메뉴 건너뛰기




Volumn 1671, Issue , 2018, Pages 163-184

CRISPR-Cas9 toolkit for actinomycete genome editing

Author keywords

Actinomycetes; CRISPR Cas9; CRISPRi; Double strand break (DSB); Genome editing; Homology directed repair (HDR); Non homologous end joining (NHEJ); Synthetic biology; Uracil specific excision reagent (USER) cloning

Indexed keywords

URACIL;

EID: 85035101520     PISSN: 10643745     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-4939-7295-1_11     Document Type: Chapter
Times cited : (22)

References (54)
  • 1
    • 14544294545 scopus 로고    scopus 로고
    • Bioactive microbial metabolites – a personal view
    • Berdy J (2005) Bioactive microbial metabolites – a personal view. J Antibiot 58(1):1–26
    • (2005) J Antibiot , vol.58 , Issue.1 , pp. 1-26
    • Berdy, J.1
  • 2
    • 84865683314 scopus 로고    scopus 로고
    • Thoughts and facts about antibiotics: Where we are now and where we are heading
    • Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65(8):385–395. doi:10. 1038/Ja.2012.27
    • (2012) J Antibiot , vol.65 , Issue.8 , pp. 385-395
    • Berdy, J.1
  • 3
    • 84895453461 scopus 로고    scopus 로고
    • Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites
    • Hwang KS, Kim HU, Charusanti P et al (2014) Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 32(2):255–268. doi:10.1016/J.Biotechadv.2013.10.008
    • (2014) Biotechnol Adv , vol.32 , Issue.2 , pp. 255-268
    • Hwang, K.S.1    Kim, H.U.2    Charusanti, P.3
  • 4
    • 84883353135 scopus 로고    scopus 로고
    • AntiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers
    • Blin K, Medema MH, Kazempour D et al (2013) antiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41(W1): W204–W212. doi:10.1093/nar/gkt449
    • (2013) Nucleic Acids Res , vol.41 , Issue.W1 , pp. W204-W212
    • Blin, K.1    Medema, M.H.2    Kazempour, D.3
  • 5
    • 84979859096 scopus 로고    scopus 로고
    • Anti-SMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters
    • Weber T, Blin K, Duddela S et al (2015) anti-SMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43(W1):W237–W243. doi:10.1093/nar/gkv437
    • (2015) Nucleic Acids Res , vol.43 , Issue.W1 , pp. W237-W243
    • Weber, T.1    Blin, K.2    Duddela, S.3
  • 6
    • 85014230646 scopus 로고    scopus 로고
    • The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production
    • Weber T, Kim HU (2016) The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synthetic Syst Biotechnol 1(2):69–79
    • (2016) Synthetic Syst Biotechnol , vol.1 , Issue.2 , pp. 69-79
    • Weber, T.1    Kim, H.U.2
  • 7
    • 84979984723 scopus 로고    scopus 로고
    • The evolution of genome mining in microbes – a review
    • Ziemert N, Alanjary M, Weber T (2016) The evolution of genome mining in microbes – a review. Nat Prod Rep 33(8):988–1005. doi:10.1039/c6np00025h
    • (2016) Nat Prod Rep , vol.33 , Issue.8 , pp. 988-1005
    • Ziemert, N.1    Alanjary, M.2    Weber, T.3
  • 8
    • 84918813440 scopus 로고    scopus 로고
    • Metabolic engineering of antibiotic factories: New tools for antibiotic production in actinomycetes
    • Weber T, Charusanti P, Musiol-Kroll EM et al (2015) Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 33(1): 15–26. doi:10.1016/j.tibtech.2014.10.009
    • (2015) Trends Biotechnol , vol.33 , Issue.1 , pp. 15-26
    • Weber, T.1    Charusanti, P.2    Musiol-Kroll, E.M.3
  • 9
    • 77957935381 scopus 로고    scopus 로고
    • CRISPR/Cas system and its role in phage-bacteria interactions
    • Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493. doi:10.1146/annurev.micro. 112408.134123
