-
3
-
-
84874191780
-
A novel semi-supervised learning framework with simultaneous text representing
-
Zhu Y, Yu J, Jing L (2013) A novel semi-supervised learning framework with simultaneous text representing. Knowl Inf Syst 34(3):547–562
-
(2013)
Knowl Inf Syst
, vol.34
, Issue.3
, pp. 547-562
-
-
Zhu, Y.1
Yu, J.2
Jing, L.3
-
4
-
-
33749252873
-
-
The MIT Press, Cambridge, MA
-
Chapelle O, Schlkopf B, Zien A (2006) Semi-supervised learning, 1st edn. The MIT Press, Cambridge, MA
-
(2006)
Semi-supervised learning
-
-
Chapelle, O.1
Schlkopf, B.2
Zien, A.3
-
5
-
-
0001931761
-
Algorithms of fuzzy clustering with partial supervision
-
Pedrycz W (1985) Algorithms of fuzzy clustering with partial supervision. Pattern Recognit Lett 3:13–20
-
(1985)
Pattern Recognit Lett
, vol.3
, pp. 13-20
-
-
Pedrycz, W.1
-
6
-
-
84856719776
-
Effective semi-supervised document clustering via active learning with instance-level constraints
-
Zhao W, He Q, Ma H, Shi Z (2012) Effective semi-supervised document clustering via active learning with instance-level constraints. Knowl Inf Syst 30(3):569–587
-
(2012)
Knowl Inf Syst
, vol.30
, Issue.3
, pp. 569-587
-
-
Zhao, W.1
He, Q.2
Ma, H.3
Shi, Z.4
-
7
-
-
78649326338
-
Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions
-
Chen K, Wang S (2011) Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions. IEEE Trans Pattern Anal Mach Intell 33(1):129–143
-
(2011)
IEEE Trans Pattern Anal Mach Intell
, vol.33
, Issue.1
, pp. 129-143
-
-
Chen, K.1
Wang, S.2
-
8
-
-
39549089484
-
Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle
-
Fujino A, Ueda N, Saito K (2008) Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle. IEEE Trans Pattern Anal Mach Intell 30(3):424–437
-
(2008)
IEEE Trans Pattern Anal Mach Intell
, vol.30
, Issue.3
, pp. 424-437
-
-
Fujino, A.1
Ueda, N.2
Saito, K.3
-
11
-
-
84876261859
-
Semi-supervised learning using greedy max-cut
-
Wang J, Jebara T, Chang S-F (2013) Semi-supervised learning using greedy max-cut. J Mac Learn Res 14(1):771–800
-
(2013)
J Mac Learn Res
, vol.14
, Issue.1
, pp. 771-800
-
-
Wang, J.1
Jebara, T.2
Chang, S.-F.3
-
12
-
-
70349871686
-
Semiboost: Boosting for semi-supervised learning
-
Mallapragada PK, Jin R, Jain A, Liu Y (2009) Semiboost: boosting for semi-supervised learning. IEEE Trans Pattern Anal Mach Intell 31(11):2000–2014
-
(2009)
IEEE Trans Pattern Anal Mach Intell
, vol.31
, Issue.11
, pp. 2000-2014
-
-
Mallapragada, P.K.1
Jin, R.2
Jain, A.3
Liu, Y.4
-
18
-
-
84870064676
-
A hybrid generative/discriminative method for semi-supervised classification
-
Jiang Z, Zhang S, Zeng J (2013) A hybrid generative/discriminative method for semi-supervised classification. Knowl-Based Syst 37:137–145
-
(2013)
Knowl-Based Syst
, vol.37
, pp. 137-145
-
-
Jiang, Z.1
Zhang, S.2
Zeng, J.3
-
19
-
-
84887452388
-
A survey of multi-view machine learning
-
Sun S (2013) A survey of multi-view machine learning. Neural Comput Appl 23(7–8):2031–2038
-
(2013)
Neural Comput Appl
, vol.23
, Issue.7-8
, pp. 2031-2038
-
-
Sun, S.1
-
20
-
-
28244448186
-
Tri-training: Exploiting unlabeled data using three classifiers
-
Zhou ZH, Li M (2005) Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans Knowl Data Eng 17:1529–1541
-
(2005)
IEEE Trans Knowl Data Eng
, vol.17
, pp. 1529-1541
-
-
Zhou, Z.H.1
Li, M.2
-
21
-
-
36249007597
-
Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
-
Li M, Zhou ZH (2007) Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans Syst Man Cybern A Syst Hum 37(6):1088–1098
-
(2007)
IEEE Trans Syst Man Cybern A Syst Hum
, vol.37
, Issue.6
, pp. 1088-1098
-
-
Li, M.1
Zhou, Z.H.2
-
22
-
-
78649409198
-
Sparse semi-supervised learning using conjugate functions
-
Sun S, Shawe-Taylor J (2010) Sparse semi-supervised learning using conjugate functions. J Mach Learn Res 11:2423–2455
-
(2010)
J Mach Learn Res
, vol.11
, pp. 2423-2455
-
-
Sun, S.1
