2003). Detection of structural differences between the brains of schizophrenic patients and controls. Psychiatry Research: Neuroimaging, 124, 177-189.
    • (2003) Psychiatry Research: Neuroimaging , vol.124 , pp. 177-189
    • Kovalev, V.A.1    Petrou, M.2    Suckling, J.3
  • 93
    • 67649135107 scopus 로고    scopus 로고
    • Circular analysis in systems neuroscience: The dangers of double dipping
    • 1:CAS:528:DC%2BD1MXltValt7g%3D 2841687 19396166
    • Kriegeskorte, N.; Simmons, W. K.; Bellgowan, P. S. F.; & Baker, C. I. (2009). Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience, 12, 535-540.
    • (2009) Nature Neuroscience , vol.12 , pp. 535-540
    • Kriegeskorte, N.1    Simmons, W.K.2    Bellgowan, P.S.F.3    Baker, C.I.4
  • 95
    • 79955023796 scopus 로고    scopus 로고
    • Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review
    • 20656037
    • Krishnan, A.; Williams, L. J.; McIntosh, A. R.; & Abdi, H. (2011). Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review. NeuroImage, 56, 455-475.
    • (2011) NeuroImage , vol.56 , pp. 455-475
    • Krishnan, A.1    Williams, L.J.2    McIntosh, A.R.3    Abdi, H.4
  • 97
    • 19344370474 scopus 로고    scopus 로고
    • Support vector machines for temporal classification of block design fMRI data
    • 15907293
    • LaConte, S.; Strother, S.; Cherkassky, V.; Anderson, J.; & Hu, X. (2005). Support vector machines for temporal classification of block design fMRI data. NeuroImage, 26, 317.
    • (2005) NeuroImage , vol.26 , pp. 317
    • Laconte, S.1    Strother, S.2    Cherkassky, V.3    Anderson, J.4    Hu, X.5
  • 98
    • 18544390550 scopus 로고    scopus 로고
    • BrainMap: The social evolution of a functional neuroimaging database
    • 15897617
    • Laird, A.; Lancaster, J.; & Fox, P. (2005a). BrainMap: the social evolution of a functional neuroimaging database. Neuroinformatics, 3, 65-78.
    • (2005) Neuroinformatics , vol.3 , pp. 65-78
    • Laird, A.1    Lancaster, J.2    Fox, P.3
  • 100
    • 79955009105 scopus 로고    scopus 로고
    • Detecting stable distributed patterns of brain activation using Gini contrast
    • 3960973 20709176
    • Langs, G.; Menze, B. H.; Lashkari, D.; & Golland, P. (2011). Detecting stable distributed patterns of brain activation using Gini contrast. NeuroImage, 56, 497-507.
    • (2011) NeuroImage , vol.56 , pp. 497-507
    • Langs, G.1    Menze, B.H.2    Lashkari, D.3    Golland, P.4
  • 102
    • 84877826499 scopus 로고    scopus 로고
    • Disorder-specific predictive classification of adolescents with Attention Deficit Hyperactivity Disorder (ADHD) relative to autism using structural magnetic resonance imaging
    • 1:CAS:528:DC%2BC3sXosFGjs7g%3D 3656087 23696841
    • Lim, L.; Marquand, A.; Cubillo, A. A.; Smith, A. B.; Chantiluke, K.; Simmons, A.; Mehta, M.; & Rubia, K. (2013). Disorder-specific predictive classification of adolescents with Attention Deficit Hyperactivity Disorder (ADHD) relative to autism using structural magnetic resonance imaging. PLOS ONE, 8, e63660.
    • (2013) PLOS ONE , vol.8 , pp. 63660
    • Lim, L.1    Marquand, A.2    Cubillo, A.A.3    Smith, A.B.4    Chantiluke, K.5    Simmons, A.6    Mehta, M.7    Rubia, K.8
  • 103
    • 84855732200 scopus 로고    scopus 로고
    • The challenges and promise of neuroimaging in psychiatry
    • 1:CAS:528:DC%2BC38XosFCnsw%3D%3D 22243743
    • Linden, D. E. J. (2012). The challenges and promise of neuroimaging in psychiatry. Neuron, 73, 8-22.
