메뉴 건너뛰기




Volumn 145, Issue , 2018, Pages 23-43

A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification

Author keywords

Deep learning; High resolution remote sensing images; Scene classification; Self label

Indexed keywords

CLASSIFICATION (OF INFORMATION); IMAGE CLASSIFICATION; REMOTE SENSING; SUPERVISED LEARNING;

EID: 85035113175     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2017.11.004     Document Type: Article
Times cited : (194)

References (60)
  • 1
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • Blaschke, T., Object based image analysis for remote sensing. ISPRS J. Photogram. Rem. Sens. 65:1 (2010), 2–16.
    • (2010) ISPRS J. Photogram. Rem. Sens. , vol.65 , Issue.1 , pp. 2-16
    • Blaschke, T.1
  • 2
    • 65349122870 scopus 로고    scopus 로고
    • Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications
    • Springer Science & Business Media
    • Blaschke, T., Lang, S., Hay, G., Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications. 2008, Springer Science & Business Media.
    • (2008)
    • Blaschke, T.1    Lang, S.2    Hay, G.3
  • 4
    • 84874547651 scopus 로고    scopus 로고
    • Airborne sar-efficient signal processing for very high resolution
    • Cantalloube, H.M., Nahum, C.E., Airborne sar-efficient signal processing for very high resolution. Proc. IEEE 101:3 (2013), 784–797.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 784-797
    • Cantalloube, H.M.1    Nahum, C.E.2
  • 5
    • 85054316949 scopus 로고    scopus 로고
    • Use Classification in Remote Sensing Images by Convolutional Neural Networks <> (accessed on 14 August 2015).
    • Castelluccio, M., Poggi, G., Sansone, C., Verdoliva, L. Land Use Classification in Remote Sensing Images by Convolutional Neural Networks < http://arxiv.org/abs/1508.00092> (accessed on 14 August 2015).
    • Castelluccio, M.1    Poggi, G.2    Sansone, C.3    Verdoliva, L.L.4
  • 6
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets. In: Proceedings of the British Machine Vision Conference.
    • Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A., 2014. Return of the devil in the details: Delving deep into convolutional nets. In: Proceedings of the British Machine Vision Conference.
    • (2014)
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 7
    • 84961970561 scopus 로고    scopus 로고
    • A survey on object detection in optical remote sensing images
    • Cheng, G., Han, J., A survey on object detection in optical remote sensing images. ISPRS J. Photogram. Rem. Sens. 117 (2016), 11–28.
    • (2016) ISPRS J. Photogram. Rem. Sens. , vol.117 , pp. 11-28
    • Cheng, G.1    Han, J.2
  • 8
    • 85027047340 scopus 로고    scopus 로고
    • Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
    • Cheng, G., Zhou, P., Han, J., Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Rem. Sens. 54:12 (2016), 7405–7415.
    • (2016) IEEE Trans. Geosci. Rem. Sens. , vol.54 , Issue.12 , pp. 7405-7415
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 9
    • 85030125539 scopus 로고    scopus 로고
    • Remote sensing image scene classification: benchmark and state of the art
    • Cheng, G., Han, J., Lu, X., Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 99 (2017), 1–19.
    • (2017) Proc. IEEE , vol.99 , pp. 1-19
    • Cheng, G.1    Han, J.2    Lu, X.3
  • 11
    • 0001701035 scopus 로고    scopus 로고
    • Knowledge management: semantic drift or conceptual shift?
    • Davenport, E., Cronin, B., Knowledge management: semantic drift or conceptual shift?. J. Educ. Lib. Inf. Sci., 2000, 294–306.
    • (2000) J. Educ. Lib. Inf. Sci. , pp. 294-306
    • Davenport, E.1    Cronin, B.2
  • 14
    • 84901601836 scopus 로고    scopus 로고
    • Modeling and simulation for natural disaster contingency planning driven by high-resolution remote sensing images
    • Dou, M., Chen, J., Chen, D., Chen, X., Deng, Z., Zhang, X., Xu, K., Wang, J., Modeling and simulation for natural disaster contingency planning driven by high-resolution remote sensing images. Fut. Gener. Comp. Syst. 37 (2014), 367–377.
