메뉴 건너뛰기




Volumn 145, Issue , 2018, Pages 148-164

A deep learning framework for remote sensing image registration

Author keywords

Deep neural network; Image registration; Remote sensing image; Self learning; Transfer learning

Indexed keywords

DEEP NEURAL NETWORKS; IMAGE ENHANCEMENT; IMAGE REGISTRATION; MAPPING;

EID: 85039951284     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2017.12.012     Document Type: Article
Times cited : (254)

References (71)
  • 2
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for ai
    • Bengio, Y., Learning deep architectures for ai. Found. Trends Mach. Learn. 2:1 (2009), 1–55, 10.1561/2200000006.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-55
    • Bengio, Y.1
  • 3
    • 85028158057 scopus 로고    scopus 로고
    • Effective and efficient midlevel visual elements-oriented land-use classification using vhr remote sensing images
    • Cheng, G., Han, J., Guo, L., Liu, Z., Bu, S., Ren, J., Effective and efficient midlevel visual elements-oriented land-use classification using vhr remote sensing images. IEEE Trans. Geosci. Rem. Sens 53:8 (2015), 4238–4249, 10.1109/TGRS.2015.2393857.
    • (2015) IEEE Trans. Geosci. Rem. Sens , vol.53 , Issue.8 , pp. 4238-4249
    • Cheng, G.1    Han, J.2    Guo, L.3    Liu, Z.4    Bu, S.5    Ren, J.6
  • 4
    • 85027047340 scopus 로고    scopus 로고
    • Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images
    • Cheng, G., Zhou, P., Han, J., Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images. IEEE Trans. Geosci. Remote Sens 54:12 (2016), 7405–7415, 10.1109/TGRS.2016.2601622.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.12 , pp. 7405-7415
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 5
    • 84986269041 scopus 로고    scopus 로고
    • Rifd-cnn: Rotation-invariant and fisher discriminative convolutional neural networks for object detection (June), 2884–2893, doi
    • Cheng, G., Zhou, P., Han, J., 2016b. Rifd-cnn: Rotation-invariant and fisher discriminative convolutional neural networks for object detection (June), 2884–2893, doi: https://doi.org/10.1109/CVPR.2016.315.
    • (2016)
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 9
    • 84870859656 scopus 로고    scopus 로고
    • Registration of optical and SAR satellite images by exploring the spatial relationship of the improved sift
    • Fan, B., Huo, C., Pan, C., Kong, Q., Registration of optical and SAR satellite images by exploring the spatial relationship of the improved sift. IEEE Geosci. Remote Sens. Lett 10:4 (2013), 657–661, 10.1109/LGRS.2012.2216500.
    • (2013) IEEE Geosci. Remote Sens. Lett , vol.10 , Issue.4 , pp. 657-661
    • Fan, B.1    Huo, C.2    Pan, C.3    Kong, Q.4
  • 10
    • 84907486525 scopus 로고    scopus 로고
    • Sar image registration using phase congruency and nonlinear diffusion-based sift
    • Fan, J., Wu, Y., Wang, F., Zhang, Q., Liao, G., Li, M., Sar image registration using phase congruency and nonlinear diffusion-based sift. IEEE Geosci. Remote Sens. Lett 12:3 (2015), 562–566, 10.1109/LGRS.2014.2351396.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , Issue.3 , pp. 562-566
    • Fan, J.1    Wu, Y.2    Wang, F.3    Zhang, Q.4    Liao, G.5    Li, M.6
  • 12
    • 0019574599 scopus 로고
    • Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
    • Fischler, M.A., Bolles, R.C., Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24:6 (1981), 381–395, 10.1145/358669.358692.
    • (1981) Commun. ACM , vol.24 , Issue.6 , pp. 381-395
    • Fischler, M.A.1    Bolles, R.C.2
  • 13
    • 79959691142 scopus 로고    scopus 로고
    • Automatic image registration through image segmentation and sift
    • Goncalves, H., Corte-Real, L., Goncalves, J., Automatic image registration through image segmentation and sift. IEEE Trans. Geosci. Remote Sens 49:7 (2011), 2589–2600, 10.1109/TGRS.2011.2109389.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.7 , pp. 2589-2600
    • Goncalves, H.1    Corte-Real, L.2    Goncalves, J.3
  • 14
    • 65049088583 scopus 로고    scopus 로고
    • Measures for an objective evaluation of the geometric correction process quality
    • Goncalves, H., Goncalves, J.A., Corte-Real, L., Measures for an objective evaluation of the geometric correction process quality. IEEE Geosci. Remote Sens. Lett 6:2 (2009), 292–296, 10.1109/LGRS.2008.2012441.
