-
1
-
-
85020312124
-
Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks
-
Alshehhi, R., Marpu, P.R., Woon, W.L., Mura, M.D., Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 130 (2017), 139–149.
-
(2017)
ISPRS J. Photogramm. Remote Sens.
, vol.130
, pp. 139-149
-
-
Alshehhi, R.1
Marpu, P.R.2
Woon, W.L.3
Mura, M.D.4
-
2
-
-
85054300537
-
-
Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks. Available from: <>.
-
Audebert, N., Saux, B.L., Lefèvre, S., 2016. Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks. Available from: < 1609.06846>.
-
(2016)
-
-
Audebert, N.1
Saux, B.L.2
Lefèvre, S.3
-
3
-
-
85054329639
-
-
SegNet: A Deep Convolutional Encoder-decoder Architecture for Image Segmentation. Available from: <>.
-
Badrinarayanan, V., Kendall, A., Cipolla, R., 2015. SegNet: A Deep Convolutional Encoder-decoder Architecture for Image Segmentation. Available from: < 1511.00561>.
-
(2015)
-
-
Badrinarayanan, V.1
Kendall, A.2
Cipolla, R.3
-
4
-
-
84986259967
-
-
Bala, K., Girshick, R. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition.
-
Bell, S., Lawrence Zitnick, C., Bala, K., Girshick, R., 2016. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 2874–2883.
-
(2016)
, pp. 2874-2883
-
-
Bell, S.1
Lawrence Zitnick, C.2
-
5
-
-
84986309439
-
-
Semantic segmentation with boundary neural fields. In: IEEE Conference on Computer Vision and Pattern Recognition.
-
Bertasius, G., Shi, J., Torresani, L., 2016. Semantic segmentation with boundary neural fields. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 3602–3610.
-
(2016)
, pp. 3602-3610
-
-
Bertasius, G.1
Shi, J.2
Torresani, L.3
-
6
-
-
0000583248
-
Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
-
Springer
-
Bridle, J.S., Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. Neurocomputing: Algorithms, Architectures and Applications, 1989, Springer.
-
(1989)
Neurocomputing: Algorithms, Architectures and Applications
-
-
Bridle, J.S.1
-
7
-
-
85083954148
-
-
Semantic image segmentation with deep convolutional nets and fully connected crfs. In: International Conference on Learning Representations.
-
Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2015. Semantic image segmentation with deep convolutional nets and fully connected crfs. In: International Conference on Learning Representations.
-
(2015)
-
-
Chen, L.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
8
-
-
84986244054
-
-
Attention to scale: scale-aware semantic image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition.
-
Chen, L.-C., Yang, Y., Wang, J., Xu, W., Yuille, A.L., 2016a. Attention to scale: scale-aware semantic image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 3640–3649.
-
(2016)
, pp. 3640-3649
-
-
Chen, L.-C.1
Yang, Y.2
Wang, J.3
Xu, W.4
Yuille, A.L.5
-
9
-
-
84992303973
-
Target classification using the deep convolutional networks for SAR images
-
Chen, S., Wang, H., Xu, F., Jin, Y.-Q., Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 54:8 (2016), 4806–4817.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.8
, pp. 4806-4817
-
-
Chen, S.1
Wang, H.2
Xu, F.3
Jin, Y.-Q.4
-
10
-
-
84961970561
-
A survey on object detection in optical remote sensing images
-
Cheng, G., Han, J., A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 117 (2016), 11–28.
-
(2016)
ISPRS J. Photogramm. Remote Sens.
, vol.117
, pp. 11-28
-
-
Cheng, G.1
Han, J.2
-
11
-
-
85054341035
-
-
Remote Sensing Image Scene Classification: Benchmark and State of the Art. Available from: <>.
-
Cheng, G., Han, J., Lu, X., 2017a. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Available from: < 1703.00121>.