    • (2010) Annu Rev Microbiol , vol.64 , pp. 475-493
    • Deveau, H.1    Garneau, J.E.2    Moineau, S.3
  • 10
    • 84878168552 scopus 로고    scopus 로고
    • CRISPR-Cas: Evolution of an RNA-based adaptive immunity system in prokaryotes
    • Koonin EV, Makarova KS (2013) CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol 10 (5):679–686. doi:10.4161/rna.24022
    • (2013) RNA Biol , vol.10 , Issue.5 , pp. 679-686
    • Koonin, E.V.1    Makarova, K.S.2
  • 11
    • 84899134190 scopus 로고    scopus 로고
    • CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity
    • Barrangou R, Marraffini LA (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54(2):234–244. doi:10. 1016/j.molcel.2014.03.011
    • (2014) Mol Cell , vol.54 , Issue.2 , pp. 234-244
    • Barrangou, R.1    Marraffini, L.A.2
  • 12
    • 84974606818 scopus 로고    scopus 로고
    • C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
    • Abudayyeh OO, Gootenberg JS, Konermann S et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353(6299):aaf5573. doi:10.1126/science.aaf5573
    • (2016) Science , vol.353 , Issue.6299
    • Abudayyeh, O.O.1    Gootenberg, J.S.2    Konermann, S.3
  • 13
    • 84944449180 scopus 로고    scopus 로고
    • An updated evolutionary classification of CRISPR-Cas systems
    • Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13 (11):722–736. doi:10.1038/nrmicro3569
    • (2015) Nat Rev Microbiol , vol.13 , Issue.11 , pp. 722-736
    • Makarova, K.S.1    Wolf, Y.I.2    Alkhnbashi, O.S.3
  • 14
    • 34047118522 scopus 로고    scopus 로고
    • CRISPR provides acquired resistance against viruses in prokaryotes
    • Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 (5819):1709–1712. doi:10.1126/science. 1138140
    • (2007) Science , vol.315 , Issue.5819 , pp. 1709-1712
    • Barrangou, R.1    Fremaux, C.2    Deveau, H.3
  • 15
    • 80755187812 scopus 로고    scopus 로고
    • CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation
    • Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297. doi:10.1146/annurev-genet-110410-132430
    • (2011) Annu Rev Genet , vol.45 , pp. 273-297
    • Bhaya, D.1    Davison, M.2    Barrangou, R.3
  • 16
    • 74249095519 scopus 로고    scopus 로고
    • CRISPR/Cas, the immune system of bacteria and archaea
    • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170. doi:10.1126/sci ence.1179555
    • (2010) Science , vol.327 , Issue.5962 , pp. 167-170
    • Horvath, P.1    Barrangou, R.2
  • 17
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi:10.1126/science.1225829
    • (2012) Science , vol.337 , Issue.6096 , pp. 816-821
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3
  • 18
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607. doi:10. 1038/Nature09886
    • (2011) Nature , vol.471 , Issue.7340 , pp. 602-607
    • Deltcheva, E.1    Chylinski, K.2    Sharma, C.M.3
  • 19
    • 84896733529 scopus 로고    scopus 로고
    • Crystal structure of Cas9 in complex with guide RNA and target DNA
    • Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156 (5):935–949. doi:10.1016/j.cell.2014.02.001
    • (2014) Cell , vol.156 , Issue.5 , pp. 935-949
    • Nishimasu, H.1    Ran, F.A.2    Hsu, P.D.3
  • 20
    • 84895871173 scopus 로고    scopus 로고
    • DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
    • Sternberg SH, Redding S, Jinek M et al (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507 (7490):62–67. doi:10.1038/Nature13011
    • (2014) Nature , vol.507 , Issue.7490 , pp. 62-67
    • Sternberg, S.H.1    Redding, S.2    Jinek, M.3
  • 21
    • 2642570858 scopus 로고    scopus 로고