    • (2012) Neuron , vol.73 , pp. 8-22
    • Linden, D.E.J.1
  • 104
    • 84862778147 scopus 로고    scopus 로고
    • Ensemble sparse classification of Alzheimer's disease
    • 3303950 22270352
    • Liu, M.; Zhang, D.; & Shen, D. (2012). Ensemble sparse classification of Alzheimer's disease. NeuroImage, 60, 1106-1116.
    • (2012) NeuroImage , vol.60 , pp. 1106-1116
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 105
    • 34548525757 scopus 로고    scopus 로고
    • Using non-negative matrix factorization for single-trial analysis of fMRI data
    • 17662621
    • Lohmann, G.; Volz, K. G.; & Ullsperger, M. (2007). Using non-negative matrix factorization for single-trial analysis of fMRI data. NeuroImage, 37, 1148-1160.
    • (2007) NeuroImage , vol.37 , pp. 1148-1160
    • Lohmann, G.1    Volz, K.G.2    Ullsperger, M.3
  • 106
    • 79952617583 scopus 로고    scopus 로고
    • Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer's disease
    • Lopez, M.; Ramirez, J.; Garriz, J.; Alvarez, I.; Salas-Gonzalez, D.; Segovia, F.; Chaves, R.; Padilla, P.; & Gomez-Rao, M. (2011). Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer's disease. Neurocomputing, 74, 1260-1271.
    • (2011) Neurocomputing , vol.74 , pp. 1260-1271
    • Lopez, M.1    Ramirez, J.2    Garriz, J.3    Alvarez, I.4    Salas-Gonzalez, D.5    Segovia, F.6    Chaves, R.7    Padilla, P.8    Gomez-Rao, M.9
  • 107
    • 0029941179 scopus 로고    scopus 로고
    • Spatial pattern analysis of functional brain images using partial least squares
    • MacIntosh, A. R.; Bookstei, F.; Haxby, J.; & Grady, C. (1996). Spatial pattern analysis of functional brain images using partial least squares. NeuroImage, 3, 143-157.
    • (1996) NeuroImage , vol.3 , pp. 143-157
    • Macintosh, A.R.1    Bookstei, F.2    Haxby, J.3    Grady, C.4
  • 109
    • 71849092693 scopus 로고    scopus 로고
    • Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes
    • 19879364
    • Marquand, A.; Howard, M.; Brammer, M.; Chu, C.; Coen, S.; & Mourao-Miranda, J. (2010a). Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. NeuroImage, 49, 2178-2189.
    • (2010) NeuroImage , vol.49 , pp. 2178-2189
    • Marquand, A.1    Howard, M.2    Brammer, M.3    Chu, C.4    Coen, S.5    Mourao-Miranda, J.6
  • 110
    • 71849092693 scopus 로고    scopus 로고
    • Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes
    • 19879364
    • Marquand, A.; Howard, M.; Brammer, M.; Chu, C.; Coen, S.; & Mourao-Miranda, J. (2010b). Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. NeuroImage, 49, 2178-2189.
    • (2010) NeuroImage , vol.49 , pp. 2178-2189
    • Marquand, A.1    Howard, M.2    Brammer, M.3    Chu, C.4    Coen, S.5    Mourao-Miranda, J.6
  • 111
    • 79954589579 scopus 로고    scopus 로고
    • Pattern classification of working memory networks reveals differential effects of methylphenidate, atomoxetine, and placebo in healthy volunteers
    • 1:CAS:528:DC%2BC3MXks1Wltrg%3D 3079849 21346736
    • Marquand, A. F.; De Simoni, S.; O'Daly, O. G.; Williams, S. C. R.; Mourao-Miranda, J.; & Mehta, M. A. (2011). Pattern classification of working memory networks reveals differential effects of methylphenidate, atomoxetine, and placebo in healthy volunteers. Neuropsychopharmacology, 36, 1237-1247.
