메뉴 건너뛰기




Volumn 42, Issue 2, 2015, Pages 245-284

Self-labeled techniques for semi-supervised learning: Taxonomy, software and empirical study

Author keywords

Classification; Co training; Learning from unlabeled data; Multi view learning; Self training; Semi supervised learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); ITERATIVE METHODS; LABELED DATA; TAXONOMIES;

EID: 84887920186     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-013-0706-y     Document Type: Article
Times cited : (500)

References (87)
  • 3
    • 84874191780 scopus 로고    scopus 로고
    • A novel semi-supervised learning framework with simultaneous text representing
    • Zhu Y, Yu J, Jing L (2013) A novel semi-supervised learning framework with simultaneous text representing. Knowl Inf Syst 34(3):547–562
    • (2013) Knowl Inf Syst , vol.34 , Issue.3 , pp. 547-562
    • Zhu, Y.1    Yu, J.2    Jing, L.3
  • 5
    • 0001931761 scopus 로고
    • Algorithms of fuzzy clustering with partial supervision
    • Pedrycz W (1985) Algorithms of fuzzy clustering with partial supervision. Pattern Recognit Lett 3:13–20
    • (1985) Pattern Recognit Lett , vol.3 , pp. 13-20
    • Pedrycz, W.1
  • 6
    • 84856719776 scopus 로고    scopus 로고
    • Effective semi-supervised document clustering via active learning with instance-level constraints
    • Zhao W, He Q, Ma H, Shi Z (2012) Effective semi-supervised document clustering via active learning with instance-level constraints. Knowl Inf Syst 30(3):569–587
    • (2012) Knowl Inf Syst , vol.30 , Issue.3 , pp. 569-587
    • Zhao, W.1    He, Q.2    Ma, H.3    Shi, Z.4
  • 7
    • 78649326338 scopus 로고    scopus 로고
    • Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions
    • Chen K, Wang S (2011) Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions. IEEE Trans Pattern Anal Mach Intell 33(1):129–143
    • (2011) IEEE Trans Pattern Anal Mach Intell , vol.33 , Issue.1 , pp. 129-143
    • Chen, K.1    Wang, S.2
  • 8
    • 39549089484 scopus 로고    scopus 로고
    • Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle
    • Fujino A, Ueda N, Saito K (2008) Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle. IEEE Trans Pattern Anal Mach Intell 30(3):424–437
    • (2008) IEEE Trans Pattern Anal Mach Intell , vol.30 , Issue.3 , pp. 424-437
    • Fujino, A.1    Ueda, N.2    Saito, K.3
  • 11
    • 84876261859 scopus 로고    scopus 로고
    • Semi-supervised learning using greedy max-cut
    • Wang J, Jebara T, Chang S-F (2013) Semi-supervised learning using greedy max-cut. J Mac Learn Res 14(1):771–800
    • (2013) J Mac Learn Res , vol.14 , Issue.1 , pp. 771-800
    • Wang, J.1    Jebara, T.2    Chang, S.-F.3
  • 16
    • 79953214379 scopus 로고    scopus 로고
    • When does co-training work in real data?