    • (2009) IEEE Geosci. Remote Sens. Lett , vol.6 , Issue.2 , pp. 292-296
    • Goncalves, H.1    Goncalves, J.A.2    Corte-Real, L.3
  • 15
    • 84930804691 scopus 로고    scopus 로고
    • Change detection in synthetic aperture radar images based on deep neural networks
    • Gong, M., Zhao, J., Liu, J., Miao, Q., Jiao, L., Change detection in synthetic aperture radar images based on deep neural networks. IEEE Trans. Neural Netw. Learn Syst 27:1 (2016), 125–138, 10.1109/TNNLS.2015.2435783.
    • (2016) IEEE Trans. Neural Netw. Learn Syst , vol.27 , Issue.1 , pp. 125-138
    • Gong, M.1    Zhao, J.2    Liu, J.3    Miao, Q.4    Jiao, L.5
  • 16
    • 84896394249 scopus 로고    scopus 로고
    • A novel coarse-to-fine scheme for automatic image registration based on sift and mutual information
    • Gong, M., Zhao, S., Jiao, L., Tian, D., A novel coarse-to-fine scheme for automatic image registration based on sift and mutual information. IEEE Trans. Geosci. Remote Sens 52:7 (2014), 4328–4338, 10.1109/TGRS.2013.2281391.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.7 , pp. 4328-4338
    • Gong, M.1    Zhao, S.2    Jiao, L.3    Tian, D.4
  • 18
    • 85028166694 scopus 로고    scopus 로고
    • Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
    • Han, J., Zhang, D., Cheng, G., Guo, L., Ren, J., Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens 53:6 (2015), 3325–3337, 10.1109/TGRS.2014.2374218.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.6 , pp. 3325-3337
    • Han, J.1    Zhang, D.2    Cheng, G.3    Guo, L.4    Ren, J.5
  • 19
    • 84959255777 scopus 로고    scopus 로고
    • Matchnet: Unifying feature and metric learning for patch-based matching (October), 3279–3286, doi
    • Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C., 2015b. Matchnet: Unifying feature and metric learning for patch-based matching (October), 3279–3286, doi: https://doi.org/10.1109/CVPR.2015.7298948.
    • (2015)
    • Han, X.1    Leung, T.2    Jia, Y.3    Sukthankar, R.4    Berg, A.C.5
  • 20
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G.E., Training products of experts by minimizing contrastive divergence. Neural Comput 14:8 (2002), 1771–1800, 10.1162/089976602760128018.
    • (2002) Neural Comput , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 21
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • Hinton, G.E., A practical guide to training restricted boltzmann machines. Momentum 9:1 (2010), 599–619.
    • (2010) Momentum , vol.9 , Issue.1 , pp. 599-619
    • Hinton, G.E.1
  • 23
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.W., A fast learning algorithm for deep belief nets. Neural Comput. 18:7 (2006), 1527–1554, 10.1162/neco.2006.18.7.1527.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 24
    • 85041806305 scopus 로고    scopus 로고
    • Introduction to remote sensing image registration. In: IEEE International Geoscience and Remote Sensing Symposium.
    • Jacqueline, L.M., 2017. Introduction to remote sensing image registration. In: IEEE International Geoscience and Remote Sensing Symposium.
    • (2017)
    • Jacqueline, L.M.1
  • 25
    • 34247484552 scopus 로고    scopus 로고
    • Robust multispectral image registration using mutual-information models
    • Kern, J.P., Pattichis, M.S., Robust multispectral image registration using mutual-information models. IEEE Trans. Geosci. Rem. Sens. 45:5 (2007), 1494–1505, 10.1109/TGRS.2007.892599.
