메뉴 건너뛰기




Volumn 145, Issue , 2018, Pages 78-95

Semantic labeling in very high resolution images via a self-cascaded convolutional neural network

Author keywords

Convolutional neural networks (CNNs); End to end; Multi scale contexts; Semantic labeling

Indexed keywords

BENCHMARKING; CONVOLUTION; NEURAL NETWORKS; REMOTE SENSING; SEMANTIC WEB; SEMANTICS;

EID: 85038939811     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2017.12.007     Document Type: Article
Times cited : (239)

References (79)
  • 1
    • 85020312124 scopus 로고    scopus 로고
    • Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks
    • Alshehhi, R., Marpu, P.R., Woon, W.L., Mura, M.D., Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 130 (2017), 139–149.
    • (2017) ISPRS J. Photogramm. Remote Sens. , vol.130 , pp. 139-149
    • Alshehhi, R.1    Marpu, P.R.2    Woon, W.L.3    Mura, M.D.4
  • 2
    • 85054300537 scopus 로고    scopus 로고
    • Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks. Available from: <>.
    • Audebert, N., Saux, B.L., Lefèvre, S., 2016. Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks. Available from: < 1609.06846>.
    • (2016)
    • Audebert, N.1    Saux, B.L.2    Lefèvre, S.3
  • 3
    • 85054329639 scopus 로고    scopus 로고
    • SegNet: A Deep Convolutional Encoder-decoder Architecture for Image Segmentation. Available from: <>.
    • Badrinarayanan, V., Kendall, A., Cipolla, R., 2015. SegNet: A Deep Convolutional Encoder-decoder Architecture for Image Segmentation. Available from: < 1511.00561>.
    • (2015)
    • Badrinarayanan, V.1    Kendall, A.2    Cipolla, R.3
  • 4
    • 84986259967 scopus 로고    scopus 로고
    • Bala, K., Girshick, R. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition.
    • Bell, S., Lawrence Zitnick, C., Bala, K., Girshick, R., 2016. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 2874–2883.
    • (2016) , pp. 2874-2883
    • Bell, S.1    Lawrence Zitnick, C.2
  • 5
    • 84986309439 scopus 로고    scopus 로고
    • Semantic segmentation with boundary neural fields. In: IEEE Conference on Computer Vision and Pattern Recognition.
    • Bertasius, G., Shi, J., Torresani, L., 2016. Semantic segmentation with boundary neural fields. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 3602–3610.
    • (2016) , pp. 3602-3610
    • Bertasius, G.1    Shi, J.2    Torresani, L.3
  • 6
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • Springer
    • Bridle, J.S., Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. Neurocomputing: Algorithms, Architectures and Applications, 1989, Springer.
    • (1989) Neurocomputing: Algorithms, Architectures and Applications
    • Bridle, J.S.1
  • 7
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs. In: International Conference on Learning Representations.
    • Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2015. Semantic image segmentation with deep convolutional nets and fully connected crfs. In: International Conference on Learning Representations.
    • (2015)
    • Chen, L.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 8
    • 84986244054 scopus 로고    scopus 로고
    • Attention to scale: scale-aware semantic image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition.
    • Chen, L.-C., Yang, Y., Wang, J., Xu, W., Yuille, A.L., 2016a. Attention to scale: scale-aware semantic image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 3640–3649.
    • (2016) , pp. 3640-3649
    • Chen, L.-C.1    Yang, Y.2    Wang, J.3    Xu, W.4    Yuille, A.L.5
  • 9
    • 84992303973 scopus 로고    scopus 로고
    • Target classification using the deep convolutional networks for SAR images
    • Chen, S., Wang, H., Xu, F., Jin, Y.-Q., Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 54:8 (2016), 4806–4817.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.8 , pp. 4806-4817
    • Chen, S.1    Wang, H.2    Xu, F.3    Jin, Y.-Q.4
  • 10
    • 84961970561 scopus 로고    scopus 로고
    • A survey on object detection in optical remote sensing images
    • Cheng, G., Han, J., A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 117 (2016), 11–28.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.117 , pp. 11-28
    • Cheng, G.1    Han, J.2
  • 11
    • 85054341035 scopus 로고    scopus 로고
    • Remote Sensing Image Scene Classification: Benchmark and State of the Art. Available from: <>.