    • Mechanisms of DNA double strand break repair and chromosome aberration formation
    • Iliakis G, Wang H, Perrault AR et al (2004) Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res 104(1–4):14–20. doi:10.1159/000077461
    • (2004) Cytogenet Genome Res , vol.104 , Issue.14 , pp. 14-20
    • Iliakis, G.1    Wang, H.2    Perrault, A.R.3
  • 22
    • 0031794286 scopus 로고    scopus 로고
    • Molecular mechanisms of DNA double strand break repair
    • Kanaar R, Hoeijmakers JH, van Gent DC (1998) Molecular mechanisms of DNA double strand break repair. Trends Cell Biol 8 (12):483–489
    • (1998) Trends Cell Biol , vol.8 , Issue.12 , pp. 483-489
    • Kanaar, R.1    Hoeijmakers, J.H.2    Van Gent, D.C.3
  • 23
    • 84892437994 scopus 로고    scopus 로고
    • Highly efficient targeted mutagenesis of dro-sophila with the CRISPR/Cas9 system
    • Bassett AR, Tibbit C, Ponting CP et al (2013) Highly efficient targeted mutagenesis of dro-sophila with the CRISPR/Cas9 system. Cell Rep 4(1):220–228. doi:10.1016/J.Celrep. 2013.06.020
    • (2013) Cell Rep , vol.4 , Issue.1 , pp. 220-228
    • Bassett, A.R.1    Tibbit, C.2    Ponting, C.P.3
  • 24
    • 84876575031 scopus 로고    scopus 로고
    • Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    • DiCarlo JE, Norville JE, Mali P et al (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343
    • (2013) Nucleic Acids Res , vol.41 , Issue.7 , pp. 4336-4343
    • Dicarlo, J.E.1    Norville, J.E.2    Mali, P.3
  • 25
    • 84881475586 scopus 로고    scopus 로고
    • Heritable genome editing in C. Elegans via a CRISPR-Cas9 system
    • Friedland AE, Tzur YB, Esvelt KM et al (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10 (8):741–743. doi:10.1038/Nmeth.2532
    • (2013) Nat Methods , vol.10 , Issue.8 , pp. 741-743
    • Friedland, A.E.1    Tzur, Y.B.2    Esvelt, K.M.3
  • 26
    • 84883819602 scopus 로고    scopus 로고
    • Heritable gene targeting in the mouse and rat using a CRISPR-Cas system
    • Li DL, Qiu ZW, Shao YJ et al (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31 (8):681–683. doi:10.1038/Nbt.2661
    • (2013) Nat Biotechnol , vol.31 , Issue.8 , pp. 681-683
    • Li, D.L.1    Qiu, Z.W.2    Shao, Y.J.3
  • 27
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. doi:10.1126/sci ence.1232033
    • (2013) Science , vol.339 , Issue.6121 , pp. 823-826
    • Mali, P.1    Yang, L.2    Esvelt, K.M.3
  • 28
    • 84903118288 scopus 로고    scopus 로고
    • Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool
    • Ronda C, Pedersen LE, Hansen HG et al (2014) Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol Bioeng 111(8):1604–1616. doi:10.1002/Bit.25233
    • (2014) Biotechnol Bioeng , vol.111 , Issue.8 , pp. 1604-1616
    • Ronda, C.1    Pedersen, L.E.2    Hansen, H.G.3
  • 29
    • 84877707375 scopus 로고    scopus 로고
    • One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
    • Wang HY, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. doi:10.1016/J.Cell.2013.04.025
    • (2013) Cell , vol.153 , Issue.4 , pp. 910-918
    • Wang, H.Y.1    Yang, H.2    Shivalila, C.S.3
  • 30
    • 84884962826 scopus 로고    scopus 로고
    • RNA-guided genome editing in plants using a CRISPRCas system
    • Xie KB, Yang YN (2013) RNA-guided genome editing in plants using a CRISPRCas system. Mol Plant 6(6):1975–1983. doi:10.1093/Mp/Sst119
    • (2013) Mol Plant , vol.6 , Issue.6 , pp. 1975-1983
    • Xie, K.B.1    Yang, Y.N.2
  • 31
    • 84896861273 scopus 로고    scopus 로고
    • Effective gene targeting in rabbits using RNA-guided Cas9 nucleases