-
(2017)
-
-
Cheng, G.1
Han, J.2
Lu, X.3
-
12
-
-
85014892308
-
Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network
-
Cheng, G., Wang, Y., Xu, S., Wang, H., Xiang, S., Pan, C., Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network. IEEE Trans. Geosci. Remote Sens. 55:6 (2017), 3322–3337.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.6
, pp. 3322-3337
-
-
Cheng, G.1
Wang, Y.2
Xu, S.3
Wang, H.4
Xiang, S.5
Pan, C.6
-
13
-
-
84973484120
-
Accurate urban road centerline extraction from VHR imagery via multiscale segmentation and tensor voting
-
Cheng, G., Zhu, F., Xiang, S., Wang, Y., Pan, C., Accurate urban road centerline extraction from VHR imagery via multiscale segmentation and tensor voting. Neurocomputing. 205 (2016), 407–420.
-
(2016)
Neurocomputing.
, vol.205
, pp. 407-420
-
-
Cheng, G.1
Zhu, F.2
Xiang, S.3
Wang, Y.4
Pan, C.5
-
14
-
-
33645146449
-
-
Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition.
-
Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 886–893.
-
(2005)
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
-
15
-
-
84921069139
-
The pascal visual object classes challenge: a retrospective
-
Everingham, M., Eslami, S.M.A., Gool, L.J.V., Williams, C.K.I., Winn, J.M., Zisserman, A., The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111:1 (2015), 98–136.
-
(2015)
Int. J. Comput. Vision
, vol.111
, Issue.1
, pp. 98-136
-
-
Everingham, M.1
Eslami, S.M.A.2
Gool, L.J.V.3
Williams, C.K.I.4
Winn, J.M.5
Zisserman, A.6
-
16
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Farabet, C., Couprie, C., Najman, L., LeCun, Y., Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35:8 (2013), 1915–1929.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
17
-
-
85054333195
-
-
Use of the Stair Vision Library Within the ISPRS 2d Semantic Labeling Benchmark (Vaihingen). Technical Report.
-
Gerke, M., 2015. Use of the Stair Vision Library Within the ISPRS 2d Semantic Labeling Benchmark (Vaihingen). Technical Report.
-
(2015)
-
-
Gerke, M.1
-
18
-
-
84973864191
-
-
Object detection via a multi-region and semantic segmentation-aware cnn model. In: IEEE International Conference on Computer Vision.
-
Gidaris, S., Komodakis, N., 2015. Object detection via a multi-region and semantic segmentation-aware cnn model. In: IEEE International Conference on Computer Vision. pp. 1134–1142.
-
(2015)
, pp. 1134-1142
-
-
Gidaris, S.1
Komodakis, N.2
-
19
-
-
85054336435
-
-
Deep sparse rectifier neural networks. In: International Conference on Artificial Intelligence and Statistics, vol. 15.
-
Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. In: International Conference on Artificial Intelligence and Statistics, vol. 15. pp. 275.
-
(2011)
, pp. 275
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
20
-
-
85019562216
-
Feature learning and change feature classification based on deep learning for ternary change detection in SAR images
-
Gong, M., Yang, H., Zhang, P., Feature learning and change feature classification based on deep learning for ternary change detection in SAR images. ISPRS J. Photogramm. Remote Sens. 129 (2017), 212–225.
-
(2017)
ISPRS J. Photogramm. Remote Sens.
, vol.129
, pp. 212-225
-
-
Gong, M.1
Yang, H.2
Zhang, P.3
-
21
-
-
85054316122
-
-
The Stair Vision Library (v2.5). Stanford University.
-
Gould, S., Russakovsky, O., Goodfellow, I., Baumstarck, P., 2011. The Stair Vision Library (v2.5). Stanford University.
-
(2011)
-
-
Gould, S.1
Russakovsky, O.2
Goodfellow, I.3
Baumstarck, P.4
-
22
-
-
84959236250
-
-
Hypercolumns for object segmentation and fine-grained localization. In: IEEE Conference on Computer Vision and Pattern Recognition.