    • Cheng, G., Han, J., Lu, X., 2017a. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Available from: < 1703.00121>.
    • (2017)
    • Cheng, G.1    Han, J.2    Lu, X.3
  • 12
    • 85014892308 scopus 로고    scopus 로고
    • Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network
    • Cheng, G., Wang, Y., Xu, S., Wang, H., Xiang, S., Pan, C., Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network. IEEE Trans. Geosci. Remote Sens. 55:6 (2017), 3322–3337.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.6 , pp. 3322-3337
    • Cheng, G.1    Wang, Y.2    Xu, S.3    Wang, H.4    Xiang, S.5    Pan, C.6
  • 13
    • 84973484120 scopus 로고    scopus 로고
    • Accurate urban road centerline extraction from VHR imagery via multiscale segmentation and tensor voting
    • Cheng, G., Zhu, F., Xiang, S., Wang, Y., Pan, C., Accurate urban road centerline extraction from VHR imagery via multiscale segmentation and tensor voting. Neurocomputing. 205 (2016), 407–420.
    • (2016) Neurocomputing. , vol.205 , pp. 407-420
    • Cheng, G.1    Zhu, F.2    Xiang, S.3    Wang, Y.4    Pan, C.5
  • 14
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition.
    • Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 886–893.
    • (2005) , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 17
    • 85054333195 scopus 로고    scopus 로고
    • Use of the Stair Vision Library Within the ISPRS 2d Semantic Labeling Benchmark (Vaihingen). Technical Report.
    • Gerke, M., 2015. Use of the Stair Vision Library Within the ISPRS 2d Semantic Labeling Benchmark (Vaihingen). Technical Report.
    • (2015)
    • Gerke, M.1
  • 18
    • 84973864191 scopus 로고    scopus 로고
    • Object detection via a multi-region and semantic segmentation-aware cnn model. In: IEEE International Conference on Computer Vision.
    • Gidaris, S., Komodakis, N., 2015. Object detection via a multi-region and semantic segmentation-aware cnn model. In: IEEE International Conference on Computer Vision. pp. 1134–1142.
    • (2015) , pp. 1134-1142
    • Gidaris, S.1    Komodakis, N.2
  • 19
    • 85054336435 scopus 로고    scopus 로고
    • Deep sparse rectifier neural networks. In: International Conference on Artificial Intelligence and Statistics, vol. 15.
    • Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. In: International Conference on Artificial Intelligence and Statistics, vol. 15. pp. 275.
    • (2011) , pp. 275
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 20
    • 85019562216 scopus 로고    scopus 로고
    • Feature learning and change feature classification based on deep learning for ternary change detection in SAR images
    • Gong, M., Yang, H., Zhang, P., Feature learning and change feature classification based on deep learning for ternary change detection in SAR images. ISPRS J. Photogramm. Remote Sens. 129 (2017), 212–225.
    • (2017) ISPRS J. Photogramm. Remote Sens. , vol.129 , pp. 212-225
    • Gong, M.1    Yang, H.2    Zhang, P.3
  • 22
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization. In: IEEE Conference on Computer Vision and Pattern Recognition.
    • Hariharan, B., Arbeláez, P., Girshick, R., Malik, J., 2015. Hypercolumns for object segmentation and fine-grained localization. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 447–456.
    • (2015) , pp. 447-456
    • Hariharan, B.1    Arbeláez, P.2    Girshick, R.3    Malik, J.4
  • 23
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: IEEE International Conference on Computer Vision.
    • He, K., Zhang, X., Ren, S., Sun, J., 2015a. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: IEEE International Conference on Computer Vision. pp. 1026–1034.
    • (2015) , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 24
    • 84939247735 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • He, K., Zhang, X., Ren, S., Sun, J., Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37:9 (2015), 1904–1916.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , Issue.9 , pp. 1904-1916
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 25
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition.
