메뉴 건너뛰기




Volumn 19, Issue 5, 2015, Pages 1610-1616

A Robust Deep Model for Improved Classification of AD/MCI Patients

Author keywords

Alzheimer's Disease; Deep Learning; Early Diagnosis; MRI; PET

Indexed keywords

COMPUTER AIDED DIAGNOSIS; LEARNING SYSTEMS; MAGNETIC RESONANCE IMAGING; NEURODEGENERATIVE DISEASES; POLYETHYLENE TEREPHTHALATES;

EID: 84940975497     PISSN: 21682194     EISSN: 21682208     Source Type: Journal    
DOI: 10.1109/JBHI.2015.2429556     Document Type: Article
Times cited : (268)

References (29)
  • 1
    • 84858225391 scopus 로고    scopus 로고
    • Alzheimer's disease facts and figures
    • Alzheimer's Association: 2012
    • Alzheimer's Association: 2012, "Alzheimer's disease facts and figures," Alzheimer's Dementia, vol. 8, no. 2, pp. 131-168, 2012
    • (2012) Alzheimer's Dementia , vol.8 , Issue.2 , pp. 131-168
  • 2
    • 80053654021 scopus 로고    scopus 로고
    • Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
    • C. Davatzikos, P. Bhatt, L. M. Shaw, K. N. Batmanghelich, and J. Q. Trojanowski, "Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification," Neurobiol. Aging, vol. 32, no. 12, pp. 2322. e19-2322. e27, 2011
    • (2011) Neurobiol. Aging , vol.32 , Issue.12 , pp. 2322e19-2322e27
    • Davatzikos, C.1    Bhatt, P.2    Shaw, L.M.3    Batmanghelich, K.N.4    Trojanowski, J.Q.5
  • 4
    • 1842427969 scopus 로고    scopus 로고
    • Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI
    • M. D. Greicius, G. Srivastava, A. L. Reiss, and V. Menon, "Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI," in Proc. Nat. Acad. Sci. United States Amer., vol. 101, no. 13, pp. 4637-4642, 2004
    • (2004) Proc. Nat. Acad. Sci. United States Amer. , vol.101 , Issue.13 , pp. 4637-4642
    • Greicius, M.D.1    Srivastava, G.2    Reiss, A.L.3    Menon, V.4
  • 6
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. G. Osindero, and Y. W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.G.2    Teh, Y.W.3
  • 7
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug.
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 12
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • R. Tibshirani, "Regression shrinkage and selection via the Lasso," J. Roy. Statist. Soc., Ser. B, vol. 58, no. 1, pp. 267-288, 1996
    • (1996) J. Roy. Statist. Soc., Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 13
    • 0034323959 scopus 로고    scopus 로고
    • An examination of psychometric properties of the mini-Mental state examination and the standardized mini-Mental state examination: Implications for clinical practice
    • V. C. Pangman, J. Sloan, and L. Guse, "An examination of psychometric properties of the mini-Mental state examination and the standardized mini-Mental state examination: Implications for clinical practice," Appl. Nursing Res., vol. 13, no. 4, pp. 209-213, 2000
    • (2000) Appl. Nursing Res. , vol.13 , Issue.4 , pp. 209-213
    • Pangman, V.C.1    Sloan, J.2    Guse, L.3
  • 14
    • 0034572281 scopus 로고    scopus 로고
    • ADAS-cog (Alzheimer's disease assessment scale-cognitive subscale)-validation of the Slovak version
    • E. Kolibas, V. Korinkova, V. Novotny, K. Vajdickova, and D. Hunakova, "ADAS-cog (Alzheimer's disease assessment scale-cognitive subscale)-validation of the Slovak version," Bratisl Lek Listy, vol. 101, no. 11, pp. 598-602, 2000
    • (2000) Bratisl Lek Listy , vol.101 , Issue.11 , pp. 598-602
    • Kolibas, E.1    Korinkova, V.2    Novotny, V.3    Vajdickova, K.4    Hunakova, D.5
  • 15
    • 84921673966 scopus 로고    scopus 로고
    • Robust deep learning for improved classification of AD/MCI patients
    • F. Li, L. Tran, KH. Thung, S. Ji, D. Shen, and J. Li, "Robust deep learning for improved classification of AD/MCI patients," Mach. Learn. Med. Imag., vol. 8679, pp. 240-247, 2014
    • (2014) Mach. Learn. Med. Imag. , vol.8679 , pp. 240-247
    • Li, F.1    Tran, L.2    Thung, K.H.3    Ji, S.4    Shen, D.5    Li, J.6
  • 17
    • 79551576499 scopus 로고    scopus 로고
    • Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population
    • C. Hinrichs, V. Singh, G. Xu, and S. C. Johnson," Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population," NeuroImage, vol. 55, no. 2, pp. 574-589, 2011
    • (2011) NeuroImage , vol.55 , Issue.2 , pp. 574-589
    • Hinrichs, C.1    Singh, V.2    Xu, G.3    Johnson, S.C.4
  • 20
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learning, vol. 2, no. 1, p. 1-127, 2009
    • (2009) Found. Trends Mach. Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 21
  • 22
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 1527-1554, 2006
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 24
    • 71149103464 scopus 로고    scopus 로고
    • An accelerated gradient method for trace norm minimization
    • S. Ji and J. Ye, "An accelerated gradient method for trace norm minimization," in Proc. 26th Ann. Int. Conf. Mach. Learn., 2009, pp. 457-464
    • (2009) Proc. 26th Ann. Int. Conf. Mach. Learn. , pp. 457-464
    • Ji, S.1    Ye, J.2
  • 25
    • 33846487387 scopus 로고    scopus 로고
    • Multi-task learning for classification with Dirichlet process priors
    • Y. Xue, X. Liao, L. Carin, and B. Krishnapuram, "Multi-task learning for classification with Dirichlet process priors," J. Mach. Learn. Res., vol. 8, pp. 35-63, 2007
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 35-63
    • Xue, Y.1    Liao, X.2    Carin, L.3    Krishnapuram, B.4
  • 26
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learning, vol. 20, no. 3, pp. 273-297, 1995
    • (1995) Mach. Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 28
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimers disease and mild cognitive impairment
    • D. Zhang, Y. Wang, L. Zhou, H. Yuan, and D. Shen, "Multimodal classification of Alzheimers disease and mild cognitive impairment," NeuroImage, vol. 55, no. 3, pp. 856-867, 2011
    • (2011) NeuroImage , vol.55 , Issue.3 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 29
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning: A knowledge-based source of inductive bias
    • R. Caruana, "Multitask learning: A knowledge-based source of inductive bias," Mach. Learn., vol. 28, pp. 41-75, 1997.
    • (1997) Mach. Learn. , vol.28 , pp. 41-75
    • Caruana, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.