    • (2014) Fut. Gener. Comp. Syst. , vol.37 , pp. 367-377
    • Dou, M.1    Chen, J.2    Chen, D.3    Chen, X.4    Deng, Z.5    Zhang, X.6    Xu, K.7    Wang, J.8
  • 16
    • 84874548105 scopus 로고    scopus 로고
    • Human settlements: a global challenge for eo data processing and interpretation
    • Gamba, P., Human settlements: a global challenge for eo data processing and interpretation. Proc. IEEE 101:3 (2013), 570–581.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 570-581
    • Gamba, P.1
  • 17
    • 85027940869 scopus 로고    scopus 로고
    • Multimodal classification of remote sensing images: a review and future directions
    • Gómez-Chova, L., Tuia, D., Moser, G., Camps-Valls, G., Multimodal classification of remote sensing images: a review and future directions. Proc. IEEE 103:9 (2015), 1560–1584.
    • (2015) Proc. IEEE , vol.103 , Issue.9 , pp. 1560-1584
    • Gómez-Chova, L.1    Tuia, D.2    Moser, G.3    Camps-Valls, G.4
  • 18
    • 85028166694 scopus 로고    scopus 로고
    • Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
    • Han, J., Zhang, D., Cheng, G., Guo, L., Ren, J., Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Rem. Sens. 53:6 (2015), 3325–3337.
    • (2015) IEEE Trans. Geosci. Rem. Sens. , vol.53 , Issue.6 , pp. 3325-3337
    • Han, J.1    Zhang, D.2    Cheng, G.3    Guo, L.4    Ren, J.5
  • 19
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
    • He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778.
    • (2016) , pp. 770-778
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 20
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets. Neural Comput. 18:7 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 21
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • Hu, F., Xia, G.-S., Hu, J., Zhang, L., Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Rem. Sens. 7:11 (2015), 14680–14707.
    • (2015) Rem. Sens. , vol.7 , Issue.11 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 22
    • 0027007467 scopus 로고
    • Knowledge-based crop classification of a landsat thematic mapper image
    • Janssen, L.L., Middelkoop, H., Knowledge-based crop classification of a landsat thematic mapper image. Int. J. Rem. Sens. 13:15 (1992), 2827–2837.
    • (1992) Int. J. Rem. Sens. , vol.13 , Issue.15 , pp. 2827-2837
    • Janssen, L.L.1    Middelkoop, H.2
  • 24
    • 0003946510 scopus 로고    scopus 로고
    • Principal Component Analysis
    • Wiley Online Library
    • Jolliffe, I., Principal Component Analysis. 2002, Wiley Online Library.
    • (2002)
    • Jolliffe, I.1
  • 25
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems
    • Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105.
    • (2012) , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 26
    • 84959852142 scopus 로고    scopus 로고
    • On the study of fusion techniques for bad geological remote sensing image
    • Li, X., Wang, L., On the study of fusion techniques for bad geological remote sensing image. J. Amb. Intell. Human. Comput. 6:1 (2015), 141–149.
    • (2015) J. Amb. Intell. Human. Comput. , vol.6 , Issue.1 , pp. 141-149
    • Li, X.1    Wang, L.2
  • 27
    • 36249007597 scopus 로고    scopus 로고
    • Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
    • Li, M., Zhou, Z.-H., Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans. Syst., Man, Cybernet.-Part A: Syst. Hum. 37:6 (2007), 1088–1098.
    • (2007) IEEE Trans. Syst., Man, Cybernet.-Part A: Syst. Hum. , vol.37 , Issue.6 , pp. 1088-1098
    • Li, M.1    Zhou, Z.-H.2
  • 28
    • 84920121030 scopus 로고    scopus 로고
    • A novel semi-supervised method for obtaining finer resolution urban extents exploiting coarser resolution maps
    • Li, J., Gamba, P., Plaza, A., A novel semi-supervised method for obtaining finer resolution urban extents exploiting coarser resolution maps. IEEE J. Select. Top. Appl. Earth Observ. Rem. Sens. 7:10 (2014), 4276–4287.