    • He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
    • (2016) , pp. 770-778
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 26
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • Hu, F., Xia, G.-S., Hu, J., Zhang, L., Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7:11 (2015), 14680–14707.
    • (2015) Remote Sens. , vol.7 , Issue.11 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 27
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning.
    • Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning. pp. 448–456.
    • (2015) , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 28
    • 85054307801 scopus 로고    scopus 로고
    • ISPRS International Society for Photogrammetry and Remote Sensing. 2D Semantic Labeling Challenge. <>.
    • ISPRS, 2016. International Society for Photogrammetry and Remote Sensing. 2D Semantic Labeling Challenge. < http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html>.
    • (2016)
  • 29
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: convolutional architecture for fast feature embedding. In: ACM International Conference on Multimedia.
    • Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T., 2014. Caffe: convolutional architecture for fast feature embedding. In: ACM International Conference on Multimedia. pp. 675–678.
    • (2014) , pp. 675-678
    • Jia, Y.1    Shelhamer, E.2    Donahue, J.3    Karayev, S.4    Long, J.5    Girshick, R.B.6    Guadarrama, S.7    Darrell, T.8
  • 30
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks. In: Neural Information Processing Systems.
    • Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Neural Information Processing Systems. pp. 1106–1114.
    • (2012) , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 31
    • 85054325300 scopus 로고
    • written digit recognition with a back-propagation network. In: Neural Information Processing Systems.
    • Lecun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D., 1990. Handwritten digit recognition with a back-propagation network. In: Neural Information Processing Systems. pp. 396–404.
    • (1990) , pp. 396-404
    • Lecun, Y.1    Boser, B.2    Denker, J.S.3    Henderson, D.4    Howard, R.E.5    Hubbard, W.6    Jackel, L.D.H.7
  • 32
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 33
    • 85027931830 scopus 로고    scopus 로고
    • Robust rooftop extraction from visible band images using higher order CRF
    • Li, E., Femiani, J., Xu, S., Zhang, X., Wonka, P., Robust rooftop extraction from visible band images using higher order CRF. IEEE Trans. Geosci. Remote Sens. 53:8 (2015), 4483–4495.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.8 , pp. 4483-4495
    • Li, E.1    Femiani, J.2    Xu, S.3    Zhang, X.4    Wonka, P.5
  • 35
    • 85054334039 scopus 로고    scopus 로고
    • RefineNet: Multi-path Refinement Networks for High-resolution Semantic Segmentation. Available from: <>.
    • Lin, G., Milan, A., Shen, C., Reid, I.D., 2016. RefineNet: Multi-path Refinement Networks for High-resolution Semantic Segmentation. Available from: < 1611.06612>.
    • (2016)
    • Lin, G.1    Milan, A.2    Shen, C.3    Reid, I.D.4
  • 36
    • 56749152064 scopus 로고    scopus 로고
    • Sift flow: dense correspondence across different scenes. In: European Conference on Computer Vision.
    • Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W., 2008. Sift flow: dense correspondence across different scenes. In: European Conference on Computer Vision. pp. 28–42.
    • (2008) , pp. 28-42
    • Liu, C.1    Yuen, J.2    Torralba, A.3    Sivic, J.4    Freeman, W.5
  • 37
    • 85054310374 scopus 로고    scopus 로고
    • Parsenet: looking wider to see better. In: International Conference on Learning Representations Workshop.
    • Liu, W., Rabinovich, A., Berg, A.C., 2016a. Parsenet: looking wider to see better. In: International Conference on Learning Representations Workshop.
    • (2016)
    • Liu, W.1    Rabinovich, A.2    Berg, A.C.3
  • 38
    • 85054316937 scopus 로고    scopus 로고
    • Context-aware cascade network for semantic labeling in VHR image. In: IEEE International Conference on Image Processing.
    • Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., Pan, C., 2017. Context-aware cascade network for semantic labeling in VHR image. In: IEEE International Conference on Image Processing.
    • (2017)
    • Liu, Y.1    Fan, B.2    Wang, L.3    Bai, J.4    Xiang, S.5    Pan, C.6
  • 39
    • 85007417124 scopus 로고    scopus 로고
    • Scene semantic classification based on random-scale stretched convolutional neural network for high-spatial resolution remote sensing imagery. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS).