    • (2011) Neuropsychopharmacology , vol.36 , pp. 1237-1247
    • Marquand, A.F.1    De Simoni, S.2    O'Daly, O.G.3    Williams, S.C.R.4    Mourao-Miranda, J.5    Mehta, M.A.6
  • 112
    • 84863406628 scopus 로고    scopus 로고
    • Dissociable effects of methylphenidate, atomoxetine and placebo on regional cerebral blood flow in healthy volunteers at rest: A multi-class pattern recognition approach
    • 1:CAS:528:DC%2BC38Xjs1Oqu7c%3D 3314973 22266414
    • Marquand, A. F.; O'Daly, O. G.; De Simoni, S.; Alsop, D. C.; Maguire, R. P.; Williams, S. C. R.; Zelaya, F. O.; & Mehta, M. A. (2012). Dissociable effects of methylphenidate, atomoxetine and placebo on regional cerebral blood flow in healthy volunteers at rest: A multi-class pattern recognition approach. NeuroImage, 60, 1015-1024.
    • (2012) NeuroImage , vol.60 , pp. 1015-1024
    • Marquand, A.F.1    O'Daly, O.G.2    De Simoni, S.3    Alsop, D.C.4    Maguire, R.P.5    Williams, S.C.R.6    Zelaya, F.O.7    Mehta, M.A.8
  • 114
    • 7044249748 scopus 로고    scopus 로고
    • Partial least squares analysis of neuroimaging data: Applications and advances
    • McIntosh, A. R.; & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage, 23, 250-263.
    • (2004) NeuroImage , vol.23 , pp. 250-263
    • McIntosh, A.R.1    Lobaugh, N.J.2
  • 115
    • 84872465552 scopus 로고    scopus 로고
    • Multivariate statistical analyses for neuroimaging data
    • 22804773
    • McIntosh, A. R.; & Misic, B. (2013). Multivariate statistical analyses for neuroimaging data. Annual Review of Psychology, 64, 499-525.
    • (2013) Annual Review of Psychology , vol.64 , pp. 499-525
    • McIntosh, A.R.1    Misic, B.2
  • 118
    • 77955307443 scopus 로고    scopus 로고
    • Comparison of multivariate classifiers and response normalizations for pattern-information fMRI
    • 2914143 20580933
    • Misaki, M.; Kim, Y.; Bandettini, P. A.; & Kriegeskorte, N. (2010). Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. NeuroImage, 53, 103-118.
    • (2010) NeuroImage , vol.53 , pp. 103-118
    • Misaki, M.1    Kim, Y.2    Bandettini, P.A.3    Kriegeskorte, N.4
  • 119
    • 79961014228 scopus 로고    scopus 로고
    • From journal articles to computational models: A new automated tool
    • 1:CAS:528:DC%2BC3MXpsFajsbo%3D 21799495
    • Mitchell, T. M. (2011). From journal articles to computational models: a new automated tool. Nature methods, 8, 627.
    • (2011) Nature Methods , vol.8 , pp. 627
    • Mitchell, T.M.1
  • 121
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data
    • 16275139
    • Mourao-Miranda, J.; Bokde, A. L. W.; Born, C.; Hampel, H.; & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data. NeuroImage, 28, 980-995.
    • (2005) NeuroImage , vol.28 , pp. 980-995
    • Mourao-Miranda, J.1    Bokde, A.L.W.2    Born, C.3    Hampel, H.4    Stetter, M.5
  • 122
    • 33750737054 scopus 로고    scopus 로고
    • The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data
    • 17010645
    • Mourao-Miranda, J.; Reynaud, E.; McGlone, F.; Calvert, G.; & Brammer, M. (2006). The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data. NeuroImage, 33, 1055-1065.