    • (2014) IEEE J. Select. Top. Appl. Earth Observ. Rem. Sens. , vol.7 , Issue.10 , pp. 4276-4287
    • Li, J.1    Gamba, P.2    Plaza, A.3
  • 29
    • 84974604979 scopus 로고    scopus 로고
    • Spatiotemporal statistics for video quality assessment
    • Li, X., Guo, Q., Lu, X., Spatiotemporal statistics for video quality assessment. IEEE Trans. Image Process. 25:7 (2016), 3329–3342.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.7 , pp. 3329-3342
    • Li, X.1    Guo, Q.2    Lu, X.3
  • 30
    • 84962019145 scopus 로고    scopus 로고
    • Jointly dictionary learning for change detection in multispectral imagery
    • Liu, X., Yuan, Y., Zheng, X., Jointly dictionary learning for change detection in multispectral imagery. IEEE Trans. Cybernet. 47:4 (2017), 884–897.
    • (2017) IEEE Trans. Cybernet. , vol.47 , Issue.4 , pp. 884-897
    • Liu, X.1    Yuan, Y.2    Zheng, X.3
  • 31
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G., Distinctive image features from scale-invariant keypoints. Int. J. Comp. Vis. 60:2 (2004), 91–110.
    • (2004) Int. J. Comp. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 32
    • 85026497771 scopus 로고    scopus 로고
    • Remote sensing scene classification by unsupervised representation learning
    • Lu, X., Zheng, X., Yuan, Y., Remote sensing scene classification by unsupervised representation learning. IEEE Trans. Geosci. Rem. Sens., 2017, 1–10.
    • (2017) IEEE Trans. Geosci. Rem. Sens. , pp. 1-10
    • Lu, X.1    Zheng, X.2    Yuan, Y.3
  • 33
    • 85013453470 scopus 로고    scopus 로고
    • Latent semantic minimal hashing for image retrieval
    • Lu, X., Zheng, X., Li, X., Latent semantic minimal hashing for image retrieval. IEEE Trans. Image Process. 26:1 (2017), 355–368.
    • (2017) IEEE Trans. Image Process. , vol.26 , Issue.1 , pp. 355-368
    • Lu, X.1    Zheng, X.2    Li, X.3
  • 34
    • 85013347511 scopus 로고    scopus 로고
    • A novel technique to compute the revisit time of satellites and its application in remote sensing satellite optimization design
    • Luo, X., Wang, M., Dai, G., Chen, X., A novel technique to compute the revisit time of satellites and its application in remote sensing satellite optimization design. Int. J. Aerosp. Eng., 2017, 2017.
    • (2017) Int. J. Aerosp. Eng. , vol.2017
    • Luo, X.1    Wang, M.2    Dai, G.3    Chen, X.4
  • 35
    • 84988038682 scopus 로고    scopus 로고
    • Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning
    • Ma, X., Wang, H., Wang, J., Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning. ISPRS J. Photogram. Rem. Sens. 120 (2016), 99–107.
    • (2016) ISPRS J. Photogram. Rem. Sens. , vol.120 , pp. 99-107
    • Ma, X.1    Wang, H.2    Wang, J.3
  • 36
    • 85054294936 scopus 로고    scopus 로고
    • Bootstrapping Image Classification with Sample Evaluation
    • Narayanan, V., Desai, R., Choudhury, S., 2012. Bootstrapping Image Classification with Sample Evaluation, pp. 1–8.
    • (2012) , pp. 1-8
    • Narayanan, V.1    Desai, R.2    Choudhury, S.3
  • 37
    • 85054299139 scopus 로고    scopus 로고
    • Semi-Supervised Learning with Generative Adversarial Networks, arXiv preprint.
    • Odena, A., 2016. Semi-Supervised Learning with Generative Adversarial Networks, pp. 1–3, arXiv preprint arXiv:1606.01583.
    • (2016) , pp. 1-3
    • Odena, A.1
  • 38
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: a holistic representation of the spatial envelope
    • Oliva, A., Torralba, A., Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comp. Vis. 42:3 (2001), 145–175.