    • (2007) IEEE Trans. Geosci. Rem. Sens. , vol.45 , Issue.5 , pp. 1494-1505
    • Kern, J.P.1    Pattichis, M.S.2
  • 26
    • 84876231242 scopus 로고    scopus 로고
    • Dec. 2012. Imagenet classification with deep convolutional neural networks.
    • Krizhevsky, A., Sutskever, I., Hinton, G.E., Dec. 2012. Imagenet classification with deep convolutional neural networks. pp. 1097–1105.
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 27
    • 84906947666 scopus 로고    scopus 로고
    • An efficient sift-based mode-seeking algorithm for sub-pixel registration of remotely sensed images
    • Kupfer, B., Netanyahu, N.S., Shimshoni, I., An efficient sift-based mode-seeking algorithm for sub-pixel registration of remotely sensed images. IEEE Geosci. Remote Sens. Lett. 12:2 (2015), 379–383, 10.1109/LGRS.2014.2343471.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.2 , pp. 379-383
    • Kupfer, B.1    Netanyahu, N.S.2    Shimshoni, I.3
  • 28
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Lecun, Y., Bengio, Y., Hinton, G.E., Deep learning. Nature 521:7553 (2015), 436–444, 10.1038/nature14539.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.E.3
  • 29
    • 84890432560 scopus 로고    scopus 로고
    • Automatic registration of multisensor images using an integrated spatial and mutual information (SMI) metric
    • Liang, J., Liu, X., Huang, K., Li, X., Wang, D., Wang, X., Automatic registration of multisensor images using an integrated spatial and mutual information (SMI) metric. IEEE Trans. Geosci. Rem. Sens 52:1 (2013), 603–615, 10.1109/TGRS.2013.2242895.
    • (2013) IEEE Trans. Geosci. Rem. Sens , vol.52 , Issue.1 , pp. 603-615
    • Liang, J.1    Liu, X.2    Huang, K.3    Li, X.4    Wang, D.5    Wang, X.6
  • 30
    • 85007135382 scopus 로고    scopus 로고
    • A deep convolutional coupling network for change detection based on heterogeneous optical and radar images
    • Liu, J., Gong, M., Qin, K., Zhang, P., A deep convolutional coupling network for change detection based on heterogeneous optical and radar images. IEEE Trans. Neural Netw. Learn Syst. 99:August (2016), 1–15, 10.1109/TNNLS.2016.2636227.
    • (2016) IEEE Trans. Neural Netw. Learn Syst. , vol.99 , Issue.August , pp. 1-15
    • Liu, J.1    Gong, M.2    Qin, K.3    Zhang, P.4
  • 31
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G., Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60:2 (2004), 91–110, 10.1023/B:VISI.0000029664.99615.94.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 32
    • 77953873167 scopus 로고    scopus 로고
    • Fully automatic subpixel image registration of multiangle chris/proba data
    • Ma, J., Chan, J., Canters, F., Fully automatic subpixel image registration of multiangle chris/proba data. IEEE Trans. Geosci. Remote Sens 48:7 (2010), 2829–2839, 10.1109/TGRS.2010.2042813.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.7 , pp. 2829-2839
    • Ma, J.1    Chan, J.2    Canters, F.3
  • 33
    • 85013477708 scopus 로고    scopus 로고
    • Remote sensing image registration with modified sift and enhanced feature matching
    • Ma, W., Wen, Z., Wu, Y., Jiao, L., Gong, M., Zheng, Y., Liu, L., Remote sensing image registration with modified sift and enhanced feature matching. IEEE Geosci. Remote Sens. Lett 14:1 (2017), 3–7, 10.1109/LGRS.2016.2600858.
    • (2017) IEEE Geosci. Remote Sens. Lett , vol.14 , Issue.1 , pp. 3-7
    • Ma, W.1    Wen, Z.2    Wu, Y.3    Jiao, L.4    Gong, M.5    Zheng, Y.6    Liu, L.7
  • 34
    • 84988038682 scopus 로고    scopus 로고
    • Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning
    • Ma, X., Wang, H., Wang, J., Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning. ISPRS J. Photogramm Remote Sens 120 (2016), 99–107, 10.1016/j.isprsjprs.2016.09.001.