-
Hariharan, B., Arbeláez, P., Girshick, R., Malik, J., 2015. Hypercolumns for object segmentation and fine-grained localization. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 447–456.
-
(2015)
, pp. 447-456
-
-
Hariharan, B.1
Arbeláez, P.2
Girshick, R.3
Malik, J.4
-
23
-
-
84973911419
-
-
Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: IEEE International Conference on Computer Vision.
-
He, K., Zhang, X., Ren, S., Sun, J., 2015a. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: IEEE International Conference on Computer Vision. pp. 1026–1034.
-
(2015)
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
24
-
-
84939247735
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
He, K., Zhang, X., Ren, S., Sun, J., Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37:9 (2015), 1904–1916.
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.37
, Issue.9
, pp. 1904-1916
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
25
-
-
84986274465
-
-
Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition.
-
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
-
(2016)
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
26
-
-
84950141946
-
Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
-
Hu, F., Xia, G.-S., Hu, J., Zhang, L., Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7:11 (2015), 14680–14707.
-
(2015)
Remote Sens.
, vol.7
, Issue.11
, pp. 14680-14707
-
-
Hu, F.1
Xia, G.-S.2
Hu, J.3
Zhang, L.4
-
27
-
-
84969584486
-
-
Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning.
-
Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning. pp. 448–456.
-
(2015)
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
28
-
-
85054307801
-
-
ISPRS International Society for Photogrammetry and Remote Sensing. 2D Semantic Labeling Challenge. <>.
-
ISPRS, 2016. International Society for Photogrammetry and Remote Sensing. 2D Semantic Labeling Challenge. < http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html>.
-
(2016)
-
-
-
29
-
-
84913580146
-
-
Caffe: convolutional architecture for fast feature embedding. In: ACM International Conference on Multimedia.
-
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T., 2014. Caffe: convolutional architecture for fast feature embedding. In: ACM International Conference on Multimedia. pp. 675–678.
-
(2014)
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.B.6
Guadarrama, S.7
Darrell, T.8
-
30
-
-
84876231242
-
-
Imagenet classification with deep convolutional neural networks. In: Neural Information Processing Systems.
-
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Neural Information Processing Systems. pp. 1106–1114.
-
(2012)
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
31
-
-
85054325300
-
-
written digit recognition with a back-propagation network. In: Neural Information Processing Systems.
-
Lecun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D., 1990. Handwritten digit recognition with a back-propagation network. In: Neural Information Processing Systems. pp. 396–404.
-
(1990)
, pp. 396-404
-
-
Lecun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.H.7
-
32
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
33
-
-
85027931830
-
Robust rooftop extraction from visible band images using higher order CRF
-
Li, E., Femiani, J., Xu, S., Zhang, X., Wonka, P., Robust rooftop extraction from visible band images using higher order CRF. IEEE Trans. Geosci. Remote Sens. 53:8 (2015), 4483–4495.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.8
, pp. 4483-4495
-
-
Li, E.1
Femiani, J.2
Xu, S.3
Zhang, X.4
Wonka, P.5
-
34
-
-
84907456238
-
Multiple feature learning for hyperspectral image classification
-
Li, J., Huang, X., Gamba, P., Bioucas-Dias, J.M., Zhang, L., Benediktsson, J.A., Plaza, A., Multiple feature learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 53:3 (2015), 1592–1606.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.3
, pp. 1592-1606
-
-
Li, J.1
Huang, X.2
Gamba, P.3
Bioucas-Dias, J.M.4
Zhang, L.5
Benediktsson, J.A.6
Plaza, A.7
-
35
-
-
85054334039
-
-
RefineNet: Multi-path Refinement Networks for High-resolution Semantic Segmentation. Available from: <>.
-
Lin, G., Milan, A., Shen, C., Reid, I.D., 2016. RefineNet: Multi-path Refinement Networks for High-resolution Semantic Segmentation. Available from: < 1611.06612>.