    • Liu, Y., Zhong, Y., Fei, F., Zhang, L., 2016b. Scene semantic classification based on random-scale stretched convolutional neural network for high-spatial resolution remote sensing imagery. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp. 763–766.
    • (2016) , pp. 763-766
    • Liu, Y.1    Zhong, Y.2    Fei, F.3    Zhang, L.4
  • 40
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition.
    • Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 3431–3440.
    • (2015) , pp. 3431-3440
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 41
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G., Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60:2 (2004), 91–110.
    • (2004) Int. J. Comput. Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 42
    • 84962019145 scopus 로고    scopus 로고
    • Joint dictionary learning for multispectral change detection
    • Lu, X., Yuan, Y., Zheng, X., Joint dictionary learning for multispectral change detection. IEEE Trans. Cybernet. 47:4 (2017), 884–897.
    • (2017) IEEE Trans. Cybernet. , vol.47 , Issue.4 , pp. 884-897
    • Lu, X.1    Yuan, Y.2    Zheng, X.3
  • 43
    • 85026497771 scopus 로고    scopus 로고
    • Remote sensing scene classification by unsupervised representation learning
    • Lu, X., Zheng, X., Yuan, Y., Remote sensing scene classification by unsupervised representation learning. IEEE Trans. Geosci. Remote Sens.(99), 2017, 1–10.
    • (2017) IEEE Trans. Geosci. Remote Sens. , Issue.99 , pp. 1-10
    • Lu, X.1    Zheng, X.2    Yuan, Y.3
  • 45
    • 84992121956 scopus 로고    scopus 로고
    • Convolutional neural networks for large-scale remote-sensing image classification
    • Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 55:2 (2017), 645–657.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.2 , pp. 645-657
    • Maggiori, E.1    Tarabalka, Y.2    Charpiat, G.3    Alliez, P.4
  • 46
    • 85054342576 scopus 로고    scopus 로고
    • Classification With an Edge: Improving Semantic Image Segmentation with Boundary Detection. Available from: <>.
    • Marmanis, D., Schindler, K., Wegner, J.D., Galliani, S., Datcu, M., Stilla, U., 2016. Classification With an Edge: Improving Semantic Image Segmentation with Boundary Detection. Available from: < 1612.01337>.
    • (2016)
    • Marmanis, D.1    Schindler, K.2    Wegner, J.D.3    Galliani, S.4    Datcu, M.5    Stilla, U.6
  • 47
    • 37549009133 scopus 로고    scopus 로고
    • The application of artificial neural networks to the analysis of remotely sensed data
    • Mas, J.F., Flores, J.J., The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 29:3 (2008), 617–663.
    • (2008) Int. J. Remote Sens. , vol.29 , Issue.3 , pp. 617-663
    • Mas, J.F.1    Flores, J.J.2
  • 48
    • 80052658031 scopus 로고    scopus 로고
    • Segment-based land cover mapping of a suburban area-comparison of high-resolution remotely sensed datasets using classification trees and test field points
    • Matikainen, L., Karila, K., Segment-based land cover mapping of a suburban area-comparison of high-resolution remotely sensed datasets using classification trees and test field points. Remote Sens. 3:8 (2011), 1777–1804.
    • (2011) Remote Sens. , vol.3 , Issue.8 , pp. 1777-1804
    • Matikainen, L.1    Karila, K.2
  • 49
    • 85054303157 scopus 로고    scopus 로고
    • Machine Learning for Aerial Image Labeling [Ph.D. thesis]. University of Toronto.
    • Mnih, V., 2013. Machine Learning for Aerial Image Labeling [Ph.D. thesis]. University of Toronto.
    • (2013)
    • Mnih, V.1
  • 50
    • 84959207702 scopus 로고    scopus 로고
    • Feedforward semantic segmentation with zoom-out features. In: IEEE Conference on Computer Vision and Pattern Recognition.
    • Mostajabi, M., Yadollahpour, P., Shakhnarovich, G., 2015. Feedforward semantic segmentation with zoom-out features. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 3376–3385.