    • (2016) ISPRS J. Photogramm Remote Sens , vol.120 , pp. 99-107
    • Ma, X.1    Wang, H.2    Wang, J.3
  • 35
    • 0031106962 scopus 로고    scopus 로고
    • Multimodality image registration by maximization of mutual information
    • Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P., Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imag. 16:2 (1997), 187–198, 10.1109/42.563664.
    • (1997) IEEE Trans. Med. Imag. , vol.16 , Issue.2 , pp. 187-198
    • Maes, F.1    Collignon, A.2    Vandermeulen, D.3    Marchal, G.4    Suetens, P.5
  • 36
    • 3142736062 scopus 로고    scopus 로고
    • Robust wide-baseline stereo from maximally stable extremal regions
    • Matas, J., Chum, O., Urban, M., Pajdla, T., Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22:10 (2004), 761–767, 10.1016/j.imavis.2004.02.006.
    • (2004) Image Vis. Comput. , vol.22 , Issue.10 , pp. 761-767
    • Matas, J.1    Chum, O.2    Urban, M.3    Pajdla, T.4
  • 37
    • 85018540432 scopus 로고    scopus 로고
    • Asift: a new framework for fully affine invariant image comparison
    • Morel, J.M., Yu, G., Asift: a new framework for fully affine invariant image comparison. SIAM J. Imag. Sci. 2:2 (2009), 438–469, 10.1137/080732730.
    • (2009) SIAM J. Imag. Sci. , vol.2 , Issue.2 , pp. 438-469
    • Morel, J.M.1    Yu, G.2
  • 38
    • 85016196040 scopus 로고    scopus 로고
    • Automatic registration of multi-source data using mutual information
    • Parmehr, E.G., Zhang, C., Fraser, C.S., Automatic registration of multi-source data using mutual information. ISPRS J. Photogramm. Rem. Sens. I-7:July (2012), 303–308, 10.5194/isprsannals-I-7-303-2012.
    • (2012) ISPRS J. Photogramm. Rem. Sens. , vol.I-7 , Issue.July , pp. 303-308
    • Parmehr, E.G.1    Zhang, C.2    Fraser, C.S.3
  • 39
    • 84962784363 scopus 로고    scopus 로고
    • Speed improvement in image registration using maximum likelihood based mutual information. In: International Conference on Advanced Computing and Communication Systems. (Jan)
    • Patel, M.I., Thakar, V.K., 2015. Speed improvement in image registration using maximum likelihood based mutual information. In: International Conference on Advanced Computing and Communication Systems. (Jan), https://doi.org/10.1109/ICACCS.2015.7324130.
    • (2015)
    • Patel, M.I.1    Thakar, V.K.2
  • 40
    • 0030212172 scopus 로고    scopus 로고
    • An fft-based technique for translation, rotation, and scale-invariant image registration
    • Reddy, B.S., Chatterji, B.N., An fft-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc., 5(8), 1996, 1266, 10.1109/83.506761.
    • (1996) IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. , vol.5 , Issue.8 , pp. 1266
    • Reddy, B.S.1    Chatterji, B.N.2
  • 41
    • 85019258369 scopus 로고    scopus 로고
    • Faster r-cnn: towards real-time object detection with region proposal networks
    • Ren, S., He, K., Girshick, R., Sun, J., Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39:6 (2016), 1137–1149, 10.1109/TPAMI.2016.2577031.
    • (2016) IEEE Trans. Pattern Anal. Mach. Intell. , vol.39 , Issue.6 , pp. 1137-1149
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 42
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • Romero, A., Gatta, C., Camps-Valls, G., Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54:3 (2016), 1349–1362, 10.1109/TGRS.2015.2478379.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 43
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors. Nature 323:6088 (1986), 533–536, 10.1038/323533a0.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 45
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber, J., Deep learning in neural networks: an overview. Neural Netw. 61:October (2014), 85–117, 10.1016/j.neunet.2014.09.003.
    • (2014) Neural Netw. , vol.61 , Issue.October , pp. 85-117
    • Schmidhuber, J.1
  • 46
    • 77951838910 scopus 로고    scopus 로고
    • Applicability of the sift operator to geometric SAR image registration
    • Schwind, P., Suri, S., Reinartz, P., Siebert, A., Applicability of the sift operator to geometric SAR image registration. Int. J. Remote Sens. 31:8 (2010), 1959–1980, 10.1080/01431160902927622.