-
(2016)
-
-
Lin, G.1
Milan, A.2
Shen, C.3
Reid, I.D.4
-
36
-
-
56749152064
-
-
Sift flow: dense correspondence across different scenes. In: European Conference on Computer Vision.
-
Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W., 2008. Sift flow: dense correspondence across different scenes. In: European Conference on Computer Vision. pp. 28–42.
-
(2008)
, pp. 28-42
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
Sivic, J.4
Freeman, W.5
-
37
-
-
85054310374
-
-
Parsenet: looking wider to see better. In: International Conference on Learning Representations Workshop.
-
Liu, W., Rabinovich, A., Berg, A.C., 2016a. Parsenet: looking wider to see better. In: International Conference on Learning Representations Workshop.
-
(2016)
-
-
Liu, W.1
Rabinovich, A.2
Berg, A.C.3
-
38
-
-
85054316937
-
-
Context-aware cascade network for semantic labeling in VHR image. In: IEEE International Conference on Image Processing.
-
Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., Pan, C., 2017. Context-aware cascade network for semantic labeling in VHR image. In: IEEE International Conference on Image Processing.
-
(2017)
-
-
Liu, Y.1
Fan, B.2
Wang, L.3
Bai, J.4
Xiang, S.5
Pan, C.6
-
39
-
-
85007417124
-
-
Scene semantic classification based on random-scale stretched convolutional neural network for high-spatial resolution remote sensing imagery. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS).
-
Liu, Y., Zhong, Y., Fei, F., Zhang, L., 2016b. Scene semantic classification based on random-scale stretched convolutional neural network for high-spatial resolution remote sensing imagery. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp. 763–766.
-
(2016)
, pp. 763-766
-
-
Liu, Y.1
Zhong, Y.2
Fei, F.3
Zhang, L.4
-
40
-
-
84959205572
-
-
Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition.
-
Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 3431–3440.
-
(2015)
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
41
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
Lowe, D.G., Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60:2 (2004), 91–110.
-
(2004)
Int. J. Comput. Vision
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
42
-
-
84962019145
-
Joint dictionary learning for multispectral change detection
-
Lu, X., Yuan, Y., Zheng, X., Joint dictionary learning for multispectral change detection. IEEE Trans. Cybernet. 47:4 (2017), 884–897.
-
(2017)
IEEE Trans. Cybernet.
, vol.47
, Issue.4
, pp. 884-897
-
-
Lu, X.1
Yuan, Y.2
Zheng, X.3
-
43
-
-
85026497771
-
Remote sensing scene classification by unsupervised representation learning
-
Lu, X., Zheng, X., Yuan, Y., Remote sensing scene classification by unsupervised representation learning. IEEE Trans. Geosci. Remote Sens.(99), 2017, 1–10.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, Issue.99
, pp. 1-10
-
-
Lu, X.1
Zheng, X.2
Yuan, Y.3
-
44
-
-
84947868906
-
Multiview deep learning for land-use classification
-
Luus, F.P., Salmon, B.P., van den Bergh, F., Maharaj, B., Multiview deep learning for land-use classification. IEEE Geosci. Remote Sens. Lett. 12:12 (2015), 2448–2452.
-
(2015)
IEEE Geosci. Remote Sens. Lett.
, vol.12
, Issue.12
, pp. 2448-2452
-
-
Luus, F.P.1
Salmon, B.P.2
van den Bergh, F.3
Maharaj, B.4
-
45
-
-
84992121956
-
Convolutional neural networks for large-scale remote-sensing image classification
-
Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 55:2 (2017), 645–657.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.2
, pp. 645-657
-
-
Maggiori, E.1
Tarabalka, Y.2
Charpiat, G.3
Alliez, P.4
-
46
-
-
85054342576
-
-
Classification With an Edge: Improving Semantic Image Segmentation with Boundary Detection. Available from: <>.
-
Marmanis, D., Schindler, K., Wegner, J.D., Galliani, S., Datcu, M., Stilla, U., 2016. Classification With an Edge: Improving Semantic Image Segmentation with Boundary Detection. Available from: < 1612.01337>.