Shawe-Taylor, J.2
-
23
-
-
33745456231
-
Semi-supervised learning literature survey
-
Computer Sciences: University of Wisconsin-Madison
-
Zhu X (2005) Semi-supervised learning literature survey. Technical report 1530, Computer Sciences, University of Wisconsin-Madison
-
(2005)
Technical report 1530
-
-
Zhu, X.1
-
24
-
-
27344454215
-
Learning from labeled and unlabeled data: An empirical study across techniques and domains
-
Chawla N, Karakoulas G (2005) Learning from labeled and unlabeled data: an empirical study across techniques and domains. J Artif Intell Res 23:331–366
-
(2005)
J Artif Intell Res
, vol.23
, pp. 331-366
-
-
Chawla, N.1
Karakoulas, G.2
-
25
-
-
77956708689
-
Semi-supervised learning by disagreement
-
Zhou Z-H, Li M (2010) Semi-supervised learning by disagreement. Knowl Inf Syst 24(3):415–439
-
(2010)
Knowl Inf Syst
, vol.24
, Issue.3
, pp. 415-439
-
-
Zhou, Z.-H.1
Li, M.2
-
26
-
-
55549103698
-
KEEL: A software tool to assess evolutionary algorithms for data mining problems
-
Alcalá-Fdez J, Sánchez L, García S, del Jesus MJ, Ventura S, Garrell JM, Otero J, Romero C, Bacardit J, Rivas VM, Fernández JC, Herrera F (2009) KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput 13(3):307–318
-
(2009)
Soft Comput
, vol.13
, Issue.3
, pp. 307-318
-
-
Alcalá-Fdez, J.1
Sánchez, L.2
García, S.3
del Jesus, M.J.4
Ventura, S.5
Garrell, J.M.6
Otero, J.7
Romero, C.8
Bacardit, J.9
Rivas, V.M.10
Fernández, J.C.11
Herrera, F.12
-
27
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
-
(2006)
J Mach Learn Res
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
28
-
-
77549084648
-
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
-
García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180:2044–2064
-
(2010)
Inf Sci
, vol.180
, pp. 2044-2064
-
-
García, S.1
Fernández, A.2
Luengo, J.3
Herrera, F.4
-
29
-
-
85039747744
-
-
Triguero I, Sáez JA, Luengo J, García S, Herrera F (2013) On the characterization of noise filters for self-training semi-supervised in nearest neighbor classification, Neurocomputing (in press)
-
Triguero I, Sáez JA, Luengo J, García S, Herrera F (2013) On the characterization of noise filters for self-training semi-supervised in nearest neighbor classification, Neurocomputing (in press)
-
-
-
-
30
-
-
84926662675
-
Nearest neighbor pattern classification
-
Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27
-
(1967)
IEEE Trans Inf Theory
, vol.13
, Issue.1
, pp. 21-27
-
-
Cover, T.M.1
Hart, P.E.2
-
31
-
-
14844283227
-
Pac generalization bounds for co-training
-
MIT Press, Cambridge
-
Dasgupta S, Littman ML, McAllester DA (2001) Pac generalization bounds for co-training. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems. Neural information processing systems: natural and synthetic, vol 14. MIT Press, Cambridge, pp 375–382
-
(2001)
Advances in neural information processing systems. Neural information processing systems: Natural and synthetic
, vol.14
, pp. 375-382
-
-
Dasgupta, S.1
Littman, M.L.2
McAllester, D.A.3
Dietterich, T.G.4
Becker, S.5
Ghahramani, Z.6
-
35
-
-
79951829331
-
KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
-
Alcalá-Fdez J, Fernandez A, Luengo J, Derrac J, García S, Sánchez L, Herrera F (2011) KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J Multiple-Valued Logic Soft Comput 17(2–3):255–277
-
(2011)
J Multiple-Valued Logic Soft Comput
, vol.17
, Issue.2-3
, pp. 255-277
-
-
Alcalá-Fdez, J.1
Fernandez, A.2
Luengo, J.3
Derrac, J.4
García, S.5
Sánchez, L.6
Herrera, F.7
-
38
-
-
33845963415
-
Tri-training and data editing based semi-supervised clustering algorithm
-
Springer, Berlin
-
Deng C, Guo M (2006) Tri-training and data editing based semi-supervised clustering algorithm. In: Gelbukh A, Reyes-Garcia C (eds) MICAI 2006: advances in artificial intelligence, vol 4293 of lecture notes in computer science. Springer, Berlin, pp 641–651
-
(2006)