    • (2010) Int. J. Remote Sens. , vol.31 , Issue.8 , pp. 1959-1980
    • Schwind, P.1    Suri, S.2    Reinartz, P.3    Siebert, A.4
  • 47
    • 85013301566 scopus 로고    scopus 로고
    • Training deep convolutional neural networks for land-cover classification of high-resolution imagery
    • Scott, G.J., England, M.R., Starms, W.A., Marcum, R.A., Davis, C.H., Training deep convolutional neural networks for land-cover classification of high-resolution imagery. IEEE Geosci. Rem. Sens. Lett. 14:4 (2017), 549–553, 10.1109/LGRS.2017.2657778.
    • (2017) IEEE Geosci. Rem. Sens. Lett. , vol.14 , Issue.4 , pp. 549-553
    • Scott, G.J.1    England, M.R.2    Starms, W.A.3    Marcum, R.A.4    Davis, C.H.5
  • 48
    • 80455164723 scopus 로고    scopus 로고
    • Uniform robust scale-invariant feature matching for optical remote sensing images
    • Sedaghat, A., Mokhtarzade, M., Ebadi, H., Uniform robust scale-invariant feature matching for optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 49:11 (2011), 4516–4527, 10.1109/TGRS.2011.2144607.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4516-4527
    • Sedaghat, A.1    Mokhtarzade, M.2    Ebadi, H.3
  • 49
    • 85054306811 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition. Comp. Sci. (September)
    • Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. Comp. Sci. (September), ArXiv:1409.1556.
    • (2014)
    • Simonyan, K.1    Zisserman, A.2
  • 50
    • 84973915418 scopus 로고    scopus 로고
    • Dec. 2015. Discriminative learning of deep convolutional feature point descriptors, doi
    • Simoserra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Morenonoguer, F., Dec. 2015. Discriminative learning of deep convolutional feature point descriptors, pp. 118–126, doi: https://doi.org/10.1109/ICCV.2015.22.
    • Simoserra, E.1    Trulls, E.2    Ferraz, L.3    Kokkinos, I.4    Fua, P.5    Morenonoguer, F.6
  • 51
    • 76349122004 scopus 로고    scopus 로고
    • Mutual-information-based registration of terrasar-x and ikonos imagery in urban areas
    • Suri, S., Reinartz, P., Mutual-information-based registration of terrasar-x and ikonos imagery in urban areas. IEEE Trans. Geosci. Remote Sens. 48:2 (2009), 939–949, 10.1109/TGRS.2009.2034842.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.2 , pp. 939-949
    • Suri, S.1    Reinartz, P.2
  • 52
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11:December (2010), 3371–3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , Issue.December , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 53
    • 84861183797 scopus 로고    scopus 로고
    • Bfsift: a novel method to find feature matches for SAR image registration
    • Wang, S., You, H., Fu, K., Bfsift: a novel method to find feature matches for SAR image registration. IEEE Geosci. Remote Sens. Lett 9:4 (2012), 649–653, 10.1109/LGRS.2011.2177437.
    • (2012) IEEE Geosci. Remote Sens. Lett , vol.9 , Issue.4 , pp. 649-653
    • Wang, S.1    You, H.2    Fu, K.3
  • 54
    • 84978033606 scopus 로고    scopus 로고
    • Scalable high performance image registration framework by unsupervised deep feature representations learning
    • Wu, G., Kim, M.J., Wang, Q., Munsell, B., Shen, D., Scalable high performance image registration framework by unsupervised deep feature representations learning. IEEE Trans. Biomed. Eng. 63:7 (2016), 1505–1516, 10.1109/TBME.2015.2496253.