    • (2006) NeuroImage , vol.33 , pp. 1055-1065
    • Mourao-Miranda, J.1    Reynaud, E.2    McGlone, F.3    Calvert, G.4    Brammer, M.5
  • 123
    • 84857077961 scopus 로고    scopus 로고
    • Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents
    • 1:CAS:528:DC%2BC38XjtFWit7k%3D 3280237 22355302
    • Mourao-Miranda, J.; Oliveira, L.; Ladouceur, C. D.; Marquand, A.; Brammer, M.; Birmaher, B.; Axelson, D.; & Phillips, M. L. (2012). Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents. Plos One, 7, e29482.
    • (2012) Plos One , vol.7 , pp. 29482
    • Mourao-Miranda, J.1    Oliveira, L.2    Ladouceur, C.D.3    Marquand, A.4    Brammer, M.5    Birmaher, B.6    Axelson, D.7    Phillips, M.L.8
  • 124
    • 84860603285 scopus 로고    scopus 로고
    • Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder
    • Mwangi, B.; Ebmeier, K.; Matthews, K.; & Douglas Steele, J. (2012a). Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain: A Journal of Neurology, 135, 1508-1521.
    • (2012) Brain: A Journal of Neurology , vol.135 , pp. 1508-1521
    • Mwangi, B.1    Ebmeier, K.2    Matthews, K.3    Douglas Steele, J.4
  • 125
    • 83755174702 scopus 로고    scopus 로고
    • Prediction of illness severity in patients with major depression using structural MR brain scans
    • 21959677
    • Mwangi, B.; Matthews, K.; & Steele, J. (2012b). Prediction of illness severity in patients with major depression using structural MR brain scans. Journal of Magnetic Resonance Imaging, 35, 64-71.
    • (2012) Journal of Magnetic Resonance Imaging , vol.35 , pp. 64-71
    • Mwangi, B.1    Matthews, K.2    Steele, J.3
  • 126
    • 84875660261 scopus 로고    scopus 로고
    • Prediction of individual subject's age across the human lifespan using diffusion tensor imaging: A machine learning approach
    • Mwangi, B.; Hasan, K. M.; and Soares, J. C. (2013). Prediction of individual subject's age across the human lifespan using diffusion tensor imaging: A machine learning approach. NeuroImage, 75, 58-67.
    • (2013) NeuroImage , vol.75 , pp. 58-67
    • Mwangi, B.1    Hasan, K.M.2    Soares, J.C.3
  • 129
  • 130
    • 84863316272 scopus 로고    scopus 로고
    • Genomic selection using regularized linear regression models: Ridge regression, lasso, elastic net and their extensions
    • Ogutu, J. O.; Schulz-Streeck, T.; and Piepho, H. P. (2012). Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. Paper presented at: BMC proceedings (Springer).
    • (2012) BMC Proceedings (Springer)
    • Ogutu, J.O.1    Schulz-Streeck, T.2    Piepho, H.P.3
  • 131
    • 84857000430 scopus 로고    scopus 로고
    • Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review
    • 22305994
    • Orru, G.; Pettersson-Yeo, W.; Marquand, A. F.; Sartori, G.; & Mechelli, A. (2012). Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neuroscience And Biobehavioral Reviews, 36, 1140-1152.
    • (2012) Neuroscience and Biobehavioral Reviews , vol.36 , pp. 1140-1152
    • Orru, G.1    Pettersson-Yeo, W.2    Marquand, A.F.3    Sartori, G.4    Mechelli, A.5
  • 134
    • 72149097061 scopus 로고    scopus 로고
    • A principal component network analysis of prefrontal-limbic functional magnetic resonance imaging time series in schizophrenia patients and healthy controls
    • 2788080 19880294
    • Radulescu, A. R.; & Mujica-Parodi, L. R. (2009). A principal component network analysis of prefrontal-limbic functional magnetic resonance imaging time series in schizophrenia patients and healthy controls. Psychiatry Research, 174, 184-194.
