메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 118-126

Discriminative learning of deep convolutional feature point descriptors

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; NEURAL NETWORKS; PROGRAM PROCESSORS; STOCHASTIC SYSTEMS;

EID: 84973915418     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.22     Document Type: Conference Paper
Times cited : (884)

References (34)
  • 1
    • 34548574887 scopus 로고    scopus 로고
    • SURF: Speeded up robust features
    • 1, 2
    • H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded Up Robust Features. In ECCV, 2006. 1, 2
    • (2006) ECCV
    • Bay, H.1    Tuytelaars, T.2    Van Gool, L.3
  • 2
    • 84959195732 scopus 로고
    • Signature verification using a siamese time delay neural network
    • 1, 3
    • J. Bromley, I. Guyon, Y. LeCun, E. Sckinger, and R. Shah. Signature verification using a "siamese" time delay neural network. In NIPS, 1994. 1, 3
    • (1994) NIPS
    • Bromley, J.1    Guyon, I.2    LeCun, Y.3    Sckinger, E.4    Shah, R.5
  • 3
    • 78649324041 scopus 로고    scopus 로고
    • Discriminative learning of local image descriptors
    • 1, 2, 3, 4, 5, 7
    • M. Brown, G. Hua, and S. Winder. Discriminative learning of local image descriptors. PAMI, 33 (1): 43-57, 2011. 1, 2, 3, 4, 5, 7
    • (2011) PAMI , vol.33 , Issue.1 , pp. 43-57
    • Brown, M.1    Hua, G.2    Winder, S.3
  • 4
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFs
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In ICLR, 2015. 2
    • (2015) ICLR , vol.2
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 7
    • 33747894200 scopus 로고    scopus 로고
    • The relationship between PR and ROC curves
    • J. Davis and M. Goadrich. The relationship between PR and ROC curves. In ICML, 2006. 4
    • (2006) ICML , vol.4
    • Davis, J.1    Goadrich, M.2
  • 8
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained partbased models
    • 2
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. PAMI, 32 (9): 1627-1645, 2010. 2
    • (2010) PAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 9
    • 84877789362 scopus 로고    scopus 로고
    • Iterative quantization: A Procrustean approach to learning binary codes for large-scale image retrieval
    • Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A Procrustean approach to learning binary codes for large-scale image retrieval. In PAMI, 2012. 2
    • (2012) PAMI , vol.2
    • Gong, Y.1    Lazebnik, S.2    Gordo, A.3    Perronnin, F.4
  • 10
    • 84959255777 scopus 로고    scopus 로고
    • MatchNet: Unifying feature and metric learning for patchbased matching
    • X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg. MatchNet: Unifying feature and metric learning for patchbased matching. In CVPR, 2015. 2
    • (2015) CVPR , vol.2
    • Han, X.1    Leung, T.2    Jia, Y.3    Sukthankar, R.4    Berg, A.C.5
  • 12
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition
    • K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition In ICCV, 2009. 3
    • (2009) ICCV , vol.3
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    LeCun, Y.4
  • 14
    • 84878919540 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 1, 2
    • (2012) NIPS , vol.1 , pp. 2
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 15
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015. 2
    • (2015) CVPR , vol.2
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 16
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 1, 2, 3, 4, 7, 8
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60: 91-110, 2004. 1, 2, 3, 4, 7, 8
    • (2004) IJCV , vol.60 , pp. 91-110
    • Lowe, D.1
  • 17
    • 27644547620 scopus 로고    scopus 로고
    • A performance evaluation of local descriptors
    • 3
    • K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. PAMI, 27 (10): 1615-1630, 2005. 3
    • (2005) PAMI , vol.27 , Issue.10 , pp. 1615-1630
    • Mikolajczyk, K.1    Schmid, C.2
  • 18
    • 71149084945 scopus 로고    scopus 로고
    • Deep learning from temporal coherence in video
    • H. Mobahi, R. Collobert, and J. Weston. Deep learning from temporal coherence in video. In ICML, 2009. 3
    • (2009) ICML , vol.3
    • Mobahi, H.1    Collobert, R.2    Weston, J.3
  • 19
    • 84973915143 scopus 로고    scopus 로고