Lecture notes in computer science
, vol.4293
, pp. 641-651
-
-
Deng, C.1
Guo, M.2
Gelbukh, A.3
Reyes-Garcia, C.4
-
41
-
-
78650296072
-
Combining committee-based semi-supervised learning and active learning
-
Hady M, Schwenker F (2010) Combining committee-based semi-supervised learning and active learning. J Comput Sci Technol 25:681–698
-
(2010)
J Comput Sci Technol
, vol.25
, pp. 681-698
-
-
Hady, M.1
Schwenker, F.2
-
42
-
-
77950296222
-
Semi-supervised learning for tree-structured ensembles of rbf networks with co-training
-
Hady M, Schwenker F, Palm G (2010) Semi-supervised learning for tree-structured ensembles of rbf networks with co-training. Neural Netw 23:497–509
-
(2010)
Neural Netw
, vol.23
, pp. 497-509
-
-
Hady, M.1
Schwenker, F.2
Palm, G.3
-
43
-
-
77952554171
-
Co-training with relevant random subspaces
-
Yaslan Y, Cataltepe Z (2010) Co-training with relevant random subspaces. Neurocomputing 73(10–12):1652–1661
-
(2010)
Neurocomputing
, vol.73
, Issue.10-12
, pp. 1652-1661
-
-
Yaslan, Y.1
Cataltepe, Z.2
-
44
-
-
77955348911
-
A classification algorithm based on local cluster centers with a few labeled training examples
-
Huang T, Yu Y, Guo G, Li K (2010) A classification algorithm based on local cluster centers with a few labeled training examples. Knowl-Based Syst 23(6):563–571
-
(2010)
Knowl-Based Syst
, vol.23
, Issue.6
, pp. 563-571
-
-
Huang, T.1
Yu, Y.2
Guo, G.3
Li, K.4
-
45
-
-
78049316812
-
Ghosh A (2010) Ant based semi-supervised classification
-
Berlin, Heidelberg
-
Halder A, Ghosh S, Ghosh A (2010) Ant based semi-supervised classification. In: Proceedings of the 7th international conference on swarm intelligence, ANTS’10, Springer, Berlin, Heidelberg, pp 376–383
-
Proceedings of the 7th international conference on swarm intelligence, ANTS’10, Springer
, pp. 376-383
-
-
Halder, A.1
Ghosh, S.2
-
46
-
-
77955431070
-
Semi-supervised learning based on nearest neighbor rule and cut edges
-
Wang Y, Xu X, Zhao H, Hua Z (2010) Semi-supervised learning based on nearest neighbor rule and cut edges. Knowl-Based Syst 23(6):547–554
-
(2010)
Knowl-Based Syst
, vol.23
, Issue.6
, pp. 547-554
-
-
Wang, Y.1
Xu, X.2
Zhao, H.3
Hua, Z.4
-
47
-
-
79958842148
-
A new co-training-style random forest for computer aided diagnosis
-
Deng C, Guo M (2011) A new co-training-style random forest for computer aided diagnosis. J Intell Inf Syst 36:253–281. doi:10.1007/s10844-009-0105-8
-
(2011)
J Intell Inf Syst
, vol.36
, pp. 253-281
-
-
Deng, C.1
Guo, M.2
-
48
-
-
0033886806
-
Text classification from labeled and unlabeled documents using em
-
Nigam K, Mccallum A, Thrun S, Mitchell T (2000) Text classification from labeled and unlabeled documents using em. Mach Learn 39(2):103–134
-
(2000)
Mach Learn
, vol.39
, Issue.2
, pp. 103-134
-
-
Nigam, K.1
Mccallum, A.2
Thrun, S.3
Mitchell, T.4
-
49
-
-
78149283512
-
Semi-supervised Bayesian artmap
-
Tang X-L, Han M (2010) Semi-supervised Bayesian artmap. Appl Intell 33(3):302–317
-
(2010)
Appl Intell
, vol.33
, Issue.3
, pp. 302-317
-
-
Tang, X.-L.1
Han, M.2
-
51
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434
-
(2006)
J Mach Learn Res
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
52
-
-
79953816012
-
Toward the optimization of normalized graph Laplacian
-
Xie B, Wang M, Tao D (2011) Toward the optimization of normalized graph Laplacian. IEEE Trans Neural Netw 22(4):660–666
-
(2011)
IEEE Trans Neural Netw
, vol.22
, Issue.4
, pp. 660-666
-
-
Xie, B.1
Wang, M.2
Tao, D.3
-
53
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167
-
(1998)
Data Min Knowl Discov
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.1
-
54
-
-
41549144249
-
Optimization techniques for semi-supervised support vector machines
-
Chapelle O, Sindhwani V, Keerthi SS (2008) Optimization techniques for semi-supervised support vector machines. J Mach Learn Re. 9:203–233
-
(2008)
J Mach Learn Re.