    • (2009) Psychiatry Research , vol.174 , pp. 184-194
    • Radulescu, A.R.1    Mujica-Parodi, L.R.2
  • 137
    • 79952056311 scopus 로고    scopus 로고
    • Visualization of nonlinear kernel models in neuroimaging by sensitivity maps
    • 21168511
    • Rasmussen, P. M.; Madsen, K. H.; Lund, T. E.; & Hansen, L. K. (2011). Visualization of nonlinear kernel models in neuroimaging by sensitivity maps. NeuroImage, 55, 1120-1131.
    • (2011) NeuroImage , vol.55 , pp. 1120-1131
    • Rasmussen, P.M.1    Madsen, K.H.2    Lund, T.E.3    Hansen, L.K.4
  • 138
    • 84857766300 scopus 로고    scopus 로고
    • Nonlinear denoising and analysis of neuroimages with kernel principal component analysis and pre-image estimation
    • 22305952
    • Rasmussen, P. M.; Abrahamsen, T. J.; Madsen, K. H.; & Hansen, L. K. (2012). Nonlinear denoising and analysis of neuroimages with kernel principal component analysis and pre-image estimation. NeuroImage, 60, 1807-1818.
    • (2012) NeuroImage , vol.60 , pp. 1807-1818
    • Rasmussen, P.M.1    Abrahamsen, T.J.2    Madsen, K.H.3    Hansen, L.K.4
  • 140
  • 141
    • 77951976541 scopus 로고    scopus 로고
    • Sparse logistic regression for whole brain classification of fMRI data
    • 2856747 20188193
    • Ryali, S.; Supekar, K.; Abrams, D. A.; & Menon, V. (2010). Sparse logistic regression for whole brain classification of fMRI data. NeuroImage, 51, 752.
    • (2010) NeuroImage , vol.51 , pp. 752
    • Ryali, S.1    Supekar, K.2    Abrams, D.A.3    Menon, V.4
  • 142
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y.; Inza, I.; and Larranaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 143
    • 61449255924 scopus 로고    scopus 로고
    • Meta-analysis of neuroimaging data: A comparison of image-based and coordinate-based pooling of studies
    • 19166944
    • Salimi-Khorshidi, G.; Smith, S. M.; Keltner, J. R.; Wager, T. D.; & Nichols, T. E. (2009). Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. NeuroImage, 45, 810-823.
    • (2009) NeuroImage , vol.45 , pp. 810-823
    • Salimi-Khorshidi, G.1    Smith, S.M.2    Keltner, J.R.3    Wager, T.D.4    Nichols, T.E.5
  • 144
    • 84865979899 scopus 로고    scopus 로고
    • Evaluation of pattern recognition and feature extraction methods in ADHD prediction
    • doi: 10.3389/fnsys.2012.00068
    • Sato, J. R.; Hoexter, M. Q.; Fujita, A.; and Rohde, L. A. (2012). Evaluation of pattern recognition and feature extraction methods in ADHD prediction. Frontiers in Systems Neuroscience, 6(68). doi: 10.3389/fnsys.2012. 00068.
    • (2012) Frontiers in Systems Neuroscience , vol.6 , Issue.68
    • Sato, J.R.1    Hoexter, M.Q.2    Fujita, A.3    Rohde, L.A.4
  • 150
    • 38049013701 scopus 로고    scopus 로고
    • Detecting disease-causing genes by LASSO-Patternsearch algorithm
    • (BioMed Central Ltd)
    • Shi, W.; Lee, K. E.; and Wahba, G. (2007). Detecting disease-causing genes by LASSO-Patternsearch algorithm. Paper presented at: BMC proceedings, (BioMed Central Ltd).
    • (2007) BMC Proceedings
    • Shi, W.1    Lee, K.E.2    Wahba, G.3
  • 151
    • 84867707087 scopus 로고    scopus 로고
    • Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD
    • 3494168 23162439
    • Sidhu, G. S.; Asgarian, N.; Greiner, R.; & Brown, M. R. G. (2012). Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD. Frontiers in Systems Neuroscience, 6, 74.