    • (2001) Int. J. Comp. Vis. , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 39
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: a strategy employed by v1?
    • Olshausen, B.A., Field, D.J., Sparse coding with an overcomplete basis set: a strategy employed by v1?. Vis. Res. 37:23 (1997), 3311–3325.
    • (1997) Vis. Res. , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 41
    • 85032752191 scopus 로고    scopus 로고
    • Parallel hyperspectral image and signal processing [applications corner]
    • Plaza, A., Plaza, J., Paz, A., Sanchez, S., Parallel hyperspectral image and signal processing [applications corner]. IEEE Sig. Process. Magaz. 28:3 (2011), 119–126.
    • (2011) IEEE Sig. Process. Magaz. , vol.28 , Issue.3 , pp. 119-126
    • Plaza, A.1    Plaza, J.2    Paz, A.3    Sanchez, S.4
  • 42
    • 84906347546 scopus 로고    scopus 로고
    • Overfeat: Integrated Recognition, Localization and Detection Using Convolutional Networks, arXiv preprint
    • Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y. Overfeat: Integrated Recognition, Localization and Detection Using Convolutional Networks, arXiv preprint arXiv:1312.6229.
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 43
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations.
    • Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations.
    • (2015)
    • Simonyan, K.1    Zisserman, A.2
  • 44
    • 85054317613 scopus 로고    scopus 로고
    • Unsupervised and Semi-Supervised Learning with Categorical Generative Adversarial Networks, arXiv preprint.
    • Springenberg, J.T., 2015. Unsupervised and Semi-Supervised Learning with Categorical Generative Adversarial Networks, pp. 1–20 arXiv preprint arXiv:1511.06390.
    • (2015) , pp. 1-20
    • Springenberg, J.T.1
  • 45
    • 84937522268 scopus 로고    scopus 로고
    • Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
    • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9.
    • (2015) , pp. 1-9
    • Szegedy, C.1    Liu, W.2    Jia, Y.3    Sermanet, P.4    Reed, S.5    Anguelov, D.6    Erhan, D.7    Vanhoucke, V.8    Rabinovich, A.9
  • 46
    • 84887920186 scopus 로고    scopus 로고
    • Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study
    • Triguero, I., García, S., Herrera, F., Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42:2 (2015), 245–284.
    • (2015) Knowl. Inf. Syst. , vol.42 , Issue.2 , pp. 245-284
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 47
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11:December (2010), 3371–3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , Issue.December , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 48
    • 77955431070 scopus 로고    scopus 로고
    • Semi-supervised learning based on nearest neighbor rule and cut edges
    • Wang, Y., Xu, X., Zhao, H., Hua, Z., Semi-supervised learning based on nearest neighbor rule and cut edges. Knowl.-Based Syst. 23:6 (2010), 547–554.
    • (2010) Knowl.-Based Syst. , vol.23 , Issue.6 , pp. 547-554
    • Wang, Y.1    Xu, X.2    Zhao, H.3    Hua, Z.4
  • 49
    • 84965058571 scopus 로고    scopus 로고
    • Link the remote sensing big data to the image features via wavelet transformation
    • Wang, L., Song, W., Liu, P., Link the remote sensing big data to the image features via wavelet transformation. Clust. Comput. 19:2 (2016), 793–810.
    • (2016) Clust. Comput. , vol.19 , Issue.2 , pp. 793-810
    • Wang, L.1    Song, W.2    Liu, P.3
  • 50
    • 84976870858 scopus 로고    scopus 로고
    • Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classification
    • Wang, L., Zhang, J., Liu, P., Choo, K.-K.R., Huang, F., Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classification. Soft Comput. 21:1 (2017), 213–221.