    • Du J, Ling CX, Zhou ZH (2010) When does co-training work in real data? IEEE Trans Knowl Data Eng 23(5):788–799
    • (2010) IEEE Trans Knowl Data Eng , vol.23 , Issue.5 , pp. 788-799
    • Du, J.1    Ling, C.X.2    Zhou, Z.H.3
  • 18
    • 84870064676 scopus 로고    scopus 로고
    • A hybrid generative/discriminative method for semi-supervised classification
    • Jiang Z, Zhang S, Zeng J (2013) A hybrid generative/discriminative method for semi-supervised classification. Knowl-Based Syst 37:137–145
    • (2013) Knowl-Based Syst , vol.37 , pp. 137-145
    • Jiang, Z.1    Zhang, S.2    Zeng, J.3
  • 19
    • 84887452388 scopus 로고    scopus 로고
    • A survey of multi-view machine learning
    • Sun S (2013) A survey of multi-view machine learning. Neural Comput Appl 23(7–8):2031–2038
    • (2013) Neural Comput Appl , vol.23 , Issue.7-8 , pp. 2031-2038
    • Sun, S.1
  • 20
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • Zhou ZH, Li M (2005) Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans Knowl Data Eng 17:1529–1541
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , pp. 1529-1541
    • Zhou, Z.H.1    Li, M.2
  • 21
    • 36249007597 scopus 로고    scopus 로고
    • Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
    • Li M, Zhou ZH (2007) Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans Syst Man Cybern A Syst Hum 37(6):1088–1098
    • (2007) IEEE Trans Syst Man Cybern A Syst Hum , vol.37 , Issue.6 , pp. 1088-1098
    • Li, M.1    Zhou, Z.H.2
  • 22
    • 78649409198 scopus 로고    scopus 로고
    • Sparse semi-supervised learning using conjugate functions
    • Sun S, Shawe-Taylor J (2010) Sparse semi-supervised learning using conjugate functions. J Mach Learn Res 11:2423–2455
    • (2010) J Mach Learn Res , vol.11 , pp. 2423-2455
    • Sun, S.1    Shawe-Taylor, J.2
  • 23
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Computer Sciences: University of Wisconsin-Madison
    • Zhu X (2005) Semi-supervised learning literature survey. Technical report 1530, Computer Sciences, University of Wisconsin-Madison
    • (2005) Technical report 1530
    • Zhu, X.1
  • 24
    • 27344454215 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data: An empirical study across techniques and domains
    • Chawla N, Karakoulas G (2005) Learning from labeled and unlabeled data: an empirical study across techniques and domains. J Artif Intell Res 23:331–366
    • (2005) J Artif Intell Res , vol.23 , pp. 331-366
    • Chawla, N.1    Karakoulas, G.2
  • 25
    • 77956708689 scopus 로고    scopus 로고
    • Semi-supervised learning by disagreement
    • Zhou Z-H, Li M (2010) Semi-supervised learning by disagreement. Knowl Inf Syst 24(3):415–439
    • (2010) Knowl Inf Syst , vol.24 , Issue.3 , pp. 415-439
    • Zhou, Z.-H.1    Li, M.2
  • 27
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demšar, J.1
  • 28
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180:2044–2064
    • (2010) Inf Sci , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 29
    • 85039747744 scopus 로고    scopus 로고
    • Triguero I, Sáez JA, Luengo J, García S, Herrera F (2013) On the characterization of noise filters for self-training semi-supervised in nearest neighbor classification, Neurocomputing (in press)
    • Triguero I, Sáez JA, Luengo J, García S, Herrera F (2013) On the characterization of noise filters for self-training semi-supervised in nearest neighbor classification, Neurocomputing (in press)
  • 30
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27
    • (1967) IEEE Trans Inf Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 38
    • 33845963415 scopus 로고    scopus 로고
    • Tri-training and data editing based semi-supervised clustering algorithm
    • Springer, Berlin
