메뉴 건너뛰기




Volumn 20, Issue 1, 2001, Pages 45-57

Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm

Author keywords

Bias field correction; Expectation maximization; Hidden Markov random field; MRI; Segmentation

Indexed keywords

ALGORITHMS; BRAIN; FINITE ELEMENT METHOD; IMAGE SEGMENTATION; MAGNETIC RESONANCE IMAGING; MARKOV PROCESSES; MATHEMATICAL MODELS; NEUROLOGY;

EID: 0034745001     PISSN: 02780062     EISSN: None     Source Type: Journal    
DOI: 10.1109/42.906424     Document Type: Article
Times cited : (5562)

References (21)
  • 7
    • 0027001622 scopus 로고
    • Optimized intensity thresholds for volumetric analysis of magnetic resonance imaging data
    • (1992) Proc. SPIE , vol.1808 , pp. 299-310
    • Brummer, M.E.1
  • 9
    • 0003487601 scopus 로고
    • Neural Networks for Pattern Recognition
    • Oxford, U.K.: Oxford Univ.
    • (1995)
    • Bishop, C.M.1
  • 14
    • 0026836262 scopus 로고
    • Statistical approach to X-ray CT imaging and its applications in image analysis-Part II: A new stochastic model-based image segmentation technique for X-ray CT image
    • (1992) IEEE Trans. Med. Imag. , vol.11 , Issue.1 , pp. 62-69
    • Lei, T.1    Sewchand, W.2
  • 16
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Feb.
    • (1989) Proc. IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 20
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • (1983) Ann. Stat. , vol.11 , pp. 95-103
    • Wu, C.F.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.