    • (2017) Soft Comput. , vol.21 , Issue.1 , pp. 213-221
    • Wang, L.1    Zhang, J.2    Liu, P.3    Choo, K.-K.R.4    Huang, F.5
  • 51
    • 84863260791 scopus 로고    scopus 로고
    • Structural high-resolution satellite image indexing. In: ISPRS TC VII Symposium-100 Years ISPRS
    • Xia, G.-S., Yang, W., Delon, J., Gousseau, Y., Sun, H., Maı̂tre, H., 2010. Structural high-resolution satellite image indexing. In: ISPRS TC VII Symposium-100 Years ISPRS, vol. 38, pp. 298–303.
    • (2010) , vol.38 , pp. 298-303
    • Xia, G.-S.1    Yang, W.2    Delon, J.3    Gousseau, Y.4    Sun, H.5    Maı̂tre, H.6
  • 52
    • 85018642692 scopus 로고    scopus 로고
    • Aid: a benchmark data set for performance evaluation of aerial scene classification
    • Xia, G.-S., Hu, J., Hu, F., Shi, B., Bai, X., Zhong, Y., Zhang, L., Lu, X., Aid: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Rem. Sens. 55:7 (2017), 3965–3981.
    • (2017) IEEE Trans. Geosci. Rem. Sens. , vol.55 , Issue.7 , pp. 3965-3981
    • Xia, G.-S.1    Hu, J.2    Hu, F.3    Shi, B.4    Bai, X.5    Zhong, Y.6    Zhang, L.7    Lu, X.8
  • 54
    • 84976243077 scopus 로고    scopus 로고
    • Semantic annotation of high-resolution satellite images via weakly supervised learning
    • Yao, X., Han, J., Cheng, G., Qian, X., Guo, L., Semantic annotation of high-resolution satellite images via weakly supervised learning. IEEE Trans. Geosci. Rem. Sens. 54:6 (2016), 3660–3671.
    • (2016) IEEE Trans. Geosci. Rem. Sens. , vol.54 , Issue.6 , pp. 3660-3671
    • Yao, X.1    Han, J.2    Cheng, G.3    Qian, X.4    Guo, L.5
  • 56
    • 85011976703 scopus 로고    scopus 로고
    • Discovering diverse subset for unsupervised hyperspectral band selection
    • Yuan, Y., Zheng, X., Lu, X., Discovering diverse subset for unsupervised hyperspectral band selection. IEEE Trans. Image Process. 26:1 (2017), 51–64.
    • (2017) IEEE Trans. Image Process. , vol.26 , Issue.1 , pp. 51-64
    • Yuan, Y.1    Zheng, X.2    Lu, X.3
  • 57
    • 84955144341 scopus 로고    scopus 로고
    • Rotation-and-scale-invariant airplane detection in high-resolution satellite images based on deep-hough-forests
    • Yu, Y., Guan, H., Zai, D., Ji, Z., Rotation-and-scale-invariant airplane detection in high-resolution satellite images based on deep-hough-forests. ISPRS J. Photogram. Rem. Sens. 112 (2016), 50–64.
    • (2016) ISPRS J. Photogram. Rem. Sens. , vol.112 , pp. 50-64
    • Yu, Y.1    Guan, H.2    Zai, D.3    Ji, Z.4
  • 58
    • 84908032942 scopus 로고    scopus 로고
    • Saliency-guided unsupervised feature learning for scene classification
    • Zhang, F., Du, B., Zhang, L., Saliency-guided unsupervised feature learning for scene classification. IEEE Trans. Geosci. Rem. Sens. 53:4 (2015), 2175–2184.
    • (2015) IEEE Trans. Geosci. Rem. Sens. , vol.53 , Issue.4 , pp. 2175-2184
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 59
    • 84960327084 scopus 로고    scopus 로고
    • Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images
    • Zhang, P., Gong, M., Su, L., Liu, J., Li, Z., Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images. ISPRS J. Photogram. Rem. Sens. 116 (2016), 24–41.
    • (2016) ISPRS J. Photogram. Rem. Sens. , vol.116 , pp. 24-41
    • Zhang, P.1    Gong, M.2    Su, L.3    Liu, J.4    Li, Z.5
  • 60
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • Zhao, W., Du, S., Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogram. Rem. Sens. 113 (2016), 155–165.
    • (2016) ISPRS J. Photogram. Rem. Sens. , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.