    • Deng C, Guo M (2006) Tri-training and data editing based semi-supervised clustering algorithm. In: Gelbukh A, Reyes-Garcia C (eds) MICAI 2006: advances in artificial intelligence, vol 4293 of lecture notes in computer science. Springer, Berlin, pp 641–651
    • (2006) Lecture notes in computer science , vol.4293 , pp. 641-651
    • Deng, C.1    Guo, M.2    Gelbukh, A.3    Reyes-Garcia, C.4
  • 41
    • 78650296072 scopus 로고    scopus 로고
    • Combining committee-based semi-supervised learning and active learning
    • Hady M, Schwenker F (2010) Combining committee-based semi-supervised learning and active learning. J Comput Sci Technol 25:681–698
    • (2010) J Comput Sci Technol , vol.25 , pp. 681-698
    • Hady, M.1    Schwenker, F.2
  • 42
    • 77950296222 scopus 로고    scopus 로고
    • Semi-supervised learning for tree-structured ensembles of rbf networks with co-training
    • Hady M, Schwenker F, Palm G (2010) Semi-supervised learning for tree-structured ensembles of rbf networks with co-training. Neural Netw 23:497–509
    • (2010) Neural Netw , vol.23 , pp. 497-509
    • Hady, M.1    Schwenker, F.2    Palm, G.3
  • 43
    • 77952554171 scopus 로고    scopus 로고
    • Co-training with relevant random subspaces
    • Yaslan Y, Cataltepe Z (2010) Co-training with relevant random subspaces. Neurocomputing 73(10–12):1652–1661
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1652-1661
    • Yaslan, Y.1    Cataltepe, Z.2
  • 44
    • 77955348911 scopus 로고    scopus 로고
    • A classification algorithm based on local cluster centers with a few labeled training examples
    • Huang T, Yu Y, Guo G, Li K (2010) A classification algorithm based on local cluster centers with a few labeled training examples. Knowl-Based Syst 23(6):563–571
    • (2010) Knowl-Based Syst , vol.23 , Issue.6 , pp. 563-571
    • Huang, T.1    Yu, Y.2    Guo, G.3    Li, K.4
  • 46
    • 77955431070 scopus 로고    scopus 로고
    • Semi-supervised learning based on nearest neighbor rule and cut edges
    • Wang Y, Xu X, Zhao H, Hua Z (2010) Semi-supervised learning based on nearest neighbor rule and cut edges. Knowl-Based Syst 23(6):547–554
    • (2010) Knowl-Based Syst , vol.23 , Issue.6 , pp. 547-554
    • Wang, Y.1    Xu, X.2    Zhao, H.3    Hua, Z.4
  • 47
    • 79958842148 scopus 로고    scopus 로고
    • A new co-training-style random forest for computer aided diagnosis
    • Deng C, Guo M (2011) A new co-training-style random forest for computer aided diagnosis. J Intell Inf Syst 36:253–281. doi:10.1007/s10844-009-0105-8
    • (2011) J Intell Inf Syst , vol.36 , pp. 253-281
    • Deng, C.1    Guo, M.2
  • 48
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • Nigam K, Mccallum A, Thrun S, Mitchell T (2000) Text classification from labeled and unlabeled documents using em. Mach Learn 39(2):103–134
    • (2000) Mach Learn , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    Mccallum, A.2    Thrun, S.3    Mitchell, T.4
  • 49
    • 78149283512 scopus 로고    scopus 로고
    • Semi-supervised Bayesian artmap
    • Tang X-L, Han M (2010) Semi-supervised Bayesian artmap. Appl Intell 33(3):302–317
    • (2010) Appl Intell , vol.33 , Issue.3 , pp. 302-317
    • Tang, X.-L.1    Han, M.2
  • 51
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434
    • (2006) J Mach Learn Res , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 52
    • 79953816012 scopus 로고    scopus 로고
    • Toward the optimization of normalized graph Laplacian
    • Xie B, Wang M, Tao D (2011) Toward the optimization of normalized graph Laplacian. IEEE Trans Neural Netw 22(4):660–666
    • (2011) IEEE Trans Neural Netw , vol.22 , Issue.4 , pp. 660-666
    • Xie, B.1    Wang, M.2    Tao, D.3
  • 53
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167
    • (1998) Data Min Knowl Discov , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.1
  • 54
    • 41549144249 scopus 로고    scopus 로고
    • Optimization techniques for semi-supervised support vector machines