    • Yang DS, Xu J, Zhu TQ et al (2014) Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J Mol Cell Biol 6(1):97–99. doi:10.1093/Jmcb/Mjt047
    • (2014) J Mol Cell Biol , vol.6 , Issue.1 , pp. 97-99
    • Yang, D.S.1    Xu, J.2    Zhu, T.Q.3
  • 32
    • 0032904693 scopus 로고    scopus 로고
    • The biochemistry and biological significance of nonhomologous DNA end joining: An essential repair process in multicellular eukaryotes
    • Lieber MR (1999) The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells 4(2):77–85
    • (1999) Genes Cells , vol.4 , Issue.2 , pp. 77-85
    • Lieber, M.R.1
  • 33
    • 84888626405 scopus 로고    scopus 로고
    • Modernizing the nonhomologous end-joining repertoire: Alternative and classical NHEJ share the stage
    • Deriano L, Roth DB (2013) Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47:433–455. doi:10.1146/annurev-genet-110711-155540
    • (2013) Annu Rev Genet , vol.47 , pp. 433-455
    • Deriano, L.1    Roth, D.B.2
  • 34
    • 0034889360 scopus 로고    scopus 로고
    • Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system
    • Aravind L, Koonin EV (2001) Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 11 (8):1365–1374. doi:10.1101/gr.181001
    • (2001) Genome Res , vol.11 , Issue.8 , pp. 1365-1374
    • Aravind, L.1    Koonin, E.V.2
  • 35
    • 33645781346 scopus 로고    scopus 로고
    • Making ends meet: Repairing breaks in bacterial DNA by non-homologous end-joining
    • Bowater R, Doherty AJ (2006) Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet 2 (2):e8. doi:10.1371/journal.pgen.0020008
    • (2006) Plos Genet , vol.2 , Issue.2
    • Bowater, R.1    Doherty, A.J.2
  • 36
    • 84940106526 scopus 로고    scopus 로고
    • CRISPR-Cas9 based engineering of actinomy-cetal genomes
    • Tong Y, Charusanti P, Zhang L et al (2015) CRISPR-Cas9 based engineering of actinomy-cetal genomes. ACS Synth Biol 4(9): 1020–1029. doi:10.1021/acssynbio.5b00038
    • (2015) ACS Synth Biol , vol.4 , Issue.9 , pp. 1020-1029
    • Tong, Y.1    Charusanti, P.2    Zhang, L.3
  • 38
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. doi:10. 1016/J.Cell.2013.02.022
    • (2013) Cell , vol.152 , Issue.5 , pp. 1173-1183
    • Qi, L.S.1    Larson, M.H.2    Gilbert, L.A.3
  • 39
    • 59149092285 scopus 로고    scopus 로고
    • Gene synthesis demystified
    • Czar MJ, Anderson JC, Bader JS et al (2009) Gene synthesis demystified. Trends Biotechnol 27(2):63–72. doi:10.1016/j.tibtech.2008.10. 007
    • (2009) Trends Biotechnol , vol.27 , Issue.2 , pp. 63-72
    • Czar, M.J.1    Anderson, J.C.2    Bader, J.S.3
  • 40
    • 33750975084 scopus 로고    scopus 로고
    • Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments
    • Nour-Eldin HH, Hansen BG, Norholm MHH et al (2006) Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res 34(18): e122. doi:10.1093/nar/gkl635
    • (2006) Nucleic Acids Res , vol.34 , Issue.18
    • Nour-Eldin, H.H.1    Hansen, B.G.2    Norholm, M.H.H.3
  • 41
    • 34247876216 scopus 로고    scopus 로고
    • USER (TM) friendly DNA engineering and cloning method by uracil excision
    • Bitinaite J, Rubino M, Varma KH et al (2007) USER (TM) friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res 35(6):1992–2002. doi:10.1093/nar/gkm041
    • (2007) Nucleic Acids Res , vol.35 , Issue.6 , pp. 1992-2002
    • Bitinaite, J.1    Rubino, M.2    Varma, K.H.3
  • 42
    • 84925639491 scopus 로고    scopus 로고
    • Software-supported USER cloning strategies for site-directed mutagenesis and DNA assembly