    • (2016) IEEE Trans. Biomed. Eng. , vol.63 , Issue.7 , pp. 1505-1516
    • Wu, G.1    Kim, M.J.2    Wang, Q.3    Munsell, B.4    Shen, D.5
  • 55
    • 84906783417 scopus 로고    scopus 로고
    • A novel point-matching algorithm based on fast sample consensus for image registration
    • Wu, Y., Ma, W., Gong, M., Su, L., Jiao, L., A novel point-matching algorithm based on fast sample consensus for image registration. IEEE Geosci. Rem. Sens. Lett. 12:1 (2015), 43–47, 10.1109/LGRS.2014.2325970.
    • (2015) IEEE Geosci. Rem. Sens. Lett. , vol.12 , Issue.1 , pp. 43-47
    • Wu, Y.1    Ma, W.2    Gong, M.3    Su, L.4    Jiao, L.5
  • 56
    • 84979586936 scopus 로고    scopus 로고
    • An automatic optical and SAR image registration method using iterative multi-level and refinement model
    • Xu, C., Sui, H.G., Li, D.R., Sun, K.M., Liu, J.Y., An automatic optical and SAR image registration method using iterative multi-level and refinement model. ISPRS J. Photogramm. Rem. Sens XLI-B7:June (2016), 593–600, 10.5194/isprsarchives-XLI-B7-593-2016.
    • (2016) ISPRS J. Photogramm. Rem. Sens , vol.XLI-B7 , Issue.June , pp. 593-600
    • Xu, C.1    Sui, H.G.2    Li, D.R.3    Sun, K.M.4    Liu, J.Y.5
  • 57
    • 84994834827 scopus 로고    scopus 로고
    • Multimodal registration of remotely sensed images based on Jeffreys divergence
    • Xu, X., Li, X., Liu, X., Shen, H., Shi, Q., Multimodal registration of remotely sensed images based on Jeffreys divergence. ISPRS J. Photogramm. Remote Sens. 122:December (2016), 97–115, 10.1016/j.isprsjprs.2016.10.005.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.122 , Issue.December , pp. 97-115
    • Xu, X.1    Li, X.2    Liu, X.3    Shen, H.4    Shi, Q.5
  • 58
    • 85021101762 scopus 로고    scopus 로고
    • Remote sensing image registration using multiple image features
    • Yang, K., Pan, A., Yang, Y., Zhang, S., Ong, S., Tang, H., Remote sensing image registration using multiple image features. Rem. Sens., 9(6), 2017, 581, 10.3390/rs9060581.
    • (2017) Rem. Sens. , vol.9 , Issue.6 , pp. 581
    • Yang, K.1    Pan, A.2    Yang, Y.3    Zhang, S.4    Ong, S.5    Tang, H.6
  • 59
    • 84976243077 scopus 로고    scopus 로고
    • Semantic annotation of high-resolution satellite images via weakly supervised learning
    • Yao, X., Han, J., Cheng, G., Qian, X., Guo, L., Semantic annotation of high-resolution satellite images via weakly supervised learning. IEEE Trans. Geosci. Remote Sens. 54:6 (2016), 3660–3671, 10.1109/TGRS.2016.2523563.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3660-3671
    • Yao, X.1    Han, J.2    Cheng, G.3    Qian, X.4    Guo, L.5
  • 60
    • 84895817415 scopus 로고    scopus 로고
    • A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences
    • Ye, Y., Shan, J., A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences. ISPRS J. Photogramm. Remote Sens. 90:3 (2014), 83–95, 10.1016/j.isprsjprs.2014.01.009.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.90 , Issue.3 , pp. 83-95
    • Ye, Y.1    Shan, J.2
  • 61
    • 85014281567 scopus 로고    scopus 로고
    • Robust registration of multimodal remote sensing images based on structural similarity
    • Ye, Y., Shan, J., Bruzzone, L., Shen, L., Robust registration of multimodal remote sensing images based on structural similarity. IEEE Trans. Geosci. Remote Sens. 55:5 (2017), 2941–2958, 10.1109/TGRS.2017.2656380.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.5 , pp. 2941-2958
    • Ye, Y.1    Shan, J.2    Bruzzone, L.3    Shen, L.4
  • 62
    • 85048749914 scopus 로고    scopus 로고
    • Hopc: a novel similarity metric based on geometric structural properties for multi-modal remote sensing image matching
    • Ye, Y., Shen, L., Hopc: a novel similarity metric based on geometric structural properties for multi-modal remote sensing image matching. ISPRS Ann. Photogram. Rem. Sens. Spatial Inf. III-1:June (2016), 9–16, 10.5194/isprs-annals-III-1-9-2016.