-
(2016)
-
-
Marmanis, D.1
Schindler, K.2
Wegner, J.D.3
Galliani, S.4
Datcu, M.5
Stilla, U.6
-
47
-
-
37549009133
-
The application of artificial neural networks to the analysis of remotely sensed data
-
Mas, J.F., Flores, J.J., The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 29:3 (2008), 617–663.
-
(2008)
Int. J. Remote Sens.
, vol.29
, Issue.3
, pp. 617-663
-
-
Mas, J.F.1
Flores, J.J.2
-
48
-
-
80052658031
-
Segment-based land cover mapping of a suburban area-comparison of high-resolution remotely sensed datasets using classification trees and test field points
-
Matikainen, L., Karila, K., Segment-based land cover mapping of a suburban area-comparison of high-resolution remotely sensed datasets using classification trees and test field points. Remote Sens. 3:8 (2011), 1777–1804.
-
(2011)
Remote Sens.
, vol.3
, Issue.8
, pp. 1777-1804
-
-
Matikainen, L.1
Karila, K.2
-
49
-
-
85054303157
-
-
Machine Learning for Aerial Image Labeling [Ph.D. thesis]. University of Toronto.
-
Mnih, V., 2013. Machine Learning for Aerial Image Labeling [Ph.D. thesis]. University of Toronto.
-
(2013)
-
-
Mnih, V.1
-
50
-
-
84959207702
-
-
Feedforward semantic segmentation with zoom-out features. In: IEEE Conference on Computer Vision and Pattern Recognition.
-
Mostajabi, M., Yadollahpour, P., Shakhnarovich, G., 2015. Feedforward semantic segmentation with zoom-out features. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 3376–3385.
-
(2015)
, pp. 3376-3385
-
-
Mostajabi, M.1
Yadollahpour, P.2
Shakhnarovich, G.3
-
51
-
-
77956509090
-
-
Rectified linear units improve restricted boltzmann machines. In: International Conference on Machine Learning.
-
Nair, V., Hinton, G.E., 2010. Rectified linear units improve restricted boltzmann machines. In: International Conference on Machine Learning. pp. 807–814.
-
(2010)
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
52
-
-
85019077911
-
-
dos Santos, J.A. Learning to semantically segment high-resolution remote sensing images. In: IEEE International Conference on Pattern Recognition.
-
Nogueira, K., Mura, M.D., Chanussot, J., Schwartz, W.R., dos Santos, J.A., 2016. Learning to semantically segment high-resolution remote sensing images. In: IEEE International Conference on Pattern Recognition. pp. 3566–3571.
-
(2016)
, pp. 3566-3571
-
-
Nogueira, K.1
Mura, M.D.2
Chanussot, J.3
Schwartz, W.R.4
-
53
-
-
84973879016
-
-
Learning deconvolution network for semantic segmentation. In: IEEE International Conference on Computer Vision.
-
Noh, H., Hong, S., Han, B., 2015. Learning deconvolution network for semantic segmentation. In: IEEE International Conference on Computer Vision. pp. 1520–1528.
-
(2015)
, pp. 1520-1528
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
54
-
-
84978858032
-
Semantic labeling of aerial and satellite imagery
-
Paisitkriangkrai, S., Sherrah, J., Janney, P., van den Hengel, A., Semantic labeling of aerial and satellite imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9:7 (2016), 2868–2881.
-
(2016)
IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
, vol.9
, Issue.7
, pp. 2868-2881
-
-
Paisitkriangkrai, S.1
Sherrah, J.2
Janney, P.3
van den Hengel, A.4
-
55
-
-
84940417790
-
-
dos Santos, J.A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains. In: IEEE Conference on Computer Vision and Pattern Recognition Workshop.
-
Penatti, O.A., Nogueira, K., dos Santos, J.A., 2015. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains. In: IEEE Conference on Computer Vision and Pattern Recognition Workshop. pp. 44–51.