    • (2012) Frontiers in Systems Neuroscience , vol.6 , pp. 74
    • Sidhu, G.S.1    Asgarian, N.2    Greiner, R.3    Brown, M.R.G.4
  • 153
    • 77952888499 scopus 로고    scopus 로고
    • Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
    • 2871976 20347044
    • Stonnington, C. M.; Chu, C.; Kloppel, S.; Jack, C. R.; Jr.; Ashburner, J.; & Frackowiak, R. S. J. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer's disease. NeuroImage, 51, 1405-1413.
    • (2010) NeuroImage , vol.51 , pp. 1405-1413
    • Stonnington, C.M.1    Chu, C.2    Kloppel, S.3    Jack, Jr.C.R.4    Ashburner, J.5    Frackowiak, R.S.J.6
  • 155
    • 84855185464 scopus 로고    scopus 로고
    • A review of multivariate methods for multimodal fusion of brain imaging data
    • 3690333 22108139
    • Sui, J.; Adali, T.; Yu, Q.; Chen, J.; & Calhoun, V. D. (2012). A review of multivariate methods for multimodal fusion of brain imaging data. Journal of Neuroscience Methods, 204, 68-81.
    • (2012) Journal of Neuroscience Methods , vol.204 , pp. 68-81
    • Sui, J.1    Adali, T.2    Yu, Q.3    Chen, J.4    Calhoun, V.D.5
  • 158
    • 0141646497 scopus 로고    scopus 로고
    • Dynamical components analysis of fMRI data through kernel PCA
    • 14527568
    • Thirion, B.; & Faugeras, O. (2003). Dynamical components analysis of fMRI data through kernel PCA. NeuroImage, 20, 34-49.
    • (2003) NeuroImage , vol.20 , pp. 34-49
    • Thirion, B.1    Faugeras, O.2
  • 161
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the relevance vector machine
    • Tipping, M. (2001). Sparse Bayesian Learning and the relevance vector machine. J ournal of Machine Learning Research, 1(211), 244.
    • (2001) J Ournal of Machine Learning Research , vol.1 , Issue.211 , pp. 244
    • Tipping, M.1
  • 162
    • 84866173660 scopus 로고    scopus 로고
    • Resting state FDG-PET functional connectivity as an early biomarker of Alzheimer's disease using conjoint univariate and independent component analyses
    • Toussaint, P. J.; Perlbarg, V.; Bellec, P.; Desarnaud, S.; Lacomblez, L.; Doyon, J.; Habert, M. O.; and Benali, H. (2012). Resting state FDG-PET functional connectivity as an early biomarker of Alzheimer's disease using conjoint univariate and independent component analyses. NeuroImage, 63(2) 936-946.
    • (2012) NeuroImage , vol.63 , Issue.2 , pp. 936-946
    • Toussaint, P.J.1    Perlbarg, V.2    Bellec, P.3    Desarnaud, S.4    Lacomblez, L.5    Doyon, J.6    Habert, M.O.7    Benali, H.8
  • 163
    • 60349101047 scopus 로고    scopus 로고
    • Block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization
    • Tseng, P.; & Yun, S. (2009). Block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization. Journal of optimization theory and applications, 140, 513-535.
    • (2009) Journal of Optimization Theory and Applications , vol.140 , pp. 513-535
    • Tseng, P.1    Yun, S.2
  • 164
    • 79954988208 scopus 로고    scopus 로고
    • Predicting subject-driven actions and sensory experience in a virtual world with Relevance Vector Machine Regression of fMRI data
    • 20888922
    • Valente, G.; De Martino, F.; Esposito, F.; Goebel, R.; & Formisano, E. (2011). Predicting subject-driven actions and sensory experience in a virtual world with Relevance Vector Machine Regression of fMRI data. NeuroImage, 56, 651-661.