    • Convolutional neural networks learn compact local image descriptors
    • C. Osendorfer, J. Bayer, S. Urban, and P. van der Smagt. Convolutional neural networks learn compact local image descriptors. In ICONIP, volume 8228. 2013. 2
    • (2013) ICONIP , vol.8228 , pp. 2
    • Osendorfer, C.1    Bayer, J.2    Urban, S.3    Van der Smagt, p.4
  • 20
    • 84856627527 scopus 로고    scopus 로고
    • ORB: An efficient alternative to SIFT or SURF
    • E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An efficient alternative to SIFT or SURF. In ICCV, 2011. 1
    • (2011) ICCV , vol.1
    • Rublee, E.1    Rabaud, V.2    Konolige, K.3    Bradski, G.4
  • 21
    • 84874575248 scopus 로고    scopus 로고
    • Convolutional neural networks applied to house numbers digit classification
    • P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neural networks applied to house numbers digit classification. In ICPR, 2012. 3
    • (2012) ICPR , vol.3
    • Sermanet, P.1    Chintala, S.2    LeCun, Y.3
  • 22
    • 84942980371 scopus 로고    scopus 로고
    • DaLI: Deformation and light invariant descriptor
    • 1, 2, 7, 8
    • E. Simo-Serra, C. Torras, and F. Moreno-Noguer. DaLI: Deformation and Light Invariant Descriptor. IJCV, 2015. 1, 2, 7, 8
    • (2015) IJCV
    • Simo-Serra, E.1    Torras, C.2    Moreno-Noguer, F.3
  • 23
    • 84904175757 scopus 로고    scopus 로고
    • Learning local feature descriptors using convex optimisation
    • 1, 2, 5, 6, 7, 8
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Learning local feature descriptors using convex optimisation. PAMI, 2014. 1, 2, 5, 6, 7, 8
    • (2014) PAMI
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 24
    • 81855191888 scopus 로고    scopus 로고
    • Ldahash: Improved matching with smaller descriptors
    • C. Strecha, A. Bronstein, M. Bronstein, and P. Fua. Ldahash: Improved matching with smaller descriptors. In PAMI, volume 34, 2012. 2
    • (2012) PAMI , vol.34 , Issue.2
    • Strecha, C.1    Bronstein, A.2    Bronstein, M.3    Fua, P.4
  • 25
    • 51949094195 scopus 로고    scopus 로고
    • On benchmarking camera calibration and multi-view stereo for high resolution imagery
    • 7, 8
    • C. Strecha, W. von Hansen, L. V. Gool, P. Fua, and U. Thoennessen. On benchmarking camera calibration and multi-view stereo for high resolution imagery. In CVPR, 2008. 7, 8
    • (2008) CVPR
    • Strecha, C.1    Von Hansen, W.2    Gool, L.V.3    Fua, P.4    Thoennessen, U.5
  • 26
    • 84898989329 scopus 로고    scopus 로고
    • Deep neural networks for object detection
    • 1, 2
    • C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection. In NIPS, 2013. 1, 2
    • (2013) NIPS
    • Szegedy, C.1    Toshev, A.2    Erhan, D.3
  • 27
    • 77949875753 scopus 로고    scopus 로고
    • DAISY: An efficient dense descriptor applied to wide baseline stereo
    • May, 1, 2, 7, 8
    • E. Tola, V. Lepetit, and P. Fua. DAISY: An efficient dense descriptor applied to wide baseline stereo. PAMI, 32 (5): 815-830, May 2010. 1, 2, 7, 8
    • (2010) PAMI , vol.32 , Issue.5 , pp. 815-830
    • Tola, E.1    Lepetit, V.2    Fua, P.3
  • 30
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • L. van der Maaten and G. Hinton. Visualizing data using t-SNE. In JMLR, 2008. 1
    • (2008) JMLR , vol.1
    • Maaten Der Van, L.1    Hinton, G.2
  • 32
    • 84863054049 scopus 로고    scopus 로고
    • Local intensity order pattern for feature description
    • Z. Wang, B. Fan, and F. Wu. Local intensity order pattern for feature description. In ICCV, 2011. 1
    • (2011) ICCV , vol.1
    • Wang, Z.1    Fan, B.2    Wu, F.3
  • 33
    • 84959179619 scopus 로고    scopus 로고
    • Learning to compare image patches via convolutional neural networks
    • S. Zagoruyko and N. Komodakis. Learning to compare image patches via convolutional neural networks. In CVPR, 2015. 2
    • (2015) CVPR , vol.2
    • Zagoruyko, S.1    Komodakis, N.2
  • 34
    • 84952343030 scopus 로고    scopus 로고
    • Computing the stereo matching cost with a convolutional neural network
    • J. Zbontar and Y. LeCun. Computing the stereo matching cost with a convolutional neural network. In CVPR, 2015. 2
    • (2015) CVPR , vol.2
    • Zbontar, J.1    LeCun, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.