-
(2015)
, pp. 44-51
-
-
Penatti, O.A.1
Nogueira, K.2
-
56
-
-
85054315253
-
-
Learning to Refine Object Segments. Available from: <>.
-
Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P., 2016. Learning to Refine Object Segments. Available from: < 1603.08695>.
-
(2016)
-
-
Pinheiro, P.O.1
Lin, T.-Y.2
Collobert, R.3
Dollár, P.4
-
57
-
-
84951834022
-
-
U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI.
-
Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI. pp. 234–241.
-
(2015)
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
58
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors. Nature 323:6088 (1986), 533–536.
-
(1986)
Nature
, vol.323
, Issue.6088
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
59
-
-
85054312120
-
-
Fully Convolutional Networks for Dense Semantic Labelling of High-resolution Aerial Imagery. Available from: <>.
-
Sherrah, J., 2016. Fully Convolutional Networks for Dense Semantic Labelling of High-resolution Aerial Imagery. Available from: < 1606.02585>.
-
(2016)
-
-
Sherrah, J.1
-
60
-
-
84867713871
-
-
Indoor segmentation and support inference from rgbd images. In: European Conference on Computer Vision.
-
Silberman, N., Hoiem, D., Kohli, P., Fergus, R., 2012. Indoor segmentation and support inference from rgbd images. In: European Conference on Computer Vision. pp. 746–760.
-
(2012)
, pp. 746-760
-
-
Silberman, N.1
Hoiem, D.2
Kohli, P.3
Fergus, R.4
-
61
-
-
85083953063
-
-
Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations.
-
Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations. pp. 1–14.
-
(2015)
, pp. 1-14
-
-
Simonyan, K.1
Zisserman, A.2
-
62
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15:1 (2014), 1929–1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
63
-
-
84994217941
-
Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
-
Volpi, M., Tuia, D., Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55:2 (2017), 881–893.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.2
, pp. 881-893
-
-
Volpi, M.1
Tuia, D.2
-
64
-
-
85010223653
-
Semantic classification of urban trees using very high resolution satellite imagery
-
Wen, D., Huang, X., Liu, H., Liao, W., Zhang, L., Semantic classification of urban trees using very high resolution satellite imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 10:4 (2017), 1413–1424.
-
(2017)
IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
, vol.10
, Issue.4
, pp. 1413-1424
-
-
Wen, D.1
Huang, X.2
Liu, H.3
Liao, W.4
Zhang, L.5
-
65
-
-
85054330454
-
-
Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping. Available from: <>.
-
Xie, M., Jean, N., Burke, M., Lobell, D., Ermon, S., 2015. Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping. Available from: < 1510.00098>.
-
(2015)
-
-
Xie, M.1
Jean, N.2
Burke, M.3
Lobell, D.4
Ermon, S.5
-
66
-
-
84955098205
-
Multiple morphological component analysis based decomposition for remote sensing image classification
-
Xu, X., Li, J., Huang, X., Mura, M.D., Plaza, A., Multiple morphological component analysis based decomposition for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54:5 (2016), 3083–3102.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.5
, pp. 3083-3102
-
-
Xu, X.1
Li, J.2
Huang, X.3
Mura, M.D.4
Plaza, A.5
-
67
-
-
84906784880
-
Spectral-spatial classification of hyperspectral data via morphological component analysis-based image separation
-
Xue, Z., Li, J., Cheng, L., Du, P., Spectral-spatial classification of hyperspectral data via morphological component analysis-based image separation. IEEE Trans. Geosci. Remote Sens. 53:1 (2015), 70–84.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.1
, pp. 70-84
-
-
Xue, Z.1
Li, J.2
Cheng, L.3
Du, P.4
-
68
-
-
84937508363
-
-
How transferable are features in deep neural networks. In: Neural Information Processing Systems.
-
Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How transferable are features in deep neural networks. In: Neural Information Processing Systems. pp. 3320–3328.