    • Chapelle O, Sindhwani V, Keerthi SS (2008) Optimization techniques for semi-supervised support vector machines. J Mach Learn Re. 9:203–233
    • (2008) J Mach Learn Re. , vol.9 , pp. 203-233
    • Chapelle, O.1    Sindhwani, V.2    Keerthi, S.S.3
  • 55
    • 77958454206 scopus 로고    scopus 로고
    • Genetic algorithm-based training for semi-supervised svm
    • Adankon M, Cheriet M (2010) Genetic algorithm-based training for semi-supervised svm. Neural Comput Appl 19:1197–1206
    • (2010) Neural Comput Appl , vol.19 , pp. 1197-1206
    • Adankon, M.1    Cheriet, M.2
  • 56
    • 84860231071 scopus 로고    scopus 로고
    • A multiple kernel framework for inductive semi-supervised svm learning
    • Tian X, Gasso G, Canu S (2012) A multiple kernel framework for inductive semi-supervised svm learning. Neurocomputing 90:46–58
    • (2012) Neurocomputing , vol.90 , pp. 46-58
    • Tian, X.1    Gasso, G.2    Canu, S.3
  • 58
    • 74449083176 scopus 로고    scopus 로고
    • Semi-supervised clustering with metric learning: An adaptive kernel method
    • Yin X, Chen S, Hu E, Zhang D (2010) Semi-supervised clustering with metric learning: an adaptive kernel method. Pattern Recognit 43(4):1320–1333
    • (2010) Pattern Recognit , vol.43 , Issue.4 , pp. 1320-1333
    • Yin, X.1    Chen, S.2    Hu, E.3    Zhang, D.4
  • 59
    • 55749111017 scopus 로고    scopus 로고
    • Unsupervised and semi-supervised clustering: A brief survey. In: A review of machine learning techniques for processing multimedia content
    • Grira N, Crucianu M, Boujemaa N (2004) Unsupervised and semi-supervised clustering: a brief survey. In: A review of machine learning techniques for processing multimedia content. Report of the MUSCLE European network of excellence FP6
    • (2004) Report of the MUSCLE European network of excellence FP6
    • Grira, N.1    Crucianu, M.2    Boujemaa, N.3
  • 60
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Freund Y, Seung HS, Shamir E, Tishby N (1997) Selective sampling using the query by committee algorithm. Mach Learn 28:133–168
    • (1997) Mach Learn , vol.28 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 62
    • 78650197593 scopus 로고    scopus 로고
    • Multiple-view multiple-learner active learning
    • Zhang Q, Sun S (2010) Multiple-view multiple-learner active learning. Pattern Recognit 43(9):3113–3119
    • (2010) Pattern Recognit , vol.43 , Issue.9 , pp. 3113-3119
    • Zhang, Q.1    Sun, S.2
  • 63
    • 78651366861 scopus 로고    scopus 로고
    • Selective sampling techniques for feedback-based data retrieval
    • Yu H (2011) Selective sampling techniques for feedback-based data retrieval. Data Min Knowl Discov 22(1–2):1–30
    • (2011) Data Min Knowl Discov , vol.22 , Issue.1-2 , pp. 1-30
    • Yu, H.1
  • 64
    • 0031185845 scopus 로고    scopus 로고
    • Eigenfaces vs. fisherfaces: Recognition using class specific linear projection
    • Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720
    • (1997) IEEE Trans Pattern Anal Mach Intell , vol.19 , Issue.7 , pp. 711-720
    • Belhumeur, P.1    Hespanha, J.2    Kriegman, D.3
  • 66
    • 44649132677 scopus 로고    scopus 로고
    • A unified framework for semi-supervised dimensionality reduction
    • Song Y, Nie F, Zhang C, Xiang S (2008) A unified framework for semi-supervised dimensionality reduction. Pattern Recognit 41(9):2789–2799
    • (2008) Pattern Recognit , vol.41 , Issue.9 , pp. 2789-2799
    • Song, Y.1    Nie, F.2    Zhang, C.3    Xiang, S.4
  • 67
    • 40849150919 scopus 로고    scopus 로고
    • Joint feature re-extraction and classification using an iterative semi-supervised support vector machine algorithm
    • Li Y, Guan C (2008) Joint feature re-extraction and classification using an iterative semi-supervised support vector machine algorithm. Mach Learn 71:33–53