, vol.9
, pp. 203-233
-
-
Chapelle, O.1
Sindhwani, V.2
Keerthi, S.S.3
-
55
-
-
77958454206
-
Genetic algorithm-based training for semi-supervised svm
-
Adankon M, Cheriet M (2010) Genetic algorithm-based training for semi-supervised svm. Neural Comput Appl 19:1197–1206
-
(2010)
Neural Comput Appl
, vol.19
, pp. 1197-1206
-
-
Adankon, M.1
Cheriet, M.2
-
56
-
-
84860231071
-
A multiple kernel framework for inductive semi-supervised svm learning
-
Tian X, Gasso G, Canu S (2012) A multiple kernel framework for inductive semi-supervised svm learning. Neurocomputing 90:46–58
-
(2012)
Neurocomputing
, vol.90
, pp. 46-58
-
-
Tian, X.1
Gasso, G.2
Canu, S.3
-
58
-
-
74449083176
-
Semi-supervised clustering with metric learning: An adaptive kernel method
-
Yin X, Chen S, Hu E, Zhang D (2010) Semi-supervised clustering with metric learning: an adaptive kernel method. Pattern Recognit 43(4):1320–1333
-
(2010)
Pattern Recognit
, vol.43
, Issue.4
, pp. 1320-1333
-
-
Yin, X.1
Chen, S.2
Hu, E.3
Zhang, D.4
-
59
-
-
55749111017
-
Unsupervised and semi-supervised clustering: A brief survey. In: A review of machine learning techniques for processing multimedia content
-
Grira N, Crucianu M, Boujemaa N (2004) Unsupervised and semi-supervised clustering: a brief survey. In: A review of machine learning techniques for processing multimedia content. Report of the MUSCLE European network of excellence FP6
-
(2004)
Report of the MUSCLE European network of excellence FP6
-
-
Grira, N.1
Crucianu, M.2
Boujemaa, N.3
-
60
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Freund Y, Seung HS, Shamir E, Tishby N (1997) Selective sampling using the query by committee algorithm. Mach Learn 28:133–168
-
(1997)
Mach Learn
, vol.28
, pp. 133-168
-
-
Freund, Y.1
Seung, H.S.2
Shamir, E.3
Tishby, N.4
-
62
-
-
78650197593
-
Multiple-view multiple-learner active learning
-
Zhang Q, Sun S (2010) Multiple-view multiple-learner active learning. Pattern Recognit 43(9):3113–3119
-
(2010)
Pattern Recognit
, vol.43
, Issue.9
, pp. 3113-3119
-
-
Zhang, Q.1
Sun, S.2
-
63
-
-
78651366861
-
Selective sampling techniques for feedback-based data retrieval
-
Yu H (2011) Selective sampling techniques for feedback-based data retrieval. Data Min Knowl Discov 22(1–2):1–30
-
(2011)
Data Min Knowl Discov
, vol.22
, Issue.1-2
, pp. 1-30
-
-
Yu, H.1
-
64
-
-
0031185845
-
Eigenfaces vs. fisherfaces: Recognition using class specific linear projection
-
Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720
-
(1997)
IEEE Trans Pattern Anal Mach Intell
, vol.19
, Issue.7
, pp. 711-720
-
-
Belhumeur, P.1
Hespanha, J.2
Kriegman, D.3
-
65
-
-
0003684449
-
-
Springer, Berlin
-
Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer, Berlin
-
(2001)
The elements of statistical learning: Data mining, inference and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
66
-
-
44649132677
-
A unified framework for semi-supervised dimensionality reduction
-
Song Y, Nie F, Zhang C, Xiang S (2008) A unified framework for semi-supervised dimensionality reduction. Pattern Recognit 41(9):2789–2799
-
(2008)
Pattern Recognit
, vol.41
, Issue.9
, pp. 2789-2799
-
-
Song, Y.1
Nie, F.2
Zhang, C.3
Xiang, S.4
-
67
-
-
40849150919
-
Joint feature re-extraction and classification using an iterative semi-supervised support vector machine algorithm