-
(2014)
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
-
69
-
-
85083952059
-
-
Multi-scale context aggregation by dilated convolutions. In: International Conference on Learning Representations.
-
Yu, F., Koltun, V., 2016. Multi-scale context aggregation by dilated convolutions. In: International Conference on Learning Representations.
-
(2016)
-
-
Yu, F.1
Koltun, V.2
-
70
-
-
84944068115
-
Scene recognition by manifold regularized deep learning architecture
-
Yuan, Y., Mou, L., Lu, X., Scene recognition by manifold regularized deep learning architecture. IEEE Trans. Neural Netw. Learn. Syst. 26:10 (2015), 2222–2233.
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, Issue.10
, pp. 2222-2233
-
-
Yuan, Y.1
Mou, L.2
Lu, X.3
-
71
-
-
84906489074
-
-
Visualizing and understanding convolutional networks. In: European Conference on Computer Vision.
-
Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In: European Conference on Computer Vision. pp. 818–833.
-
(2014)
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
72
-
-
77956001004
-
-
Deconvolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition.
-
Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R., 2010. Deconvolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 2528–2535.
-
(2010)
, pp. 2528-2535
-
-
Zeiler, M.D.1
Krishnan, D.2
Taylor, G.W.3
Fergus, R.4
-
73
-
-
85045704544
-
A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
-
Zhang, C., Pan, X., Li, H., Gardiner, A., Sargent, I., Hare, J., Atkinson, P.M., A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS J. Photogramm. Remote Sens., 2017, 1–12.
-
(2017)
ISPRS J. Photogramm. Remote Sens.
, pp. 1-12
-
-
Zhang, C.1
Pan, X.2
Li, H.3
Gardiner, A.4
Sargent, I.5
Hare, J.6
Atkinson, P.M.7
-
74
-
-
80052087210
-
On combining multiple features for hyperspectral remote sensing image classification
-
Zhang, L., Zhang, L., Tao, D., Huang, X., On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 50:3 (2012), 879–893.
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.50
, Issue.3
, pp. 879-893
-
-
Zhang, L.1
Zhang, L.2
Tao, D.3
Huang, X.4
-
75
-
-
84960327084
-
Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images
-
Zhang, P., Gong, M., Su, L., Liu, J., Li, Z., Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images. ISPRS J. Photogramm. Remote Sens. 116 (2016), 24–41.
-
(2016)
ISPRS J. Photogramm. Remote Sens.
, vol.116
, pp. 24-41
-
-
Zhang, P.1
Gong, M.2
Su, L.3
Liu, J.4
Li, Z.5
-
76
-
-
79958706006
-
Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data
-
Zhang, Q., Seto, K.C., Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 115:9 (2011), 2320–2329.
-
(2011)
Remote Sens. Environ.
, vol.115
, Issue.9
, pp. 2320-2329
-
-
Zhang, Q.1
Seto, K.C.2
-
77
-
-
85054331519
-
-
Pyramid Scene Parsing Network. Available from: <>.
-
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2016. Pyramid Scene Parsing Network. Available from: < 1612.01105>.
-
(2016)
-
-
Zhao, H.1
Shi, J.2
Qi, X.3
Wang, X.4
Jia, J.5
-
78
-
-
84956620231
-
Learning multiscale and deep representations for classifying remotely sensed imagery
-
Zhao, W., Du, S., Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 113 (2016), 155–165.
-
(2016)
ISPRS J. Photogramm. Remote Sens.
, vol.113
, pp. 155-165
-
-
Zhao, W.1
Du, S.2
-
79
-
-
85083952996
-
-
Object detectors emerge in deep scene cnns. In: International Conference on Learning Representations.
-
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2015. Object detectors emerge in deep scene cnns. In: International Conference on Learning Representations.
-
(2015)
-
-
Zhou, B.1
Khosla, A.2
Lapedriza, A.3
Oliva, A.4
Torralba, A.5
|