    • (2016) ISPRS Ann. Photogram. Rem. Sens. Spatial Inf. , vol.III-1 , Issue.June , pp. 9-16
    • Ye, Y.1    Shen, L.2
  • 63
    • 85013673345 scopus 로고    scopus 로고
    • Robust optical-to-SAR image matching based on shape properties
    • Ye, Y., Shen, L., Hao, M., Wang, J., Xu, Z., Robust optical-to-SAR image matching based on shape properties. IEEE Geosci. Remote Sens. Lett. 14:4 (2017), 564–568, 10.1109/LGRS.2017.2660067.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.4 , pp. 564-568
    • Ye, Y.1    Shen, L.2    Hao, M.3    Wang, J.4    Xu, Z.5
  • 64
    • 70450162358 scopus 로고    scopus 로고
    • Mutual information-based stereo matching combined with sift descriptor in log-chromaticity color space (August), 445–452, doi
    • Yong, S.H., Lee, K.M., Sang, U.L., 2009. Mutual information-based stereo matching combined with sift descriptor in log-chromaticity color space (August), 445–452, doi: https://doi.org/10.1109/CVPR.2009.5206507.
    • (2009)
    • Yong, S.H.1    Lee, K.M.2    Sang, U.L.3
  • 65
    • 84937508363 scopus 로고    scopus 로고
    • How transferable are features in deep neural networks?
    • Proceedings of the 27th International Conference on Neural Information Processing Systems - (NIPS’14) (December)
    • Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How transferable are features in deep neural networks? In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2 (NIPS’14) (December), pp. 3320–3328.
    • (2014) , vol.2 , pp. 3320-3328
    • Yosinski, J.1    Clune, J.2    Bengio, Y.3    Lipson, H.4
  • 66
    • 84959179619 scopus 로고    scopus 로고
    • Learning to compare image patches via convolutional neural networks (June), 4353–4361, doi
    • Zagoruyko, S., Komodakis, N., 2015. Learning to compare image patches via convolutional neural networks (June), 4353–4361, doi: https://doi.org/10.1109/CVPR.2015.7299064.
    • (2015)
    • Zagoruyko, S.1    Komodakis, N.2
  • 67
    • 84960327084 scopus 로고    scopus 로고
    • Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images
    • Zhang, P., Gong, M., Su, L., Liu, J., Li, Z., Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images. ISPRS J. Photogramm. Remote Sens. 116:February (2016), 24–41, 10.1016/j.isprsjprs.2016.02.013.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.116 , Issue.February , pp. 24-41
    • Zhang, P.1    Gong, M.2    Su, L.3    Liu, J.4    Li, Z.5
  • 68
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • Zhao, W., Du, S., Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm Remote Sens. 113:March (2016), 155–165, 10.1016/j.isprsjprs.2016.01.004.
    • (2016) ISPRS J. Photogramm Remote Sens. , vol.113 , Issue.March , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 69
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach
    • Zhao, W., Du, S., Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 54:8 (2016), 4544–4554, 10.1109/TGRS.2016.2543748.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.8 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 70
    • 84948658948 scopus 로고    scopus 로고
    • Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping
    • Zhou, P., Cheng, G., Liu, Z., Bu, S., Hu, X., Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping. Multidim Syst. Sign. Process. 27:4 (2016), 925–944, 10.1007/s11045-015-0370-3.
    • (2016) Multidim Syst. Sign. Process. , vol.27 , Issue.4 , pp. 925-944
    • Zhou, P.1    Cheng, G.2    Liu, Z.3    Bu, S.4    Hu, X.5
  • 71
    • 0043237770 scopus 로고    scopus 로고
    • Image registration methods: a survey
    • Zitova, B., Flusser, J., Image registration methods: a survey. Image Vis. Comput. 21:11 (2003), 977–1000, 10.1016/S0262-8856(03)00137-9.
    • (2003) Image Vis. Comput. , vol.21 , Issue.11 , pp. 977-1000
    • Zitova, B.1    Flusser, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.