    • (2008) Mach Learn , vol.71 , pp. 33-53
    • Li, Y.1    Guan, C.2
  • 68
    • 39149116851 scopus 로고    scopus 로고
    • Computational methods of feature selection. Chapman &Hall/CRC data mining and knowledge discovery series
    • Hall/CRC, Boca Raton, FL
    • Liu H, Motoda H (eds) (2007) Computational methods of feature selection. Chapman &Hall/CRC data mining and knowledge discovery series. Chapman & Hall/CRC, Boca Raton, FL
    • (2007) Chapman &
    • Liu, H.1
  • 69
    • 44649111202 scopus 로고    scopus 로고
    • Locality sensitive semi-supervised feature selection
    • Zhao J, Lu K, He X (2008) Locality sensitive semi-supervised feature selection. Neurocomputing 71(10–12):1842–1849
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 1842-1849
    • Zhao, J.1    Lu, K.2    He, X.3
  • 70
    • 73949104378 scopus 로고    scopus 로고
    • Self-supervised ARTMAP
    • Gregory PA, Gail AC (2010) Self-supervised ARTMAP. Neural Netw 23:265–282
    • (2010) Neural Netw , vol.23 , pp. 265-282
    • Gregory, P.A.1    Gail, A.C.2
  • 71
  • 72
    • 54749131598 scopus 로고    scopus 로고
    • Learning to detect moving shadows in dynamic environments
    • Joshi A, Papanikolopoulos N (2008) Learning to detect moving shadows in dynamic environments. IEEE Trans Pattern Anal Mach Intell 30(11):2055–2063
    • (2008) IEEE Trans Pattern Anal Mach Intell , vol.30 , Issue.11 , pp. 2055-2063
    • Joshi, A.1    Papanikolopoulos, N.2
  • 73
    • 34548677479 scopus 로고    scopus 로고
    • A lot of randomness is hiding in accuracy
    • Ben-David A (2007) A lot of randomness is hiding in accuracy. Eng Appl Artif Intell 20:875–885
    • (2007) Eng Appl Artif Intell , vol.20 , pp. 875-885
    • Ben-David, A.1
  • 75
    • 85039734311 scopus 로고    scopus 로고
    • Asuncion A, Newman D (2007) UCI machine learning repository
    • Asuncion A, Newman D (2007) UCI machine learning repository. http://www.ics.uci.edu/mlearn/MLRepository.html
  • 77
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6(1):37–66
    • (1991) Mach Learn , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 81
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • García S, Herrera F (2008) An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J Mach Learn Res 9:2677–2694
    • (2008) J Mach Learn Res , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 83
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701
    • (1937) J Am Stat Assoc , vol.32 , pp. 675-701
    • Friedman, M.1
  • 84
    • 0009038905 scopus 로고
    • Improvements of general multiple test procedures for redundant systems of hypotheses
    • Springer, Berlin
    • Bergmann G, Hommel G (1988) Improvements of general multiple test procedures for redundant systems of hypotheses. In: Bauer P, Hommel G, Sonnemann E (eds) Multiple hypotheses testing. Springer, Berlin pp 100–115
    • (1988) Multiple hypotheses testing , pp. 100-115
    • Bergmann, G.1    Hommel, G.2    Bauer, P.3    Hommel, G.4    Sonnemann, E.5
  • 85
    • 58149195307 scopus 로고    scopus 로고
    • Discretization for naive-Bayes learning: Managing discretization bias and variance
    • Yang Y, Webb G (2009) Discretization for naive-Bayes learning: managing discretization bias and variance. Mac Learn 74(1):39–74
    • (2009) Mac Learn , vol.74 , Issue.1 , pp. 39-74
    • Yang, Y.1    Webb, G.2
  • 86
    • 84874613998 scopus 로고    scopus 로고
    • A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning
    • García S, Luengo J, Saez JA, López V, Herrera F (2013) A survey of discretization techniques: taxonomy and empirical analysis in supervised learning. IEEE Trans Knowl Data Eng 25(4):734–750
    • (2013) IEEE Trans Knowl Data Eng , vol.25 , Issue.4 , pp. 734-750
    • García, S.1    Luengo, J.2    Saez, J.A.3    López, V.4    Herrera, F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.