    • (2011) NeuroImage , vol.56 , pp. 651-661
    • Valente, G.1    De Martino, F.2    Esposito, F.3    Goebel, R.4    Formisano, E.5
  • 165
    • 83055168547 scopus 로고    scopus 로고
    • Brain decoding: Opportunities and challenges for pattern recognition
    • Van De Ville, D.; & Lee, S.-W. (2012). Brain decoding: Opportunities and challenges for pattern recognition. Pattern Recognition Brain Decoding, 45, 2033-2034.
    • (2012) Pattern Recognition Brain Decoding , vol.45 , pp. 2033-2034
    • Van De Ville, D.1    Lee, S.-W.2
  • 167
    • 84856108049 scopus 로고    scopus 로고
    • Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease
    • Vounou, M.; Janousova, E.; Wolz, R.; Stein, J. L.; Thompson, P. M.; Rueckert, D.; and Montana, G. (2011). Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease. Neuroimage, 60(1) 700-716.
    • (2011) Neuroimage , vol.60 , Issue.1 , pp. 700-716
    • Vounou, M.1    Janousova, E.2    Wolz, R.3    Stein, J.L.4    Thompson, P.M.5    Rueckert, D.6    Montana, G.7
  • 168
    • 35948992729 scopus 로고    scopus 로고
    • Meta-analysis of functional neuroimaging data: Current and future directions
    • 2555451 18985131
    • Wager, T. D.; Lindquist, M.; & Kaplan, L. (2007). Meta-analysis of functional neuroimaging data: current and future directions. Social Cognitive and Affective Neuroscience, 2, 150-158.
    • (2007) Social Cognitive and Affective Neuroscience , vol.2 , pp. 150-158
    • Wager, T.D.1    Lindquist, M.2    Kaplan, L.3
  • 170
    • 77950588524 scopus 로고    scopus 로고
    • High-dimensional pattern regression using machine learning: From medical images to continuous clinical variables
    • 2839056 20056158
    • Wang, Y.; Fan, Y.; Bhatt, P.; & Davatzikos, C. (2010). High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. NeuroImage, 50, 1519-1535.
    • (2010) NeuroImage , vol.50 , pp. 1519-1535
    • Wang, Y.1    Fan, Y.2    Bhatt, P.3    Davatzikos, C.4
  • 171
    • 80053424864 scopus 로고    scopus 로고
    • Discriminative analysis of resting-state brain functional connectivity patterns of Attention-Deficit Hyperactivity Disorder using Kernel Principal Component Analysis
    • 2011 Eighth International Conference on (IEEE)
    • Wang, X.; Jiao, Y.; and Lu, Z. (2011). Discriminative analysis of resting-state brain functional connectivity patterns of Attention-Deficit Hyperactivity Disorder using Kernel Principal Component Analysis. Paper presented at: Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth International Conference on (IEEE).
    • (2011) Fuzzy Systems and Knowledge Discovery (FSKD)
    • Wang, X.1    Jiao, Y.2    Lu, Z.3
  • 176
    • 79953008341 scopus 로고    scopus 로고
    • A hybrid machine learning method for fusing fMRI and genetic data: Combining both improves classification of schizophrenia
    • doi: 10.3389/fnhum.2010.00192
    • Yang, H.; Liu, J.; Sui, J.; Pearlson, G.; and Calhoun, V. D. (2010). A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia. Frontiers in human neuroscience, 4. doi: 10.3389/fnhum.2010.00192.
    • (2010) Frontiers in Human Neuroscience , vol.4
    • Yang, H.1    Liu, J.2    Sui, J.3    Pearlson, G.4    Calhoun, V.D.5
  • 177
    • 79960978681 scopus 로고    scopus 로고
    • Large-scale automated synthesis of human functional neuroimaging data
    • 1:CAS:528:DC%2BC3MXotV2gs7w%3D 3146590 21706013
    • Yarkoni, T.; Poldrack, R. A.; Nichols, T. E.; Van Essen, D. C.; & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature methods, 8, 665-670.