    • (2015) , pp. 3376-3385
    • Mostajabi, M.1    Yadollahpour, P.2    Shakhnarovich, G.3
  • 51
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines. In: International Conference on Machine Learning.
    • Nair, V., Hinton, G.E., 2010. Rectified linear units improve restricted boltzmann machines. In: International Conference on Machine Learning. pp. 807–814.
    • (2010) , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 52
    • 85019077911 scopus 로고    scopus 로고
    • dos Santos, J.A. Learning to semantically segment high-resolution remote sensing images. In: IEEE International Conference on Pattern Recognition.
    • Nogueira, K., Mura, M.D., Chanussot, J., Schwartz, W.R., dos Santos, J.A., 2016. Learning to semantically segment high-resolution remote sensing images. In: IEEE International Conference on Pattern Recognition. pp. 3566–3571.
    • (2016) , pp. 3566-3571
    • Nogueira, K.1    Mura, M.D.2    Chanussot, J.3    Schwartz, W.R.4
  • 53
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation. In: IEEE International Conference on Computer Vision.
    • Noh, H., Hong, S., Han, B., 2015. Learning deconvolution network for semantic segmentation. In: IEEE International Conference on Computer Vision. pp. 1520–1528.
    • (2015) , pp. 1520-1528
    • Noh, H.1    Hong, S.2    Han, B.3
  • 55
    • 84940417790 scopus 로고    scopus 로고
    • dos Santos, J.A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains. In: IEEE Conference on Computer Vision and Pattern Recognition Workshop.
    • Penatti, O.A., Nogueira, K., dos Santos, J.A., 2015. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains. In: IEEE Conference on Computer Vision and Pattern Recognition Workshop. pp. 44–51.
    • (2015) , pp. 44-51
    • Penatti, O.A.1    Nogueira, K.2
  • 56
    • 85054315253 scopus 로고    scopus 로고
    • Learning to Refine Object Segments. Available from: <>.
    • Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P., 2016. Learning to Refine Object Segments. Available from: < 1603.08695>.
    • (2016)
    • Pinheiro, P.O.1    Lin, T.-Y.2    Collobert, R.3    Dollár, P.4
  • 57
    • 84951834022 scopus 로고    scopus 로고
    • U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI.
    • Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI. pp. 234–241.
    • (2015) , pp. 234-241
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 58
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors. Nature 323:6088 (1986), 533–536.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 59
    • 85054312120 scopus 로고    scopus 로고
    • Fully Convolutional Networks for Dense Semantic Labelling of High-resolution Aerial Imagery. Available from: <>.
    • Sherrah, J., 2016. Fully Convolutional Networks for Dense Semantic Labelling of High-resolution Aerial Imagery. Available from: < 1606.02585>.
    • (2016)
    • Sherrah, J.1
  • 60
    • 84867713871 scopus 로고    scopus 로고
    • Indoor segmentation and support inference from rgbd images. In: European Conference on Computer Vision.
    • Silberman, N., Hoiem, D., Kohli, P., Fergus, R., 2012. Indoor segmentation and support inference from rgbd images. In: European Conference on Computer Vision. pp. 746–760.
    • (2012) , pp. 746-760
    • Silberman, N.1    Hoiem, D.2    Kohli, P.3    Fergus, R.4
  • 61
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations.
    • Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations. pp. 1–14.
    • (2015) , pp. 1-14
    • Simonyan, K.1    Zisserman, A.2
  • 63
    • 84994217941 scopus 로고    scopus 로고
    • Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
    • Volpi, M., Tuia, D., Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55:2 (2017), 881–893.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.2 , pp. 881-893
    • Volpi, M.1    Tuia, D.2
  • 65
    • 85054330454 scopus 로고    scopus 로고
    • Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping. Available from: <>.
    • Xie, M., Jean, N., Burke, M., Lobell, D., Ermon, S., 2015. Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping. Available from: < 1510.00098>.