    • Genee HJ, Bonde MT, Bagger FO et al (2015) Software-supported USER cloning strategies for site-directed mutagenesis and DNA assembly. ACS Synth Biol 4(3):342–349. doi:10. 1021/sb500194z
    • (2015) ACS Synth Biol , vol.4 , Issue.3 , pp. 342-349
    • Genee, H.J.1    Bonde, M.T.2    Bagger, F.O.3
  • 43
    • 77950603940 scopus 로고    scopus 로고
    • A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering
    • Norholm MHH (2010) A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol 10:21. doi:10.1186/1472-6750-10-21
    • (2010) BMC Biotechnol , vol.10 , pp. 21
    • Norholm, M.H.H.1
  • 45
    • 84942045165 scopus 로고    scopus 로고
    • Accurate DNA assembly and genome engineering with optimized uracil excision cloning
    • Cavaleiro AM, Kim SH, Seppala S et al (2015) Accurate DNA assembly and genome engineering with optimized uracil excision cloning. ACS Synth Biol 4(9):1042–1046. doi:10. 1021/acssynbio.5b00113
    • (2015) ACS Synth Biol , vol.4 , Issue.9 , pp. 1042-1046
    • Cavaleiro, A.M.1    Kim, S.H.2    Seppala, S.3
  • 46
    • 84934947770 scopus 로고    scopus 로고
    • High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/ Cas system
    • Cobb RE, Wang Y, Zhao H (2014) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/ Cas system. ACS Synth Biol. doi:10.1021/sb500351f
    • (2014) ACS Synth Biol
    • Cobb, R.E.1    Wang, Y.2    Zhao, H.3
  • 47
    • 84926466507 scopus 로고    scopus 로고
    • One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces
    • Huang H, Zheng GS, Jiang WH et al (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin (Shanghai) 47(4). doi:10. 1093/abbs/gmv007
    • (2015) Acta Biochim Biophys Sin (Shanghai) , vol.47 , Issue.4
    • Huang, H.1    Zheng, G.S.2    Jiang, W.H.3
  • 48
    • 84948382257 scopus 로고    scopus 로고
    • Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelico-lor M145 using CRISPR/Cas9-CodA(Sm) combined system
    • Zeng H, Wen SS, Xu W et al (2015) Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelico-lor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 99(24):10575–10585. doi:10.1007/s00253-015-6931-4
    • (2015) Appl Microbiol Biotechnol , vol.99 , Issue.24 , pp. 10575-10585
    • Zeng, H.1    Wen, S.S.2    Xu, W.3
  • 50
    • 0024341196 scopus 로고
    • A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes
    • Muth G, Nussbaumer B, Wohlleben W et al (1989) A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219(3):341–348. doi:10.1007/Bf00259605
    • (1989) Mol Gen Genet , vol.219 , Issue.3 , pp. 341-348
    • Muth, G.1    Nussbaumer, B.2    Wohlleben, W.3
  • 51
    • 84903549014 scopus 로고    scopus 로고
    • SgRNA-cas9: A software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites
    • Xie SS, Shen B, Zhang CB et al (2014) sgRNA-cas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One 9(6). doi:10.1371/journal.pone.0100448
    • (2014) Plos One , vol.9 , Issue.6
    • Xie, S.S.1    Shen, B.2    Zhang, C.B.3
  • 52
    • 84983290764 scopus 로고    scopus 로고
    • CRISPy-web: An online resource to design sgRNAs for CRISPR applications
    • Blin K, Pedersen LE, Weber T et al (2016) CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synthetic Syst Biotechnol 1(2):4
    • (2016) Synthetic Syst Biotechnol , vol.1 , Issue.2 , pp. 4
    • Blin, K.1    Pedersen, L.E.2    Weber, T.3
  • 53
    • 0034770437 scopus 로고    scopus 로고
    • Forty years with homologous recombination
    • Smithies O (2001) Forty years with homologous recombination. Nat Med 7(10): 1083–1086. doi:10.1038/nm1001-1083
    • (2001) Nat Med , vol.7 , Issue.10 , pp. 1083-1086
    • Smithies, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.