-
Li Y, Guan C (2008) Joint feature re-extraction and classification using an iterative semi-supervised support vector machine algorithm. Mach Learn 71:33–53
-
(2008)
Mach Learn
, vol.71
, pp. 33-53
-
-
Li, Y.1
Guan, C.2
-
68
-
-
39149116851
-
Computational methods of feature selection. Chapman &Hall/CRC data mining and knowledge discovery series
-
Hall/CRC, Boca Raton, FL
-
Liu H, Motoda H (eds) (2007) Computational methods of feature selection. Chapman &Hall/CRC data mining and knowledge discovery series. Chapman & Hall/CRC, Boca Raton, FL
-
(2007)
Chapman &
-
-
Liu, H.1
-
69
-
-
44649111202
-
Locality sensitive semi-supervised feature selection
-
Zhao J, Lu K, He X (2008) Locality sensitive semi-supervised feature selection. Neurocomputing 71(10–12):1842–1849
-
(2008)
Neurocomputing
, vol.71
, Issue.10-12
, pp. 1842-1849
-
-
Zhao, J.1
Lu, K.2
He, X.3
-
73
-
-
34548677479
-
A lot of randomness is hiding in accuracy
-
Ben-David A (2007) A lot of randomness is hiding in accuracy. Eng Appl Artif Intell 20:875–885
-
(2007)
Eng Appl Artif Intell
, vol.20
, pp. 875-885
-
-
Ben-David, A.1
-
75
-
-
85039734311
-
-
Asuncion A, Newman D (2007) UCI machine learning repository
-
Asuncion A, Newman D (2007) UCI machine learning repository. http://www.ics.uci.edu/mlearn/MLRepository.html
-
-
-
-
77
-
-
0025725905
-
Instance-based learning algorithms
-
Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6(1):37–66
-
(1991)
Mach Learn
, vol.6
, Issue.1
, pp. 37-66
-
-
Aha, D.W.1
Kibler, D.2
Albert, M.K.3
-
81
-
-
58149287952
-
An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
-
García S, Herrera F (2008) An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J Mach Learn Res 9:2677–2694
-
(2008)
J Mach Learn Res
, vol.9
, pp. 2677-2694
-
-
García, S.1
Herrera, F.2
-
83
-
-
84944811700
-
The use of ranks to avoid the assumption of normality implicit in the analysis of variance
-
Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701
-
(1937)
J Am Stat Assoc
, vol.32
, pp. 675-701
-
-
Friedman, M.1
-
84
-
-
0009038905
-
Improvements of general multiple test procedures for redundant systems of hypotheses
-
Springer, Berlin
-
Bergmann G, Hommel G (1988) Improvements of general multiple test procedures for redundant systems of hypotheses. In: Bauer P, Hommel G, Sonnemann E (eds) Multiple hypotheses testing. Springer, Berlin pp 100–115
-
(1988)
Multiple hypotheses testing
, pp. 100-115
-
-
Bergmann, G.1
Hommel, G.2
Bauer, P.3
Hommel, G.4
Sonnemann, E.5
-
85
-
-
58149195307
-
Discretization for naive-Bayes learning: Managing discretization bias and variance
-
Yang Y, Webb G (2009) Discretization for naive-Bayes learning: managing discretization bias and variance. Mac Learn 74(1):39–74
-
(2009)
Mac Learn
, vol.74
, Issue.1
, pp. 39-74
-
-
Yang, Y.1
Webb, G.2
-
86
-
-
84874613998
-
A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning
-
García S, Luengo J, Saez JA, López V, Herrera F (2013) A survey of discretization techniques: taxonomy and empirical analysis in supervised learning. IEEE Trans Knowl Data Eng 25(4):734–750
-
(2013)
IEEE Trans Knowl Data Eng
, vol.25
, Issue.4
, pp. 734-750
-
-
García, S.1
Luengo, J.2
Saez, J.A.3
López, V.4
Herrera, F.5
|