    • (2015)
    • Xie, M.1    Jean, N.2    Burke, M.3    Lobell, D.4    Ermon, S.5
  • 66
    • 84955098205 scopus 로고    scopus 로고
    • Multiple morphological component analysis based decomposition for remote sensing image classification
    • Xu, X., Li, J., Huang, X., Mura, M.D., Plaza, A., Multiple morphological component analysis based decomposition for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54:5 (2016), 3083–3102.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.5 , pp. 3083-3102
    • Xu, X.1    Li, J.2    Huang, X.3    Mura, M.D.4    Plaza, A.5
  • 67
    • 84906784880 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data via morphological component analysis-based image separation
    • Xue, Z., Li, J., Cheng, L., Du, P., Spectral-spatial classification of hyperspectral data via morphological component analysis-based image separation. IEEE Trans. Geosci. Remote Sens. 53:1 (2015), 70–84.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.1 , pp. 70-84
    • Xue, Z.1    Li, J.2    Cheng, L.3    Du, P.4
  • 68
    • 84937508363 scopus 로고    scopus 로고
    • How transferable are features in deep neural networks. In: Neural Information Processing Systems.
    • Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How transferable are features in deep neural networks. In: Neural Information Processing Systems. pp. 3320–3328.
    • (2014) , pp. 3320-3328
    • Yosinski, J.1    Clune, J.2    Bengio, Y.3    Lipson, H.4
  • 69
    • 85083952059 scopus 로고    scopus 로고
    • Multi-scale context aggregation by dilated convolutions. In: International Conference on Learning Representations.
    • Yu, F., Koltun, V., 2016. Multi-scale context aggregation by dilated convolutions. In: International Conference on Learning Representations.
    • (2016)
    • Yu, F.1    Koltun, V.2
  • 70
    • 84944068115 scopus 로고    scopus 로고
    • Scene recognition by manifold regularized deep learning architecture
    • Yuan, Y., Mou, L., Lu, X., Scene recognition by manifold regularized deep learning architecture. IEEE Trans. Neural Netw. Learn. Syst. 26:10 (2015), 2222–2233.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.10 , pp. 2222-2233
    • Yuan, Y.1    Mou, L.2    Lu, X.3
  • 71
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks. In: European Conference on Computer Vision.
    • Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In: European Conference on Computer Vision. pp. 818–833.
    • (2014) , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 72
    • 77956001004 scopus 로고    scopus 로고
    • Deconvolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition.
    • Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R., 2010. Deconvolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 2528–2535.
    • (2010) , pp. 2528-2535
    • Zeiler, M.D.1    Krishnan, D.2    Taylor, G.W.3    Fergus, R.4
  • 74
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • Zhang, L., Zhang, L., Tao, D., Huang, X., On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 50:3 (2012), 879–893.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 75
    • 84960327084 scopus 로고    scopus 로고
    • Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images
    • Zhang, P., Gong, M., Su, L., Liu, J., Li, Z., Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images. ISPRS J. Photogramm. Remote Sens. 116 (2016), 24–41.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.116 , pp. 24-41
    • Zhang, P.1    Gong, M.2    Su, L.3    Liu, J.4    Li, Z.5
  • 76
    • 79958706006 scopus 로고    scopus 로고
    • Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data
    • Zhang, Q., Seto, K.C., Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 115:9 (2011), 2320–2329.
    • (2011) Remote Sens. Environ. , vol.115 , Issue.9 , pp. 2320-2329
    • Zhang, Q.1    Seto, K.C.2
  • 77
    • 85054331519 scopus 로고    scopus 로고
    • Pyramid Scene Parsing Network. Available from: <>.
    • Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2016. Pyramid Scene Parsing Network. Available from: < 1612.01105>.
    • (2016)
    • Zhao, H.1    Shi, J.2    Qi, X.3    Wang, X.4    Jia, J.5
  • 78
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • Zhao, W., Du, S., Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 113 (2016), 155–165.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 79
    • 85083952996 scopus 로고    scopus 로고
    • Object detectors emerge in deep scene cnns. In: International Conference on Learning Representations.
    • Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2015. Object detectors emerge in deep scene cnns. In: International Conference on Learning Representations.
    • (2015)
    • Zhou, B.1    Khosla, A.2    Lapedriza, A.3    Oliva, A.4    Torralba, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.