    • (2011) Nature Methods , vol.8 , pp. 665-670
    • Yarkoni, T.1    Poldrack, R.A.2    Nichols, T.E.3    Van Essen, D.C.4    Wager, T.D.5
  • 178
    • 33846575157 scopus 로고    scopus 로고
    • Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia
    • 17188902
    • Yoon, U.; Lee, J. M.; Im, K.; Shin, Y. W.; Cho, B. H.; Kim, I. Y.; Kwon, J. S.; & Kim, S. I. (2007). Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia. NeuroImage, 34, 1405-1415.
    • (2007) NeuroImage , vol.34 , pp. 1405-1415
    • Yoon, U.1    Lee, J.M.2    Im, K.3    Shin, Y.W.4    Cho, B.H.5    Kim, I.Y.6    Kwon, J.S.7    Kim, S.I.8
  • 179
    • 56349145100 scopus 로고    scopus 로고
    • Multivariate Pattern Analysis of Functional Magnetic Resonance Imaging Data Reveals Deficits in Distributed Representations in Schizophrenia
    • Yoon, J. H.; Tamir, D.; Minzenberg, M. J.; Ragland, J. D.; Ursu, S.; and Carter, C. S. (2008). Multivariate Pattern Analysis of Functional Magnetic Resonance Imaging Data Reveals Deficits in Distributed Representations in Schizophrenia. Biological Psychiatry, 64(12) 1035-1041.
    • (2008) Biological Psychiatry , vol.64 , Issue.12 , pp. 1035-1041
    • Yoon, J.H.1    Tamir, D.2    Minzenberg, M.J.3    Ragland, J.D.4    Ursu, S.5    Carter, C.S.6
  • 180
    • 84860631276 scopus 로고    scopus 로고
    • Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis
    • 10.1093/brain/aws059 22418737
    • Zeng, L.-L.; Shen, H.; Liu, L.; Wang, L.; Li, B.; Fang, P.; Zhou, Z.; Li, Y.; & Hu, D. (2012). Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain, 135, 1498-1507. doi: 10.1093/brain/aws059.
    • (2012) Brain , vol.135 , pp. 1498-1507
    • Zeng, L.-L.1    Shen, H.2    Liu, L.3    Wang, L.4    Li, B.5    Fang, P.6    Zhou, Z.7    Li, Y.8    Hu, D.9
  • 181
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • 3057360 21236349
    • Zhang, D.; Wang, Y.; Zhou, L.; Yuan, H.; & Shen, D. (2011a). Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage, 55, 856-867.
    • (2011) NeuroImage , vol.55 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 182
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • 3057360 21236349
    • Zhang, D.; Wang, Y.; Zhou, L.; Yuan, H.; & Shen, D. (2011b). Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage, 55, 856-867.
    • (2011) NeuroImage , vol.55 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 184
    • 38949129350 scopus 로고    scopus 로고
    • Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder
    • 18191584
    • Zhu, C. Z.; Zang, Y. F.; Cao, Q. J.; Yan, C. G.; He, Y.; Jiang, T. Z.; Sui, M. Q.; & Wang, Y. F. (2008). Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. NeuroImage, 40, 110-120.
    • (2008) NeuroImage , vol.40 , pp. 110-120
    • Zhu, C.Z.1    Zang, Y.F.2    Cao, Q.J.3    Yan, C.G.4    He, Y.5    Jiang, T.Z.6    Sui, M.Q.7    Wang, Y.F.8
  • 185
    • 84879719023 scopus 로고    scopus 로고
    • Partial least squares correlation of multivariate cognitive abilities and local brain structure in children and adolescents
    • 1:STN:280:DC%2BC3snos1GgtA%3D%3D 23727321
    • Ziegler, G.; Dahnke, R.; Winkler, A. D.; & Gaser, C. (2013). Partial least squares correlation of multivariate cognitive abilities and local brain structure in children and adolescents. NeuroImage, 82, 284-294.
    • (2013) NeuroImage , vol.82 , pp. 284-294
    • Ziegler, G.1    Dahnke, R.2    Winkler, A.D.3    Gaser, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.